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Abstract

Large-scale recognition problems with thousands of
classes pose a particular challenge because applying the
classifier requires more computation as the number of
classes grows. The label tree model integrates classifica-
tion with the traversal of the tree so that complexity grows
logarithmically. In this paper, we show how the parameters
of the label tree can be found using maximum likelihood
estimation. This new probabilistic learning technique pro-
duces a label tree with significantly improved recognition
accuracy.

1. Introduction
In this paper, we present an improved probabilistic

model for distinguishing between large numbers of cate-
gories with a label tree model. Developing a large-scale
vision system that can recognize a large number of cate-
gories poses a number of challenges[7, 13, 14, 15, 19]. In
addition to scaling the training algorithms to accommodate
all of the examples and features in a large scale problem, a
system designed for many categories will also face scaling
issues when classifying novel data. The parameters for the
popular SVM and multinomial logistic regression models
contain one vector per possible class. Thus, if there are K
possible classes, assigning a label to a new feature vector x
will require the computation of K dot products between x
and the vectors defining the classifier. For a relatively small
number of categories, this computational cost is not signifi-
cant enough to require attention.

However, as both the number of categories and need for
fast recognition increases, this linear relationship between
the complexity of recognition and the number of classes
can become problematic. This issue is compounded if the
classification process involves computations that are more
complex than a dot product.

In [1], Bengio et al. introduce the label tree model for
reducing the complexity of recognition in a problem with a
larger number of classes. In the label tree model, a feature
vector is assigned a label by traversing a tree. At each node
visited, the classifier computes the dot product between the

feature vector and a small number of vectors. This tree
structure causes the classification complexity to grow loga-
rithmically, rather than linearly, with the number of classes.
More recently, Deng et al. proposed an optimization-based
scheme that maximizes accuracy under constraints on am-
biguity [8].

In this paper, we present a novel, probabilistic approach
to learning the parameters of a label tree. We show how a
recursive process learns the tree parameters. As the results
in Section 7 will show, this approach produces significantly
improved accuracies over previous results in [8]. The prob-
abilistic model also makes it possible to tune accuracy ver-
sus efficiency without having to retrain the tree.

From a broader perspective, formulating the label tree in
a probabilistic framework provides a straight-forward av-
enue for integrating more complex, accurate classification
models into the label tree framework. With this probabilis-
tic formulation, any classifier that can be expressed proba-
bilistically can be integrated into the label tree.

2. Overview of a Label Tree
This section will briefly review how a label tree operates

and previous work on learning the parameters of the tree.
Following previous work in [1, 8], we will focus on a label
tree that uses linear classifiers at each node of the tree.

Algorithm 1 Classifying a test example with the label tree
algorithm.
Input: Test example x, label tree parameters T, σ, l

1: Initialize s to the root node
2: while σ(s) 6= ∅ do
3: s← argmax

c∈σ(s)
w>
c x

4: end while
5: Assign the label l(s) to the test example

Following the notation in [8], a label tree is a tree with
nodes V and edges E, such that the tree T = (V,E). The
children of a node r are contained in the set σ(r). Every
child node, c, is associated with a vector of weights wc that
are used to choose which child node will be visited during
the classification process. Each leaf node is also associated
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with a label, l(s), for a node s, that specifies the label that
should be assigned to the example if that node s is reached
as a leaf node.

As shown in Algorithm 1, a new test example is classi-
fied by traversing the tree, beginning at the root node. Ex-
cept for the leaf nodes, each node is treated identically. At a
node s, assuming it is not a leaf node, classification scores
are computed for every child node of s using the weights
wc for the child node c. The child node with the highest
classification score becomes the next node to be visited. As
described above, if the classification algorithm arrives at a
leaf node, then the test example is assigned the label l(s),
where s is the leaf node visited.

2.1. Previous Work on Learning Label Trees

Most of the research on accelerating large scale classifi-
cation problems focuses on tree-based models[1, 2, 3, 4, 6,
8, 10, 11]. Learning the label tree parameters requires find-
ing the classifier weights for each node and the labels for the
leaf nodes. The efficiency benefits of the tree structure will
be maximized when the examples or classes are balanced
among the leaf nodes.

In [3], Beygelzimer et al. build a randomized tree at test
time, and each sample traverse the tree from the root to sin-
gle leaf node which corresponds to a single class. Condi-
tional Probability Tree(CPT) [11] adopts a similar idea as
[3], but they build the tree at training time based on opti-
mizing conditional probability. In [10], Gao et al. propose
to formulate class hierarchy in DAG structure and learn
a unified max-margin classifier together with splitting the
classes.

Bengio et al. propose to learn a label embedding tree for
multi-class tasks [1]. In this method, the tree structure is de-
termined by the spectral clustering of the confusion matrix,
which is generated by a one-against-all classifier. Then they
learn the tree classifier based on a tree based loss function
that outperforms independent nodes optimization. In addi-
tion, label embedding is integrated into the tree framework
to further boost their accuracy and speed.

In [8], Deng et al. propose a margin-based model that
finds the label tree parameters with two alternating opti-
mization steps. In the first step, the system learns the linear
classifiers that choose the child node to be visited by maxi-
mizing a multi-class margin score. This score is based on a
list of classes assigned to each of the child nodes. The list
of classes assigned to each node is determined in a second
optimization that attempts to create a balanced tree by as-
signing classes to different child nodes. This assignment,
which is found by optimizing a linear program, attempts to
minimize the number of classes assigned to any node. This
makes it possible to determine the class while visiting as
few nodes as possible.

3. Learning a Probabilistic Label Tree
We propose a probabilistic approach for learning the la-

bel tree parameters. As will be shown in the experiments
in Section 7, this probabilistic model produces improved
recognition accuracy.

Each node, s, in the probabilistic label tree is associated
with a categorical probability distribution p[y|S] where y
denotes the label of the test example and S denotes the event
that the inference process has arrived at node s.

This categorical distribution can be combined with a
probabilistic classifier defined by the classification vectors
at each node to compute the probability of a particular label
being assigned to the test example, given the feature vector
x.

3.1. Defining the Learning Criterion
Defining the label tree as a probabilistic model makes it

natural to take a maximum likelihood approach to learning
the parameters. The first step is to define the probability
that the example should receive the label y, beginning at the
root node, r. This can be expressed as

p(y|x) =
∑
c∈σ(r)

p[y|Sc]P [Sc|x] (1)

where σ(r) is the set of all child nodes of r, as in Algo-
rithm 1, SC denotes the event that the system chooses to
visit the child node c next; P [Sc|x] denotes the probabil-
ity that the system chooses this node to visit, and p[y|Sc]
denotes the probability of label y given the system chooses
node Sc.

Consistent with our focus on linear classifiers, the con-
ditional distribution P [Sc|x] is defined using a multinomial
logistic regression model:

P [Sc|x] =
ew>

c x∑
i∈σ(r)

ew>
i x
. (2)

It should be noted, though, that any conditional probability
distribution could be subsituted here.

This model can be thought of as breaking classification
into two steps. At the root node, the classification vectors
are applied to the feature vector x to determine which child
node should be visited. The final label of the example is
then determined by the categorical distribution associated
with the child node.

3.2. Recursively Expanding the Model
If there are K classes and each node has n children, then

the tree will need at least lognK levels of child nodes so
that there is at least one leaf node for each possible class.
Having fewer leaf nodes than classes will guarantee am-
biguous results as some leaf nodes will be forced to rep-
resent two classes.

New levels can be added to the distribution in Equation



(1) by recursively expanding each p[y|Sc] term. If c1 rep-
resents the child node chosen at the first level and c2 repre-
sents a child node of c1, a two level model would have the
form

p(y|x) =
∑

c1∈σ(r)

∑
c2∈σ(c1)

p[y|Sc2 ]P [Sc2 |Sc1 , x]P [Sc1 |x].

(3)
In this case P [Sc2 |Sc1 , x] has the same multinomial logistic
regression form as Equation (2). Additional levels can be
added to this model in a similar fashion.

3.3. Building the Tree Stagewise
Given unlimited computing resources, the label tree pa-

rameters could be found by expanding Equation (3) to the
desired number of levels and optimizing the log of Equa-
tion (3) with a continuous optimization algorithm. How-
ever, as the number of levels grows, the number of param-
eters and complexity of training will grow exponentially.
Thus, for practical reasons it is useful to train the classifiers
at each node independently.

Returning to the probability at the root node in Equa-
tion (1), once the classifier vectors and parameters of the
categorical distributions p[y|Sc] have been found, Jensen’s
Inequality can be applied to the log of Equation (1) to com-
pute a lower bound on p(y|x).

log p(y|x) = log
[∑

c∈σ(r) p(y|Sc)P [Sc|x]
]

≥
∑
c∈σ(r)

P [Sc|x] log [p(y|Sc)] (4)

Defining this lower bound as L,

L =
∑
c∈σ(r)

P [Sc|x] log [p(y|Sc)] , (5)

the categorical distribution at each of the child nodes can
be expanded recursively to have classifiers and a new set of
child nodes. Using this bound, the same two level expansion
shown in Equation (3) becomes

L =
∑

c1∈σ(r)

P [Sc1 |x] log

 ∑
c2∈σ(c1)

p(y|Sc2)P [Sc2 |Sc1 , x]


(6)

for a single training example.
Each of the terms inside the log in this equation corre-

sponds to one child node. Because each of the terms in
the summation in the right hand side of Equation (6) has
its own set of parameters, L will be maximized by indi-
vidually maximizing each of the terms. This decouples the
child nodes during training and makes it possible to inde-
pendently learn the parameters for each of the child nodes.

This also shows that learning the parameters of the la-
bel tree can be viewed as a stagewise lower-bound maxi-
mization of the log likelihood function for the classification

problem.

4. Final Algorithm for Learning a Probabilistic
Label Tree

The process of learning the label tree can be viewed
as a recursive expansion of nodes. Starting with the root
node, each non-leaf node is expanded into a branch node
by iteratively performing: (1)Learning the maximum likeli-
hood classifiers based on the categorical distribution of each
child node (2) Learning the categorical distribution associ-
ated with each child node.

4.1. Learning Parameters for an Expanded Node
For a training set with N training pairs, (yi, xi), this is

equivalent to optimizing the log of Equation (1) over all ex-
amples, for an arbitrary node.

The overall training process is more easily specified by
defining a general loss for expanding a node s, given N
training pairs of the form (yi, xi), expressed as:

L =

N∑
i=1

αi log

 ∑
c∈σ(s)

p(yi|Sc)P [Sc|xi]

 (7)

This log likelihood can be maximized using two alter-
nating convex optimizations. In the first step, p(yi|Sc) is
held constant and the optimization is similar to training a
multinomial logistic regression model, or softmax classi-
fier. Next, P [Sc|xi] is held constant, and the optimization is
essentially equivalent to maximum-likelihood estimation of
the categorical distribution parameters. We have found that
running this optimization for a fixed number of iterations,
typically under 10, works well. In our implementation, we
use a weighted k-means algorithm to generate an initial set
of clusters that can be used to initialize the categorical dis-
tributions.

4.2. Formal Specification of the Algorithm
Our formal specification of the algorithm for construct-

ing the label tree will involve two sets of functions. First, we
will define ψ(s) to be the set of nodes that must be traversed
before arriving at node s, or the path to s. Second, we will
define λ() to be the set of nodes at a given level of the tree.
This will start at 0, with λ(0) only containing the root node,
λ(1) containing the next level of branch nodes, and so on.
Algorithm 2 shows the recursive process for expanding the
branch nodes.

5. Understanding the Expansion Process
Figure 1 shows examples of how the expansion process

operates on the ILSVRC2010 database discussed in Section
7. Figure 1(a) shows the categorical distribution at a branch
node in the second level of a T6,4 tree that has four levels,
not counting the root node. Figure 1(b) - 1(d) show sev-
eral of the six child nodes of this branch node. In this next
level, the classes with the highest probability at the branch



Class Prob.
chickpea 0.019
hazelnut 0.019
lentil 0.017
kidney bean 0.016
brussels sprouts 0.016
coffee bean 0.015
clam 0.015
peanut 0.015
plum 0.015
mashed potato 0.014
soy 0.014
orange 0.014
cashew 0.014
lemon 0.014
walnut 0.014
Rem. 985 classes 0.771

(a) Distribution at Parent Node be-
fore Expansion

Class Prob.
hazelnut 0.075
lentil 0.067
kidney bean 0.064
peanut 0.062
cashew 0.057
soy 0.056
coffee bean 0.055
peanut 0.055
green pea 0.055
pumpkin seed 0.054
pistachio 0.051
walnut 0.040
pea 0.038
corn 0.032
bean 0.028
Rem. 985 classes 0.210

(b) Distribution at a Child Node af-
ter Expansion

Class Prob.
chickpea 0.107
mashed potato 0.084
clam 0.081
brussels sprouts 0.074
shrimp 0.071
okra 0.038
french fries 0.035
acorn squash 0.035
broccoli 0.034
cucumber 0.031
spaghetti squash 0.028
celery 0.025
shiitake 0.025
black olive 0.020
bok choy 0.019
Rem. 985 classes 0.292

(c) Distribution at a Child Node af-
ter Expansion

Class Prob.
lemon 0.061
orange 0.060
plum 0.056
persimmon 0.056
guava 0.055
mango 0.055
shallot 0.052
kumquat 0.052
Granny Smith 0.049
turnip 0.047
quince 0.046
bell pepper 0.045
butternut squash 0.032
fig 0.025
spaghetti squash 0.023
Rem. 985 classes 0.285

(d) Distribution at a Child Node af-
ter Expansion

Figure 1. This figure visualizes the expansion process for one part of the tree. The table in (a) shows a portion of the categorical distribution
at a branch node in the second level of a T6,4 tree that has four levels, excluding the root node. The tables in (b), (c), and (d) show the
categorical distributions learned for three of the child nodes. The probability in these child nodes is more concentrated on a subset of the
classes than in the parent node. In this result, the tree has not been trained with the pruning techniques in Section.6.1, so the distributions
accurately represent the behavior of the maximum-likelihood criterion.

Algorithm 2 Algorithm for Learning Node Parameters
Input: N training pairs (yi, xi), maximum number of lev-

els, L, branching factor B, weight α Test example x,
label tree parameters T, σ, l

1: for l = 0 . . . L− 1 do
2: for all nodes s in λ(l) do
3: Create B child nodes, except at final level (see

Sec. 6.2)
4: αi ← 1 ·

∏
t∈ψ(l)

P [St|xi],∀i ∈ {1, . . . , N}

5: for all nodes c in σ(s) do
6: for M iterations do
7: Fix the parameters for P [y|Sc], maxi-

mize Equation (7) over classifier parameters.
8: Fix the parameters for classifier param-

eters w, maximize Equation (7) over the parameters of
P [y|Sc].

9: end for
10: end for
11: end for
12: end for

node are distributed among the children. The final row in
these tables also shows that probability has become more
concentrated in the most likely classes.

5.1. Balanced Trees and Efficiency
Increasing classification efficiency is the primary moti-

vation behind the label tree model. For the models based
on linear classifiers, this efficiency is best measured by the
average number of dot products needed to produce a final

label. The number of dot products depends on the number
of leaf nodes, which is itself dependent on how balanced
the tree is. A perfect balancing of the probabilities for each
class across the nodes of the tree would minimize the num-
ber of leaf nodes needed.

This raises the question of whether the maximum-
likelihood approach proposed here will find a balanced tree.
A maximum-likelihood approach attempts to learn a model
which induces a label distribution similar to the one in the
data. Depending on the underlying distribution, this will not
always produce a balanced label tree, and one can certainly
construct artificial counter-examples. However, in most nat-
ural applications, it is reasonable to assume that the la-
bel distribution can be well approximated by a reasonably-
balanced label tree, where the leaf nodes distribution con-
centrate on individual classes.

A simple way to demonstrate this is to show that if the
data distribution indeed corresponds to a balanced label
tree, then the maximum-likelihood approach would learn a
similar balanced tree. Note that this is not altogether trivial:
There might be a very unbalanced label tree, which induces
the exact same conditional distribution p(y|x) as the bal-
anced label tree, so a maximum-likelihood approach might
learn the unbalanced tree instead. To show that this isn’t
the case, we prove below that our model is identifiable -
namely, that under mild conditions, given enough data from
a distribution induced by a given label tree, then our algo-
rithm would learn the exact same tree.

Theorem 1. Suppose the training data is sampled i.i.d.
from a distribution, such that p(y|x) is generated by some



label tree, for which wc 6= wc′ for any two sibling nodes
c, c′. Also, suppose that the support of p(x) is continuous
in some part of the domain. Then as the dataset size in-
creases, the structure and weights of the label tree learned
by our algorithm converges to those of the true label tree

Proof. It is enough to show that we can perfectly recon-
struct the root node of the tree - the reconstruction of its
child nodes and other nodes in the tree would follow in a
similar way by induction. In the limit of infinite data, this
boils down to showing that the label distribution p(y|x),
which can be written as∑
c∈σ(r)

p(y|Sc)P [Sc|x] =
∑
c∈σ(r)

p(y|Sc)
ew>

c x∑
i∈σ(r) e

w>
i x

can be induced only by a single choice of the pa-
rameters {wc, p(y|Sc)}c∈σ(r). Let us assume on the
contrary that there exist some other set of parameters
{w′

c′ , p
′(y|Sc′)}c′∈σ′(r) (possibly corresponding to a differ-

ent number of child nodes), which induce the same distri-
bution, namely∑

c∈σ(r)

p(y|Sc)
ew>

c x∑
i∈σ(r) e

w>
i x

=
∑

c′∈σ′(r)

p′(y|Sc′)
ew

′>
c′ x∑

i′∈σ′(r) e
w′>

i′ x

for any x in the support of p(x). Taking a common denomi-
nator, and switching sides, this is equivalent to requiring∑

c∈σ(r),c′∈σ′(r)(p(y|Sc)− p′(y|Sc))e(wc+w′
c′ )

>x∑
c∈σ(r),c′∈σ′(r) e

(wc+w′
c′ )

>x = 0.

on the support. Since the denominator is always positive,
this is equivalent to∑

c∈σ(r),c′∈σ′(r)

(p(y|Sc)− p′(y|Sc))e(wc+w′
c′ )

>x = 0.

The left hand side is identically zero if |σ(r)| = |σ′(r)|
(namely, there are the same number of child nodes), wc =
w′
c′ , and p(y|Sc) = p′(y|Sc′) for all c, c′ (up to permutation

of the c, c′ labels). If this is not the case, then the equation
above can be rewritten as

N∑
i=1

aie
b>i x = 0,

for some finite N , distinct {bi}, and {ai} such that ai 6= 0.
However, if the support of p(x) is dense in some neighbor-
hood, and the equation holds in that domain, then the left
hand side can be shown to equal 0 for all x in Euclidean
space, which is easily seen to be impossible. Therefore, the
parameters that we will learn indeed correspond to the ac-
tual label tree.

6. Implementation
As described in Section 4.1, learning the label tree pa-

rameters at each node consists of two alternating steps:
learning the classifier weights, then learning the categori-
cal distribution. The classification weights were optimized
using the limited memory BFGS (L-BFGS) algorithm. We
also experimented with the stochastic meta-descent (SMD)
algorithm [5], that has been found to perform better than
traditional stochastic gradient descent [17]. We found that
using L-BFGS converged faster and found better values for
the training criteria.

6.1. Eliminating Samples During Training
In [8], each node is assigned a specific set of classes dur-

ing the training process. An advantage of this approach is
that only the training examples from those classes need to
be considered when learning the classifier parameters for
that node and children of the node.

In the probabilistic model proposed here, the learning
criterion depends on the probability that each example ar-
rives at the node where the parameters are being learned.
In practice, this probability is often quite small, but still
non-zero, so the learning could require processing all of the
training examples at every node in the label tree. To in-
crease the speed of training, the training examples used at
a node are pruned to eliminate examples that have a very
low probability of reaching the node. This pruning is done
independently for each node.

6.2. Fixing the Number of Leaf Nodes
Following [8], the label tree is constructed with a fixed

number of levels. Ideally, the learning system would be able
to find a perfectly balanced tree and each leaf node would
correspond to one class. In practice, it is difficult to find a
perfectly balanced tree, so the number of leaf nodes must
be determined individually for each branch in the next to
last level of the tree. A number of training examples could
be assigned to a leaf node with very low probability, so a
natural criterion is to assign one leaf per class for the set of
classes that account for some percentage, such as 90%, of
the probability in the categorical distribution.

For comparison or performance evaluation, it is also use-
ful to have more direct control over the number of leaf
nodes. While this threshold could be adjusted to achieve
a desired number of leaf-nodes, we found it easier to di-
rectly control this number by imposing a hard cap on the
number of leaf nodes per branch node. In our experiments,
this greatly simplified controlling how many dot products
were necessary and performed well.

7. Results
We evaluated our algorithms on both the ILSVRC2010

and ImageNet10k databases used in [8]. In ILSVRC2010,
there are 1.2M images from 1k classes for training, 50k im-
ages for validation, and 150k images for test. Due to mem-



Method Flat T32,2 T10,3 T6,4 T4,5
Acc% Ste Acc% Ste Acc% Ste Acc% Ste Acc% Ste

Trained with ML - - 21.38 10.42 20.54 17.85 17.02 31.25 14.98 41.67
Trained with Hard Partition - - 20.70 10.37 19.15 17.90 15.76 31.27 14.85 33.84
Results in [8] - - 11.9 10.3 8.92 18.2 5.62 31.3 -
LIBLINEAR 24.84 1 -

Table 1. Comparison of our method and [8] with different tree configuration on ILSVRC 2010 dataset.Tm, n denotes the tree that has m
children per node when branching and n levels. We show the classification accuracy(Acc) and the test time speedup Ste. The first row
shows the result using our ML based method. The second row is the result using hard label partition and our probabilistic framework as
explained in Section 7.2. Our method significantly outperforms [8]. The accuracy of maximum likelihood (ML) is consistently better than
the hard label partition with similar speedup. For reference, the last row shows the accuracy produced by a multi-class SVM trained with
LIBLINEAR.

ory limitations, we used the first 300 images of each cat-
egory for training. In ImageNet10k, there are 9M images
from 10184 classes. We randomly picked 100 images from
each category for training and 50 for testing. This is fewer
than used in [8], but demonstrates that our method can scale
to large problems.

The features were generated in the same fashion as [8]
using the LLC coding strategy outlined in [18]. For each
image in ILSVRC2010, we used the VLFeat toolbox [16],
which was also used in [8] to extract dense SIFT features
from the image. The features were encoded with a code-
book with 10,000 entries and the image was encoded using
a two-level spatial pyramid[12] with 1× 1 and 2× 2 grids.
This resulted in a feature vector with approximately 50,000
dimensions. In the experiments with the ImageNet10K
database, images were represented with vector encoded us-
ing LLC, but without a spatial pyramid. The number of im-
age classes in ImageNet10K makes reducing the number of
dot-products beneficial, even considering the time needed to
generate features. In our experiments computing the clas-
sification scores dominated the computation time. The av-
erage time for generating features from one image was ap-
proximately 0.59 seconds, while computing the one-versus
all linear classifier required approximately 2.09 seconds.

In our experiments, we did not make an effort to
strictly control the computational complexity during train-
ing. Training a tree generally took less than a day on a
multi-core machine with 48GB of memory.

7.1. Comparison with Previous Work
Table 1 summarizes the accuracy of our system, com-

pared with the trees trained using the method in [8]. The
various columns of Table 1 represent different tree struc-
tures. The tree denoted by Tm, n has m children per node
when branching and n levels, not including the root node.

To make a fair comparison, we tuned the number of leaf
nodes, using the approach described in Section 6.2, so that
the trees trained using our approach used a similar average
number of dot-products to classify each example. As Ta-
ble 1 shows, the accuracy rate is significantly higher for the
trees that are trained using our approach. Depending on the

Method T101,2 T10,4
Acc% Ste Acc% Ste

Trained with ML 4.77 33.22 3.08 204.54
Results reported in [8] 3.4 32.40 -

Table 2. Result on Imagenet 10K. While the accuracy numbers
cannot be compared directly because of differences in the test
set(see text), these results show that our method can scale to large
numbers of classes and performs reasonably.
depth of the tree, our approach classifies images with an ac-
curacy rate that is nearly double or triple the accuracy rates
produced using the method from [8]. Our approach is also
superior at learning deeper trees. Comparing the accuracies
for the T32, 2 and T6, 4 trees, the reduction in accuracy is
less significant in the trees trained using the probabilistic
approach.

For reference, the last row of Table 1 also reports
the classification accuracy of a multi-class one-against-all
SVM classifier trained using LIBLINEAR [9]. The trees
trained using maximum likelihood produce competitive re-
sults while requiring 18 to 30 times less dot products at test
time.

We show the results of our method on the ImageNet10K
dataset in Table 2. While the accuracies cannot be com-
pared directly because of differences in the test set, these
results show that this approach to learning trees can scale to
larger problems and that our method produces reasonable
performance.

7.2. Evaluating Hard Label Partitioning
One of the most significant differences between this ap-

proach and the approach in [8] lies in how the labels are
assigned to the leaf nodes. In our probabilistic approach,
the training process maintains the probability of each sam-
ple reaching a particular node when optimizing that node’s
parameters. In contrast, the learning approach in [8] uses
a partition matrix that is rounded so that all examples from
a class either reach the node or do not. We refer to this as
hard label partitioning because every class, and all of its ex-
amples, are assigned a hard binary label describing whether
they can reach a node. This partition matrix is found by op-



timizing a measure of accuracy with hard constraints on an
ambiguity measure.

To explore whether this style of partitioning can produce
improved results, we evaluated the combination of our prob-
abilistic system with strategy used in [8] to measure whether
hard label partitioning is a superior strategy for learning the
label tree. This was implemented by replacing the categor-
ical distributions with distributions derived from the parti-
tion matrix computed using OP3’ in [8]. This matrix can
be used to generate new distribution p(y|Sc) by creating a
distribution where every node assigned to a specific class is
equally likely. For numerical reasons, classes not assigned
to a node are given a very small probability. The result is
a two-stage alternating algorithm that consists of learning
a linear classifier in the form of a multinomial logistic re-
gression classifier, then using the classifications from that
classifier to learn the partition matrix.

The ambiguity parameters during learning were manu-
ally tuned so that the trees used a comparable average num-
ber of dot products to classify examples. Below, Section 7.3
will discuss performance across various parameter settings.
As the second row of Table 1 shows, training the tree just
using the maximum likelihood criterion consistently out-
performs this approach. In addition, as the trees become
deeper, the advantage of the maximum likelihood approach
increases.

This result also provides insight into the significant dif-
ferences in performance in Table 1. Given that using OP3’
from [8] reduced accuracy, but not did dramatically change
results, the combination of the multinomial logistic regres-
sion models with an L-BFGS optimization system likely ac-
counts for the largest increase in performance over the re-
sults in [8]. The system in [8] uses several passes of parallel
Stochastic Gradient Descent [20] to learn the classifiers. In
our experiments, we found that using a stochastic descent
algorithms led to far worse classification weights than when
the quasi-Newton L-BFGS algorithm was used. It should
be noted, though, that the criterion in OP2 in [8] is non-
differentiable at points, due to the use of a max operator, so
the system in [8] cannot be simply modified to use L-BFGS
instead of stochastic gradient optimization.

7.3. Exploring the Accuracy-Efficiency Trade-off
One of the weaknesses of the classification procedure in

a label tree is that the classifier must make a hard choice to
decide which branch to follow. In cases where there is am-
biguity in the correct branch, this hard choice will degrade
recognition accuracy if the wrong branch is chosen. An ad-
vantage of the probabilistic formulation is that it facilitates
performing a limited search over multiple branches of the
label tree.

In this limited search, the classifier does not just follow
the best-scoring branch. Instead, it makes a decision at each
branch whether to follow just the highest-scoring branch
or both the highest-scoring and the second highest-scoring

Figure 2. Accuracy vs dot product curve for our T10,3 tree. The
green curve shows our method using maximum likelihood with
multinomial estimation. The blue curve shows the result using
hard label partition[8] with our framework. The maximum likeli-
hood method has higher classification accuracy with less average
dot products needed at test time

.

Figure 3. Accuracy vs dot product curve for our T6,4 tree. Again,
the tree trained with the maximum likelihood approach has con-
sistently higher accuracy.

branches. This decision is made by comparing the differ-
ence in scores between the two branches. If this difference
is below a threshold, both branches are followed. The fi-
nal classification is found by adding together the categorical
distributions at each of the leaf nodes that the classification
algorithms reaches.

As this threshold varies, the average number of dot-
products needed to produce a classification also varies. The
green curves in Figures 2 and 3 show the relationship in
different tree models between the average number of dot-
products needed to classify a sample and the resulting accu-
racy. Notice that as the classification process explores more
branches, the accuracy rises.



For comparison, the blue curves in these figures show a
similar curve that is computed by using the hybrid systems
described in Section 7.2 and varying the ambiguity limits.
These curves is shorter because we found that as the ambi-
guity limits increased, the number of classes at deep levels
of the tree increased dramatically and the time required to
train the system became untenable. In both figures, the tree
learned with the probabilistic approach provides better ac-
curacy for a similar average number of dot products.

It is also important to note that creating this curve with
our model does not require that tree parameters be retrained.
This approach can be used to adjust the accuracy/efficiency
trade-off on an existing tree. On the other hand, using the
optimization with ambiguity constraints requires that the
tree be re-trained for different parameters.

8. Conclusion
In this work, we propose a probabilistic label tree frame-

work to accelerate large scale classification problems. Since
our method is totally based on probability and maximum
likelihood optimization, it can be adapted to different types
of probabilistic classifiers. Our experiments show that
learning a label tree in this fashion can improve recognition
accuracy with comparable speedups to previous work.
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