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1. Maximum entropy prior
Our scenegraph grammar (Section 2.3, main text), serves

as a binary prior: scenes are either valid or not. In order
to compare against a method than can capture more subtle
gradations in the prior probability, we also implemented a
maximum entropy (maxent) prior over object co-occurrence
statistics [3]. With this approach, we express the prior prob-
ability of a scene X as:

P (X) =
1

Z(Λ)
exp (−

�

i

λifi(X)), (1)

where Z normalizes and the distribution is parameterized
by parameters λi ∈ Λ. Many methods exist for learning Λ
from training data. We employ gradient descent [2].

The functions fi measure object class count statistics
and object class co-count statistics.

We approximate the distribution of object class counts
with a histogram with bins R. For each object class i,

f (count)
i,r (X) = (ni(X) ∈ r)), (2)

where ni(X) is the number of objects of class i in the scene
X, that is:

ni(X) =
�

�∈L

(c̃� = i). (3)

Recall from Section 2 of the main text that L is the set
of dictionary indices of the objects used in a scene X
and c̃� is the class of an object �. r ∈ R is a range
of integer values. In our current implementation, R =
{[0], [1], [2, 3], [4, 7], [8,∞)}.

We approximate the distribution of object class co-
counts with a 2D histogram R × R. For each pair of ob-
ject classes (i, j), and histogram bin (r1, r2), r1, r2 ∈ R,
we have the feature:

f (co−count)
i,j,r1,r2

(X) = (ni(X) ∈ r1, nj(X) ∈ r2). (4)

In Section 5.2.1 of the main text, we compare our sys-
tem with just the scenegraph grammar as a prior to our sys-
tem with both the scenegraph grammar prior and the maxent
prior described above. As shown in Table 4, the addition of
the maxent prior decreases performance compared to our
scenegraph grammar alone.

2. Segment transformation – details
Translation and scaling:
As summarized in Section 4.2 of the main text, each ob-

ject from our dictionary is translated and scaled indepen-
dently. We seek to place the object at a location and scale
where it well explains the appearance of the query image,
I . Using θt to represent the center position of the object’s
mask and θs to represent how much we scale the object’s
mask, we start with the following objective function:

E1(θt, θs) =
�

q∈Q�

g̃�(f
(I)
q ) + λt

�

q∈Q̃�

pt(c̃�, q) + λsps(θs),

(5)

Q� = Tts(Q̃�, {θt, θs}), (6)

where g̃� is the segment’s appearance model, pt(c̃�, q) is a
prior over mask position for objects of class c̃�, and ps(θs) is
a prior over scale factor. Tts applies a similarity transforma-
tion to the dictionary object mask Q̃�. In order to encourage
objects to stay largely within the image frame, we assign a
default penalty to all pixels in the transformed mask that fall
outside the image frame.

We calculate pt(c, q) by averaging masks of class c
across our dictionary:

pt(c, q) ∝
�

�∈L s.t. c̃�=c

(q ∈ Q̃�). (7)

We manually set ps(θs) = {0.75, 0.875, 1, 0.875, 0.75}
for the discrete set of scales θs ∈ {0.5, 0.75, 1, 1.5, 2}. That
is, objects slightly prefer to remain the scale at which they
were found in our dictionary.
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The objective E1 prefers that objects scale down as much
as possible until they achieve a precise fit onto the query im-
age. In order to prevent all objects from choosing the small-
est scale, we add a term that trades off between precision
and coverage of the detections:

E2(θt, θs) =
E1(θt, θs)

|Q�|+ η(Q̃�, z̃�)
. (8)

Here we have scaled E1 by a softened version of the area
the transformed object mask covers. The softening factor,
η(Q̃�, z̃�), controls preference for precision versus recall in
the object detections. We set this term so as to prefer recall
for large, background objects whereas to prefer precision
for small, foreground objects. The intuition for this choice
is that objects in the background are likely to be largely cov-
ered in the final scene explanation, and consequently, it is
okay if only parts of them match the image well. This term
is a function of the object’s untransformed mask Q̃� and the
layer of the object in its dictionary scene, z̃�:

η(Q̃�, z̃�) ∝
1

|Q̃�|z̃�
, (9)

We choose transformation parameters that maximize our
objective:

{θ∗t , θ∗s} = argmax
θt,θs

E2(θt, θs). (10)

To choose θ∗s we try each of our discrete set of scales. To
choose θ∗t , we adopt a sliding window approach, searching
over all possible placements of the object mask such that its
center is within the image frame (however, for dictionary
objects that touch an image border, we only consider place-
ments such that the object still touches the image border).
We use convolution between the object mask and image fea-
tures to perform this search efficiently.

Trimming and growing:
We edit object mask silhouettes after each iteration of

greedy optimization (Algorithm 1 in the main text; labeled
as TRIMANDGROW). We formulate this part of the problem
as 2D MRF-based segmentation, in which each object in
the scene becomes a segment class label. Here, we denote
object segment labels as a 2D array �(q), and minimize the
following energy function using BP-S [1]:

− log p(� | I,X) =
�

q

g̃�(f
(I)
q ) + λ1

�

q

ψ�(q)+ (11)

λ2

�

{p,q}∈�

φ(�(p), �(q); I) + logZ, (12)

where Z normalizes. The data term g̃�(·) is our appearance
model from Section 2.2 of the main text. Spatial priors ψ�(·)

are provided by our object visibility masks (Equation 4 in
the main text):

ψ�(q) = (G ∗ V�)(q), (13)

where G is a Gaussian kernel with scale proportional to the
object’s mask area, |Q�|.

For the spatial smoothness term φ(·), we borrow the
image-sensitive smoothness potential from [1]:

φ(�(p), �(q); I) = (�(p) �= �(q))

�
ξ + e−γ�I(p)−I(q)�2

ξ + 1

�
,

(14)

with γ = (2 < �I(p)− I(q)�2 >)−1.
This silhouette editing process leaves us with a 2D map

of object labels �(q). We use this map to update our object
visibility masks: V� = ∪q (� = �(q)). These visibility
masks affect the synthesized scene’s likelihood (Equation 6
in the main text), and are used to calculate pixel-wise and
class-wise label accuracy (Section 5 of the main text). Upon
each invocation of TRIMANDGROW, we discard the old sil-
houette edits and start afresh from the visibility masks given
by Equation 4 in the main text.

3. Random scene synthesis – details
During random scene synthesis, we do not have a tar-

get image to match, so several changes need to be made to
our collaging algorithm. First, the likelihood term is set to
be proportional to the number of pixels the collage covers:
logP (I|X) ∝

�
�∈L |V�|. This biases inference toward

collages that fill the entire image frame. Second, segment
transformation and trimming and growing are skipped – in-
stead segments are placed exactly where they were found
in the dictionary scene they came from. Third, we choose
the layer on which to place each object segment � by find-
ing the layer in the collage that best matches the object’s
layer in the dictionary scene from which it was sampled.
Let A(z̃�) be the histogram of object class counts above z̃�
in the dictionary scene and B be the histogram below. Fur-
ther, let A�(z) and B�(z) represent the histogram of object
class counts above and below z in the scene collage being
synthesized. We place the object on the layer z∗� that mini-
mizes the following sum of histogram intersections:

z∗� = argmax
z

�

k

min(A(z̃�)k, A
�(z)k)+

min(B(z̃�)k, B
�(z)k). (15)

4. Additional results
In Figures 1, 2, and 3 we display additional example

parses on each dataset. Figures 4, 5, and 6 show the average
per-class accuracy of our algorithm on the top 30 most fre-
quent classes in each dataset. Figure 7 shows several char-
acteristic failure cases for our algorithm.
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Figure 1: Additional example results parsing LMO images. Zoom in to see details, such as the object labels on the scene-
graphs. The last row shows an example in which the dictionary contained the same building as in the query image (although
a different photo of that building). This occurs fairly frequency in LMO and SUN since these datasets contain many cases of
multiple photos of more or less the same place.
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Figure 2: Additional example results parsing SUN images. Zoom in to see details, such as the object labels on the scene-
graphs.
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Figure 3: Additional example results parsing NYU RGBD images. Zoom in to see details, such as the object labels on the
scenegraphs.
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Figure 4: Mean per-class pixel labeling accuracy on the
LMO dataset.
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Figure 5: Mean per-class pixel labeling accuracy on the top
30 most common object classes in the SUN test set.
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Figure 6: Mean per-class pixel labeling accuracy on the top
30 most common object classes in the NYU RGBD test set.
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Figure 7: Characteristic failure modes of our algorithm. Top
row: Sometimes the algorithm gets the entire scene cate-
gory wrong. Second row: Our algorithm often runs into dif-
ficulty with cluttered scenes full of small objects. Groups
of small objects are sometimes explained by one big ob-
ject that resembles the ensemble appearance of the small
objects. One reason for this is that often the human an-
notations do not mark all small objects in a scene. In this
example, the human annotations did not mark the people in
either the query image or in the scene whose segments were
used in the scene collage. Third row: Conversely, some-
times the algorithm hallucinates small objects where none
are necessary, as in the addition of the foreground plants in
this simple image of a field. Together, the second and third
rows demonstrate that the algorithm has difficulty choosing
between explaining a region with several small objects ver-
sus one big object. Bottom row: Our current segment trans-
formation algorithm produces fairly coarse alignments, and
often makes false matches. The system often finds reason-
able small objects to place into a scene collage (such as the
people in this collage), but gets their position wrong, lead-
ing to low per-class accuracy; better small object detection
and alignment is an important direction for future work.


