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Abstract

In this paper we propose a novel inhomogeneous Gibbs
model by the minimax entropy principle, and apply it to face
modeling. The maximum entropy principle generalizes the
statistical properties of the observed samples and results in
the Gibbs distribution, while the minimum entropy principle
makes the learnt distribution close to the observed one. To
capture the fine details of a face, an inhomogeneous Gibbs
model is derived to learn the local statistics of facial fea-
ture points. To alleviate the high dimensionality problem of
face models, we propose to learn the distribution in a sub-
space reduced by principal component analysis or PCA. We
demonstrate that our model effectively captures important
and subtle non-Gaussian face patterns and efficiently gen-
erates good face models.

1. Introduction

Many computer vision problems are concerned with hu-
man faces. While various methods have been proposed to
locate, classify and recognize (e.g., [12], [1], [13]) human
faces, they inevitably make some underlying assumptions
on the statistical models of faces.

One of the most dominant representations used for mod-
eling faces is principle component analysis or PCA, which
assumes the distribution a single Gaussian. For instance,
Turk and Pentland [13] used PCA to construct eigenfaces
that are then used for face recognition. Cootes et al. [8] es-
tablished a two-layer model, and PCA is applied to model
the key points on a face. In fact, there is a long history in
study landmarks and distributions in statistics, which also
use PCA extensively (e.g., [5, 9]).

To capture more variations in the face models, a mix-
ture of Gaussians model can be used to replace the sin-
gle Gaussian model. A good example is the Active Shape
Model [7]. Other deformable models have also been pro-
posed by [2, 14] to effectively model faces using Gibbs
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models. However, such deformable models are manually
defined without learning.

Existing face models work well for many applications,
but they mostly capture the global characteristics of faces
and often fail to reveal local details. Such local charac-
teristics, however, are crucial for some tasks such as fa-
cial sketch or caricature generation. These tasks require
learning some interesting face patterns that are often hid-
den in the non-Gaussian distributions. Although some non-
Gaussian models have been proposed, they are very difficult
to learn.

In fact, the mean and covariance (used in the Gaussian
models) are the first-order and second-order statistics re-
spectively. They are too simple to capture sufficient de-
tails of face models. The 1D marginal distributions or his-
tograms, on the other hand, represent all orders and thus can
be used as feature statistics. This motivates us to build an
inhomogeneous statistical model of faces which can cap-
ture sophisticated local variations, by making use of 1D
marginal distributions. Specifically, based on the minimax
entropy principle, we build an inhomogeneous Gibbs model
for faces. The forms of the potential functions (energy)
are learned in a nonparametric way by a maximum entropy
principle. We adopt a Markov chain Monte Carlo (MCMC)
method, i.e., inhomogeneous Gibbs sampling, to obtain the
global optimal parameters. This makes our model sufficient
to characterize the non-Gaussian properties in a distribu-
tion.

Our work is related to recent work on learning local
statistics (e.g., face hallucination [3], learning low-level vi-
sion using a Markov network [11, 10] and homogeneous
Gibbs models such as FRAME [16, 15]). In particular, the
minimax entropy principle proposed in [16] for homoge-
neous prior learning for texture analysis and synthesis in-
spired us to build inhomogeneous models for faces.

The remainder of this paper is organized as follows. Af-
ter introducing the problem in Section 2, we construct an in-
homogeneous Gibbs model by the minimax entropy princi-
ple in Section 3. Our method is illustrated by a toy problem
in Section 4, and most importantly, applied to face model-
ing in Section 5. We present some discussions in Section 6
and conclude in Section 7.
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Figure 1. A face model with linked key points.

2. Problem Formulation

For each face, we define its model by a set of key points
denoted by w = f(xi; yi); i = 1 : N=2g , and their connec-
tivity, as shown in Figure 1.

We also collect a number of M face models, fwobsi ; i =
1 : Mg , which are possibly from different people, with dif-
ferent ages, shapes, and poses. We believe that there exists
a natural but unknown distribution f(w) and wobsi i:i:d: �
f(w). The objective of our work is to learn a prior distribu-
tion p(w) from observed samples fwobsi g such that p(w) is
close to f(w). Most previous work have assumed that p(w)
can be a Gaussian or a mixture of Gaussions. In our work,
we formulate p(w) as an inhomogeneous Gibbs model.

2.1 Gaussian

The simplest model is Gaussian which is commonly used
in PCA. Let w = (x1; y1; x2; y2; � � � ; xN=2; yN=2)

T be a
vector of random variables. We assume

w =
LX
i=1

�iei + n (1)

where ei is i-th principal component of the covariance ma-
trix of w, and < ei; ek >= 0 when i 6= k. L is the num-
ber of ei’s and n is Gaussian noise. Each component ni
of n is assumed to be independent such that p(ni; nk) =
p(ni)p(nk), where p(ni) is a Gaussian distribution with
zero mean and variance �2i . PCA will have the distribu-
tion

p(w) =
1

Z
expf�

LX
i=1

< w � �; ei >
2 =(2�2i )g (2)

where Z is the normalization factor. This model is easy
to build from eigenvalues and eigenvectors of the covari-
ance matrix, but the Gaussian and independence assump-
tions may not hold for modeling faces.

2.2 Mixture of Gaussians

A better model is a mixture of Gaussians i.e.,

p(w) =

CX
i=1

�iG(wi;�i;�i) (3)

where
PC

i=1 �i = 1, �i > 0, i = 1 : C. C is the to-
tal number of Gaussian kernels and �i, �i are the mean
and covariance of Gaussian kernel i. Literally speaking, as
C ! 1, the above distribution can approximate any func-
tion. We need to estimate C, �i, �i and �i, usually by an
Expectation-Maximization (EM) [4] algorithm. But even
some simple distributions are onerous to be modelled by a
mixture of Gaussians and EM could only find a locally opti-
mal solution, as will be shown in Section 4. Therefore, even
a mixture of Gaussians model may not be sufficient to learn
the distribution of facial key points.

2.3 Inhomogeneous Gibbs Model

Since the dimensionN ofw is large, it is hard to describe
f(w) directly. It is natural to build a model based on 1D
statistics, as features of the distribution. These features are
defined as f�(�); � = 1 : Kg , where �(�)(w) is a vector-
valued function of w. Thus we can get the 1D marginal
distribution

Ef [�
(�)(w)] =

Z
�(�)(w)f(w)dw: (4)

From the observed sample set, we can get the corresponding
empirical distribution (histogram):

�
(�)
obs =

1

M

MX
i=1

�(�)(wi) (5)

Then we define a distribution function set sharing the same
marginal densities:


f = fp(w)jEp[�
(�)(w)] = �

(�)
obs; � = 1 : Kg;

and regard two distributions as indiscriminating if they are
in the same set. But how to select an optimal distribution
p(w) from this set? How to find its form and learn the pa-
rameters? How to choose the features to model the distri-
bution? We show in next section that the optimal distribu-
tion turns out to be an inhomogeneous Gibbs one by the
maximum entropy principle, the parameter can be learnt by
Markov chain Monte Carlo and the feature set is gradually
pursued by the minimum entropy principle.

3. Learning Inhomogeneous Gibbs Model

3.1. Maximum Entropy Principle

We apply the maximum entropy principle to learn the
p(w) so that the learnt model can be generalized, or present
no more information than what is available [16],

p(w) = argmaxf�
Z
p(w) log p(w)dwg (6)
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subject to

Ep[�
(�)(w)] =

Z
�(�)(w)p(w)dw = �

(�)
obs ; � = 1 : K

and
R
p(w)dw = 1.

It is well known that the solution to above problem is
Gibbs distribution with the form [16]:

p(w; �) =
1

Z(�)
expf�

KX
�=1

< �(�); �(�)(w) >g; (7)

where � is the parameter set and Z(�) is the normaliza-
tion factor. �(�) is a vector-valued parameter according to
�(�)(w). The exponential term of (7) is the Gibbs potential
energy to be learnt. The The maximum likelihood estima-
tion (MLE) is utilized to estimate �̂ . Let

L(�) =
1

M

MX
i=1

log p(wobsi ; �) (8)

be the log-likelihood function. The optimization is a
stochastic ascent method with the gradient of L(�) [16],
leading to an iterative update of �(�),

@�(�)

@t
= Ep(w;�)[�

(�)(w)] � �
(�)
obs; � = 1 : K; (9)

where Ep(w;�)[�(�)(w)] is calculated from the synthesized
sample set fwsyni ; i = 1 : M 0g:

Ep(w;�)[�
(�)(w)] �

1

M 0

M 0X
i=1

�(�)(wsyni ) = �(�)syn: (10)

The synthesized sample set fwsyni g is drawn from an inho-
mogeneous Gibbs sampling.

Unlike in the homogeneous model [16], the synthesized
histogram �

(�)
syn in our inhomogeneous model must be esti-

mated from a number of independent samples in the Markov
chain, not from a Markov random field.

3.2. Minimum Entropy Principle

Since our goal is to make an inference about the un-
derlying distribution f(w), the goodness of the model can
be measured by the Kullback-Leibler(KL) divergence from
f(w) to p(w; �):

KL(f(w); p(w; �)) =

Z
f(w) log

f(w)

p(w; �)
dw

= �Ef [log p(w; �)] +Ef [log f(w)]

= entropy(p(w; �))� entropy(f(w))

Note that entropy(f(w)) is fixed and the entropy of
p(w; �) depends on the set of features f�(�); � = 1; 2; � � �g
included in the distribution p(w; �). We should find the
best features to constrain p(w; �) such that it has minimum
entropy. We call this the minimum entropy principle.

Let B be the set of all possible features, and S � B an
arbitrary set of K features. Let


S = fp(w)jEp[�
(�)(w)] = Ef [�

(�)(w)];8�(�) 2 Sg

be the set of probability distributions which can reproduce
the expected feature statistics in S. Then by the minimax
entropy principle, the optimal set of features is

S� = arg min
jSj=K

fmax
p2
S

entropy(p)g: (11)

We must devise a feature pursuit method to find the above
optimal feature set.

3.3. Feature Pursuit

The feature bank B in our model chooses linear unit
vectors as features, which form a unit hypersphere in N-
dimensional linear space. Let S = f�(�); � = 1 : Kg be
the current selected feature set, and pS(w) be the maximum
entropy distribution of f(w). We want to find a new fea-
ture �(�) 2 B such that EpS [�

(�)(w)] and Ef [�(�)(w)] are
the most different. Since �(�) is linear, we have �(�)(w) =
wT�(�). The difference is measured by the KL divergence

KL(EpS [w
T�(�)]; Ef [w

T�(�)])

=

Z
EpS [w

T�(�)] log
EpS [w

T�(�)]

Ef [wT�(�)]
d(wT�(�)) (12)

The above integration could not be analytically calculated.
But we can get the empirical distribution of EpS [w

T�(�)]
and Ef [w

T�(�)] by independent samples from pS(w) and
f(w) respectively, using the Parzen window method with
Gaussian kernels

h�
(�)

syn (z) =
1

M 0

M 0X
i=1

G(z � (wsyni )T�(�))

h�
(�)

obs (z) =
1

M

MX
i=1

G(z � (wobsi )T�(�))

whereG(z��) is a 1-D Gaussian kernel function with mean
� and a certain variance �. The KL divergence can thus be
estimated by Monte Carlo integration:

KL(EpS [w
T�(�)]; Ef [w

T�(�)]) � KL(h�
(�)

syn (z); h
�(�)

obs (z))

0-7695-1143-0/01 $10.00 (C) 2001 IEEE



=

Z
h�

(�)

syn (z) log
h�

(�)

syn (z)

h�
(�)

obs (z)
dz: (13)

Now, the feature pursuit process becomes a search for a new
linear feature �(�) such that

�(�) = argmax
�(�)

KL(h�
(�)

syn (z); h
�(�)

obs (z)) (14)

subject to jj�(�)jj = 1.
The gradient of the above objective function is

@KL(h�
(�)

syn (z); h
�(�)

obs (z))

@�(�)
=

Z

f
@h�

(�)

syn (z)

@�(�)
[log

h�
(�)

syn (z)

h�
(�)

obs (z)
+ 1] + h�

(�)

syn (z)
@h�

(�)

obs (z)

@�(�)
gdz

where

@h�
(�)

obs (z)

@�(�)
= �

1

M�2

MX
i=1

(z � (wobsi )T�(�))wobsi G(z � (wobsi )T�(�))

and @h�
(�)

syn (z)=@�
(�) can be calculated similarly. Since the

constraint of the optimization problem is a hypersphere,
the gradient can be projected to this sphere. The gradient
and the KL divergence are approximated by Compound-
Simpson numeral integration. While the solution of gradi-
ent ascent is only locally optimal, satisfactory results can be
obtained by randomly choosing multiple initial values.

But how many features are enough? When the opti-
mal feature found by (14) is added to the feature set, i.e.
S0 = fS; �(�)g, the entropy of new Gibbs distribution
pS0(w; �) will decrease compared to that of pS(w). This
entropy decrease is indeed the information gained by the
new feature �(�) and can be approximately measured by
the KL divergence

d[�(�)] = KL(EpS [w
T�(�)]; Ef [w

T�(�)]) (15)

On the other hand, the model complexity will increase as
a new feature is selected. By the minimum description
length (MDL) principle, the feature pursuit procedure stops
as soon as the entropy decrease does not compensate for the
increase in model complexity. In practice, if d[�(�)] < ",
where " is a small value, the feature pursuit can stop. The
feature set is sufficient to represent the observed distribu-
tion.

4. An Example

We use a simple example to illustrate our inhomoge-
neous prior learning method. Suppose the distribution is a

Figure 2. Feature pursuit process with a circle-like distri-
bution.

Figure 3. Histogram comparison between the observed
samples (the top row) and the synthesized samples (the bot-
tom row).

Figure 4. Synthesized samples using EM. Left: good ini-
tialization; Right: bad initialization.

circle-like one that can be modeled as (in polar coordinates)

r � Gaussian(r0; �); � � Uniform(0; 2�]:

We can easily draw a set of independent samples from this
distribution, shown in row 1, column 1 (denoted as L(1; 1)
for simplicity) of Figure 2. Before any features are selected,
the synthesized samples L(2; 1) are uniformly drawn on
the space, because the energy term of the Gibbs distribu-
tion is zero. After comparing the observed and synthesized
samples, the first feature on which their KL divergence is
maximized is chosen, with the observed samples shown in
L(1; 2). Samples drawn according to this feature are then
shown in L(2; 2) and the corresponding Gibbs energy is
shown in L(3; 2). The darker a pixel is, the smaller Gibbs
energy it carries. Due to the symmetry of circle, the position
of the first feature is arbitrary.

After comparing the synthesized and observed samples
again, the second feature is chosen. The second feature
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turns out to be a vector perpendicular to the first feature.
Samples synthesized based on these two features are shown
in L(2; 3) and the Gibbs energy in L(3; 3). Similarly the
third feature is found, and it is right the middle of the first
and second features. The fourth is again perpendicular to
the third one. Because the information gain (KL diver-
gence) by adding the fifth feature is insignificant (lower
than a given threshold of 0:05), the feature pursuit process
stops and the selected four features are regarded as nearly
sufficient to describe the distribution. We observe that the
final synthesized sample set using four features (shown in
L(2; 5)) is very similar to the observed one, i.e., a circle.
This is also demonstrated by the histograms for both the ob-
served and synthesized samples with these two features, as
shown in Figure 3. The whole learning process takes three
minutes on a PIII 667Hz PC with 256MB memory.

It is obvious that the single Gaussian method fails to deal
with this problem. But it may be learnt with a mixture of
Gaussians. For example, if we set the kernel number to be
10, the EM algorithm will generate some results depending
on the initialization. Figure 4 shows a “good” estimation on
the left and a “bad” one on the right. Even the “good” one
cannot accurate describe the distribution because of insuffi-
cient number of kernals.

5. Learning the Face Model

5.1. Dealing with High Dimensions

Before we apply the inhomogeneous prior learning tech-
nique to modeling faces, we must deal with the high di-
mensionality problem. We use 83 feature points in our face
model (N = 166). There are two problems why the process
could be very slow.

1. The number of energy terms in the Gibbs distribution
is proportional to the number of features selected. If
too many features, it is time consuming to calculate
the conditional density and to run the Markov chain.

2. In the first few steps of feature pursuit, the possible
state space constrained by few linear features will be
so huge in high dimensional space that it will take the
Markov chain a long time to walk through the space.

Recall that, in feature pursuit, the feature projected in
which the synthesized and observed densities have the max-
imum KL divergence is selected. It is obvious that the KL
divergence between the delta function Æ(x � x0) and any
other density function g(x) 6= Æ(x � x0) is infinite. At
the beginning of feature pursuit, the feature set is null so
the Gibbs distribution is in fact a uniform one in a hyper-
cubic. Let U(w) be the initial uniform distribution. We

want to find a feature �(�) such that KL(h�
(�)

U(w); h
�(�)

f(w)) is
maximized. If

h�
(�)

f(w) � Æ(z � z0) and h�
(�)

U(w) 6= Æ(z � z0)

then �(�) must be the optimal one to be selected. In practice
the above condition can be approximated by

V ar(h�
(�)

f(w))� V ar(h�
(�)

U(w))

Or simply

V ar(h�
(�)

f(w)) < " (16)

where " is a very small value, then �(�) is a very important
feature which must be selected.

PCA is naturally employed to find the most important
features at the first stage. In fact, the smallest eigenvectors
(which correspond to the smallest eigenvalues) record the
basic properties of the distribution, while the largest eigen-
vectors record the main variation. We select the smallest
eigenvectors contributing to less than 3% of the total eigen-
value as primitive features. This solves problem (2) because
the Markov chain now only needs to walk through the con-
strained space by the primitive features.

To efficiently solve the problem (1), we again reduce the
number of features by PCA, and learn the distribution in a
much smaller subspace. If we use the smallest eigenvec-
tors as initial features, the marginal distributions on these
features are very rigid which can be regarded as hard con-
straints that we must satisfy. This is approximately equiv-
alent to reducing the dimensions to a subspace constructed
by the largest principal components. In this way, the origi-
nal problem is greatly simplified.

5.2. Inhomogeneous Gibbs Models of Faces

We now apply our method to learn the face model of key
points. First we reduce the dimension (166) of the original
problem using PCA and transform the key points to an 18-
dimensional subspace. Some typical training faces from our
73 training examples are shown in Figure 5(d).

At the beginning, the feature set is null. All the faces are
uniformly sampled in the PCA-constrained space. Some
typical synthesized samples are listed in Figure 5(a). Most
of them are not acceptable as human faces. Samples drawn
from the learnt distribution with 4 features are shown in Fig-
ure 5(b). The results are much improved because some of
drawn samples do look like faces. Figure 5(c) shows sam-
ples drawn from the distribution with 17 features. These
sampled faces have versatile expressions, types and poses,
suggesting that we can learn some statistical properties hid-
den in non-Gaussian distribution from only 73 examples.
In our experiments, we have determined that 17 features
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(a)

(b)

(c)

(d)

Figure 5. Synthesized face samples (a) without any features; (b) with 4 features; (c) with 17 features; and (d) observed samples
from the training set.

(a) (b)

Figure 6. Comparison of histograms of (a) observed samples and (b) synthesized samples with 17 features.

are sufficient to model the distribution because adding more
features in the learning process no longer changes the KL
divergence significantly. This whole learning process of
face (with 17 features) took nearly a day to complete be-
cause of the high dimensionality and complexity.

Comparing the synthesized Figure 5(c) and observed
samples Figure 5(d), we may find it hard to discriminate
them visually. Indeed, the histograms of observed and syn-
thesized samples displayed in Figures 6 suggest that they
match each other very well. The mean square error between
the synthesized and the observed samples is less than 7%.
This precise matching demonstrates that we can learn very
complex distributions in high dimensional space. Note that
most of these histograms are not simply Gaussians, thus it
is inappropriate to assume a Gaussian model for faces.

6. Discussion

a)Why the Maximum Entropy Principle?
The maximum entropy principle generalizes the statisti-

cal properties in the observed samples, and makes the learnt
model present information no more than what is available.
This principle naturally leads to a Gibbs distribution.

b) Why the MCMC Method?
The parameters of Gibbs model are learnt by calculat-

ing the expected features. This expectation can be approx-
imated by Monte Carlo integration. An efficient Markov
chain is driven by conditional density from the Gibbs model
to obtain the independent samples. This method is globally
optimal if these samples can represent the underlying distri-
bution.

c) Why the Minimum Entropy Principle?
The minimum entropy principle is to make the learnt dis-

tribution close to the observed one. A feature is selected
to maximally decrease the entropy of current Gibbs model.
The decrease of entropy, or the information gain by the new
feature is measured by the KL divergence.

d) Why KL Divergence?
In pattern recognition, the Fisher Linear Discriminant

[6] is always used to find a linear feature projected on which
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Figure 7. Overview of the learning framework. (1) cur-
rent feature set; (2) observed histograms with respect to
each feature; (3) learning procedure: PL-parameter learn-
ing, FP-feature pursuit; 4) the learnt distribution; (5) syn-
thesized samples; (6) observed samples.

two classes can be maximally discriminated. This discrim-
inant is based on the assumption that these two classes are
well separated in the feature space. Other discriminants
such as L2 norm [16] merely record the global difference.
We use KL divergence to measure the difference of two
distributions even if they overlap. In fact, KL divergence
emphasizes the tails of the distribution, which are very im-
portant to measure the difference of two densities and often
have the most interesting characters.

e) Why an Inhomogeneous Model?
In homogeneous models, like texture, all elements (pix-

els) are unlabelled and thus are treated equal. The histogram
of each feature can be directly calculated from them. In
inhomogeneous models, such as a face, each element is a
landmark that has a label and meaning. Therefore the Gibbs
energy function depends on the label and the histogram of
each feature must be computed from a set of independent
samples.

f) Why Dimension Reduction Using PCA?
Directly applying the inhomogeneous Gibbs model to

faces does not work in practice because the dimension of
face model is too high. Thus, it is important to find a com-
pact space to simplify the model. PCA provides such com-
pact space constructed by the largest eigenvectors.

g) Why Not Use the Principal Components as the Initial
Feature Set?

Instead of using a set of orthogonal bases such as prin-
cipal components, we use 1D marginal statistics defined in
the space formed by the principal components. Therefore,
we can construct an over-complete set of bases which are
more flexible for capturing the characteristics of the under-
lying local distribution.

7. Conclusion

We have built an inhomogeneous Gibbs model to learn
prior distributions. In particular, this model is applied to ob-
tain a better prior distribution for face modelling. A mini-
max entropy principle is used to derive an inhomogeneous
Gibbs model, and features are selected by minimizing the
KL divergence. Such learning framework is illustrated in
Figure 7. To deal with the high-dimensional problem in face
modelling, PCA is employed to reduce the feature space.
The good results on face data demonstrate our model is ef-
fective and efficient to capture precise and subtle face pat-
terns.
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