
Real-Time Texture Synthesis by
Patch-Based Sampling

LIN LIANG, CE LIU, YING-QING XU, BAINING GUO,
and HEUNG-YEUNG SHUM
Microsoft Research China, Beijing

We present an algorithm for synthesizing textures from an input sample. This patch-based sampling
algorithm is fast and it makes high-quality texture synthesis a real-time process. For generating
textures of the same size and comparable quality, patch-based sampling is orders of magnitude
faster than existing algorithms. The patch-based sampling algorithm works well for a wide variety
of textures ranging from regular to stochastic. By sampling patches according to a nonparametric
estimation of the local conditional MRF density function, we avoid mismatching features across
patch boundaries. We also experimented with documented cases for which pixel-based nonpara-
metric sampling algorithms cease to be effective but our algorithm continues to work well.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understand-
ing—texture; I.3.3 [Computer Graphics]: Picture/Image Generation; I.4.7 [Image Processing
and Computer Vision]: Feature Measurement—texture

General Terms: Algorithms

Additional Key Words and Phrases: Texture synthesis, patch-pasted nonparametric sampling

1. INTRODUCTION

Texture synthesis has a variety of applications in computer vision, graphics, and
image processing. An important motivation for texture synthesis comes from
texture mapping. Texture images usually come from scanned photographs, and
the available photographs may be too small to cover the entire object surface.
In this situation, a simple tiling will introduce unacceptable artifacts in the
forms of visible repetition and seams. Texture synthesis solves this problem by
generating textures of the desired sizes. Other applications of texture synthesis
include various image processing tasks such as occlusion fill-in and image/
video compression.

The texture synthesis problem may be stated as follows. Given an input sam-
ple texture Iin, synthesize a texture Iout that is sufficiently different from the
given sample texture, yet appears perceptually to be generated by the same
underlying stochastic process. In this work, we use the Markov Random Field

Authors’ address: Microsoft Research China, 5F, Beijing Sigma Center, No. 49., Zhichun Road,
Haidian District, Beijing, 100080, PRC; email: bainguo@microsoft.com.
Permission to make digital/hard copy of part or all of this work of personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 0730-0301/01/0700-0127 $5.00

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001, Pages 127–150.

128 • L. Liang et al.

(MRF) as our texture model and assume that the underlying stochastic pro-
cess is both local and stationary. We choose MRF because it is known to ac-
curately model a wide range of textures. Other successful but more special-
ized models include reaction-diffusion [Turk 1991; Witkin and Kass 1991], fre-
quency domain [Lewis 1984], and fractals [Fournier 1982; Worley 1996] (see also
Perlin [1985]).

In recent years, a number of successful texture synthesis algorithms have
been proposed in graphics and vision. Motivated by psychology studies, Heeger
and Bergen [1995] developed a pyramid-based texture synthesis algorithm
that approximately matches marginal histograms of filter responses. Zhu et al.
[1997, 1998] introduced a mathematical model called FRAME, which integrates
filters and histograms into MRF models and uses a minimax entropy princi-
ple to select feature statistics. Several texture synthesis algorithms are based
on matching joint statistics of filter responses. De Bonet’s [1997] algorithm
matches the joint histogram of a long vector of filter responses. Portilla and
Simoncelli [1999] developed an iterative projection method for matching the
correlations of certain filter responses. These methods, along with many oth-
ers in the literature [Iverson and Lonnestad 1994; Wu et al. 2000], represent
two different approaches to texture synthesis. The first is to compute global
statistics in feature space and sample images from the texture ensemble [Zhu
et al. 2000] directly.1 The second approach is to estimate the local conditional
probability density function (PDF) and synthesize pixels incrementally [Zhu
et al. 1997].

The texture synthesis algorithm we propose follows the second approach. In
their pioneer work, Zhu et al. [1997] explored this approach using the analyt-
ical FRAME model and an accurate but expensive Markov chain Monte Carlo
method. More recently, Efros and Leung [1999] demonstrated the power of
sampling from a local PDF by presenting a nonparametric sampling algorithm
that works well for a wide variety of textures ranging from regular to stochas-
tic. Efros and Leung’s algorithm, while much faster than Zhu et al. [1997],
is still too slow. Inspired by a cluster-based texture model [Popat and Picard
1993], Wei and Levoy [2000] significantly accelerated Efros and Leung’s algo-
rithm using tree-structured vector quantization (TSVQ). However, this TSVQ-
accelerated nonparametric sampling algorithm is still not real-time. Another
problem with Efros and Leung [1999] and Wei and Levoy [2000] is that they
break down for some textures. Efros and Leung [1999] attribute the problem
of their algorithm to the fact that it is a greedy algorithm and it can “slip”
into a wrong part of the search space and start to grow “garbage.” Wei and
Levoy’s algorithm also suffers quality problems. Ashikhmin [2001] noted the
quality problems of Wei and Levoy’s algorithm on a class of textures and has
developed a special-purpose algorithm for that class. It is possible to combine
Ashikhmin’s algorithm with that of Wei and Levoy, as Hertzmann et al. [2001]
have done.

1Please also see Heeger and Bergen [1995], DeBonet [1997], Portilla and Simoncelli [1999], and
Zhu et al. [2000].

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 129

Fig. 1. Texture synthesis example: (a) 192 × 192 input sample texture; (b) 256 × 256 texture
synthesized by patch-based sampling. The synthesis takes 0.02 seconds on a 667 MHz PC.

In this article we show that high-quality texture can be synthesized in real-
time on a midlevel PC. A key ingredient of our patch-based sampling algorithm
is a sampling scheme that uses texture patches of the sample texture as build-
ing blocks for texture synthesis. The patch-based sampling algorithm is fast.
For synthesizing textures of the same size and comparable (or better) quality,
our algorithm is orders of magnitude faster than existing texture synthesis al-
gorithms including Wei and Levoy [2000]. Figure 1 shows an example produced
by our algorithm. After spending 0.6 seconds analyzing the input sample, our
algorithm took 0.02 seconds to synthesize this texture on a 667 MHz PC. The
patch-based sampling algorithm works well for a wide variety of textures rang-
ing from regular to stochastic. We examined documented cases for which Efros
and Leung [1999], Wei and Levoy [2000], and Ashikhmin [2001] cease to be
effective and have found that our algorithm continues to produce good results.
In particular, the texture patches in our sampling scheme provide implicit con-
straints for avoiding garbage as found in some textures synthesized by Efros
and Leung [1999].

The patch-based sampling algorithm is an extension of our earlier work on
texture synthesis by random patch pasting [Xu et al. 2000]. Praun [2000] has
successfully adapted this patch-pasting algorithm for texture mapping on 3-D
surfaces. Unfortunately, these patch-pasting algorithms suffer from mismatch-
ing features across patch boundaries. The patch-based sampling algorithm, on
the other hand, avoids mismatching features across patch boundaries by sam-
pling texture patches according to the local conditional MRF density. Patch-
based sampling includes patch pasting as a special case, in which the local
PDF implies a null statistical constraint.

Patch-based sampling is amenable to acceleration and the fast speed of our al-
gorithm is partially attributable to our carefully designed acceleration scheme.
The core computation in patch-based sampling can be formulated as a search for
approximate nearest neighbors (ANN). We accelerate this search by combining

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

130 • L. Liang et al.

an optimized technique for general ANN search, a novel data structure called
the quadtree pyramid for ANN search of images, and principal components
analysis of the input sample texture.

The patch-based sampling algorithm is easy to use and flexible. It is ap-
plicable to both unconstrained and constrained texture synthesis. Examples of
constrained texture synthesis include hole filling and tileable texture synthesis.
The patch-based sampling algorithm has an intuitive randomness parameter.
The user can utilize this parameter to interactively control the randomness of
the synthesized texture.

In concurrent work, Efros and Freeman [2001] developed a texture quilting
algorithm. For unconstrained texture synthesis, texture quilting is very similar
to patch-based sampling. There are several differences between our work and
that of Efros and Freeman [2001]. First, we accelerate patch-based sampling
and demonstrate that it can run in real-time, whereas they do not explore the
issue of speed. Second, we show how to solve constrained texture synthesis prob-
lems, which they do not address. Finally, patch-based sampling and Efros and
Freeman [2001] use different techniques to improve the transitions between
texture patches. We apply feathering [Szeliski and Shum 1997] while Efros
and Freeman use a minimum error boundary cut. Later, we compare these two
boundary treatment techniques in detail.

The rest of the article is organized as follows. In Section 2, we introduce
patch-based sampling and its applications to unconstrained and constrained
texture synthesis. In Section 3, we present our acceleration techniques. The
texture synthesis results and speed are discussed in Section 4, followed by
conclusions and suggestions for future work in Section 5.

2. PATCH-BASED SAMPLING

The patch-based sampling algorithm uses texture patches of the input sample
texture Iin as the building blocks for constructing the synthesized texture Iout .
In each step, we paste a patch Bk of the input sample texture Iin into the synthe-
sized texture Iout . To avoid mismatching features across patch boundaries, we
carefully select Bk based on the patches already pasted in Iout , {B0, . . . , Bk−1}.
The texture patches are pasted in the order shown in Figure 3. For simplicity,
we only use square patches of a prescribed size wB ×wB.

2.1 Sampling Strategy

Let IR1 and IR2 be two texture patches of the same shape and size. We say that
IR1 and IR2 match if d (R1, R2) < δ, where d () represents the distance between
two texture patches and δ is a prescribed constant.

Assuming the Markov property, the patch-based sampling algorithm esti-
mates the local conditional MRF (FRAME or Gibbs) density p(IR | I∂R) in a
nonparametric form by an empirical histogram. Define the boundary zone ∂R
of a texture patch IR as a band of width wE along the boundary of R as shown
in Figure 2. When the texture on the boundary zone I∂R is known, we would
like to estimate the conditional probability distribution of the unknown texture
patch IR . Instead of constructing a model, we directly search the input sample

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 131

Fig. 2. A patch-based sampling strategy. In the synthesized texture shown in (b), the hatched area
is the boundary zone. In the input sample texture shown in (a), three patches have boundary zones
matching the texture patch IR in (b) and the red patch is selected.

texture Iin for all patches having the known I∂R as their boundary zones. The
results of the search form an empirical histogram 9 for the texture patch IR .
To synthesize IR , we just pick an element from 9 at random. Mathematically,
the estimated conditional MRF density is

p(IR | I∂R) =
∑

i

αiδ(IR − IRi),
∑

i

αi = 1,

where IRi is a patch of the input sample texture Iin whose boundary zone I∂Ri

matches the boundary zone I∂R and δ() is Dirac’s delta. The weight αi is a
normalized similarity scale factor.

With patch-based sampling, the statistical constraint is implicit in the bound-
ary zone ∂R. A large boundary zone implies a strong statistical constraint. Gen-
erally speaking, a nonparametric local conditional PDF such as in Efros and
Leung [1999] and Wei and Levoy [2000] is faster to estimate than the analyt-
ical FRAME model in Zhu et al. [1997]. On the down side, the nonparametric
density estimation is subject to greater statistical fluctuations, because in a
small sample texture Iin there may be only a few sites that satisfy the local
statistical constraints.

2.2 Unconstrained Texture Synthesis

Now we use the patch-based sampling strategy to choose the texture patch Bk ,
the kth texture patch to be pasted into the output texture Iout .

As Figure 3(a) shows, only part of the boundary zone of Bk overlaps the
boundary zone of the already pasted patches {B0, . . . , Bk−1} in Iout . We say
that two boundary zones match if they match in their overlapping region. In
Figure 3(a), Bk has a boundary zone EBk of width wE . The already pasted
patches in Iout also have a boundary zone Ek

out of width wE . According to the
patch-based sampling strategy, EBk should match Ek

out .
For the randomness of the synthesized texture Iout , we form a set 9B con-

sisting of all texture patches of Iin whose boundary zones match Ek
out . Let B(x, y)

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

132 • L. Liang et al.

Fig. 3. Texture synthesis by patch-based sampling. The grey area is already synthesized. The
hatched areas are the boundary zones. (a) The boundary zones Ek

out and EBk should match. (b), (c),
and (d) are three configurations for boundary zone matching. The overlapping boundary zones are
blended together.

be the texture patch whose lower left corner is at (x, y) in Iin. We form

9B =
{

B(x, y)
∣∣ d
(
EB(x, y) , Ek

out

)
< dmax, B(x, y) in Iin

}
, (1)

where dmax is the distance tolerance of the boundary zones. Later we give details
on how to compute dmax as a function of Ek

out . From 9B we randomly select a
texture patch to be the kth patch to be pasted. For a given dmax, the set 9B
could be empty. In that case, we choose Bk to be a texture patch in Iin with the
smallest distance d (EBk , Ek

out).
The patch-based sampling algorithm proceeds as follows.

1. Randomly choose a wB×wB texture patch B0 from the input sample texture
Iin. Paste B0 in the lower left corner of Iout . Set k = 1.

2. Form the set 9B of all texture patches from Iin such that for each texture
patch of 9B, its boundary zone matches Ek

out .
3. If 9B is empty, set 9B = {Bmin}, where Bmin is chosen such that its boundary

zone is the closest to Ek
out .

4. Randomly select an element from 9B as the kth texture patch Bk . Paste Bk
onto the output texture Iout . Set k = k + 1.

5. Repeat steps 2, 3, and 4 until Iout is fully covered.
6. Perform blending in the boundary zones.

The blending step uses feathering [Szeliski and Shum 1997] to provide a smooth
transition between adjacent texture patches after Iout is fully covered with tex-
ture patches. Alternatively, it is possible to perform a feathering operation after
each new texture patch is found.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 133

Fig. 4. Constrained texture synthesis: (a) 256×256 texture; (b) 128×128 hole is created; (c) result
of constrained synthesis.

Fig. 5. Boundary zone matching for tileable texture synthesis. The grey area is the texture already
synthesized. The hatched purple areas are the areas to be matched. (a) Boundary zone matching
for the last patch in a row. (b) Boundary zone matching for the last row.

Forming the set 9B is the main computation for patch-based sampling. This
computation is essentially an ANN search in high-dimensional space. We dis-
cuss fast searching techniques in Section 3.

2.3 Constrained Texture Synthesis

Hole Filling. It is straightforward to extend the patch-based sampling al-
gorithm to handle constrained texture synthesis. To better match the fea-
tures across patch boundaries between the known texture around the hole and
newly pasted texture patches, we fill the hole in spiral order. Figure 4 shows
an example.

Tileable Texture Synthesis. This is another form of constrained texture syn-
thesis. Figure 5 shows the boundary zones to be matched for the last patch in
a row and for the patches of the last row. In the synthesized texture Iout , the
pixel values in the boundary zone should be

Eout(x, y) = Iout(x mod wout , y mod hout),

where (x, y) is the location of the pixel in Iout . wout and hout are the width
and height of the synthesized texture. This equation defines the pixels in the
boundary zone Eout even if either x > wout or y > hout as shown in Figure 5.
Figure 6 shows a result of tileable texture synthesis.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

134 • L. Liang et al.

Fig. 6. Result of tileable texture synthesis: (a) tileable texture synthesized from the input sample
in Figure 1; (b) 2× 2 tiling of the synthesized texture.

2.4 Implementation Details

Patch Size (wB). The size of the texture patch affects how well the syn-
thesized texture captures the local characteristics of the input sample texture
Iin. A smaller wB allows more matching possibilities between texture patches
and thus implies weaker statistical constraints and less similarity between the
synthesized texture Iout and the input sample texture Iin. Up to a certain limit,
a bigger wB means better capturing of texture characteristics in the texture
patches and thus more similarity between Iout and Iin.

Figure 7 shows the effect of wB on the synthesized textures Iout . When
wB = 16, the texture patches contain less structural information of the in-
put sample texture Iin (size 64× 64). As a result, the synthesized texture Iout
appears more random. For patch size wB = 32, the synthesized texture Iout
become less random and resembles the input sample texture of Iin more.

For an input sample texture of size win × hin, the patch size wB should be
wB = λmin(win, hin), where 0 < λ < 1 is the randomness parameter of our
system.2 The intuitive meaning of wB is the scale of the texture elements in
the input sample texture Iin. For texture synthesis, it is usually assumed that
the approximate scale of the texture elements is known, although we can also
use texture analysis techniques such as those of Zucker and Terzopoulos [1980]
to find the scale of the texture elements from the given texture sample. The
patch size serves a similar function as the window size in Efros and Leung

2The boundary zone width wE can also be used as a control parameter for the randomness of the
synthesized texture.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 135

Fig. 7. The effect of the patch size on synthesized texture: (a) input sample texture of size 64×64;
(b) synthesized texture when the patch size wB = 16; (c) synthesized texture when wB = 24; (d)
synthesized texture when wB = 32. The synthesized texture resembles the sample texture more
as wB increases.

[1999], which is also a randomness parameter. The main difference is that
a large window size in Efros and Leung [1999] drastically reduces the tex-
ture synthesis speed; the patch size wB has only minor impact on the
synthesis speed.

Unless stated otherwise, all examples in this article are generated with λ

values between 0.25 and 0.5.

Distance Metric. We choose the following measure of the distance between
two boundary zones

d
(
EBk , Ek

out

) = [1
A

A∑
i=1

(
pi

Bk
− pi

out

)2

]1/2

, (2)

where A is the number of pixels in the boundary zone. pi
Bk

and pi
out represent

the values (greyscale or color) of the ith pixel in the boundary zones EBk and
Ek

out , respectively.

Boundary Zone Width (wE). The boundary zone width wE should be suffi-
ciently large to avoid mismatching features across patch boundaries. A wide
boundary zone implies strong statistical constraints, which force a natural

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

136 • L. Liang et al.

Fig. 8. The effect of different relative error ε: (a) input sample texture; (b) ε = 0; (c) ε = 0.2; (d)
ε = 1.0.

transition of features across patch boundaries. However, when the boundary
zone is too wide, the statistical constraint will become so strong that there will
be very few texture patches satisfying the constraints in a small sample texture
Iin. In that case, patch-based sampling suffers serious statistical fluctuations.
As we show, when wE is too large it is also more costly to construct the kd-tree
for accelerating the search for the texture patches of 9B. As a balance, we can
set wE to be a small fraction (e.g., 1/6) of the patch size. For the results reported
in this article, wE is typically four pixels wide.

Distance Tolerance (dmax). When the distance between two boundary zones
is defined by Equation (2), we define dmax as

dmax = ε
[

1
A

A∑
i=1

(
pi

out

)2

]1/2

,

where A is the number of pixels in the boundary zone. pi
out represents the values

of the ith pixel in the boundary zone Ek
out . ε ≥ 0 is the relative matching error

between boundary zones.
The parameter ε controls the similarity of the synthesized texture Iout with

the input sample texture Iin and the quality of Iout . The smaller the ε, the more
similar are the local structures of the synthesized texture Iout and the sample
texture Iin. If ε = 0, the synthesized texture Iout looks like the tiling of the

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 137

sample texture Iin, as Figure 8(b) shows. When ε is too big, the boundary zones
of adjacent texture patches may be very different and thus there may not be a
natural transition across the patch boundaries, as Figure 8(d) shows. To ensure
the quality of the synthesized texture, we set ε = 0.2.

Edge Handling. Let B(x, y) be the texture patch whose lower left corner is
at (x, y) in Iin. To construct the set9B we have to test B(x, y) for inclusion in9B.
For (x, y) near the border of the input sample texture Iin, part of B(x, y) may be
outside Iin. If the sample texture Iin is tileable, then we set the value of B(x, y)
toroidally. B(x, y)(u, v) = Iin(u mod win, v mod hin), where (u, v) is the location of
a pixel of B(x, y) inside the sample texture Iin, and win and hin are the width and
the height of Iin, respectively. If the sample texture Iin is not tileable, we only
search for the texture patches that are completely inside Iin.

2.5 Discussion

Patch-Versus Pixel-Based Sampling. When the patch size wB = 1, patch-
based sampling becomes the nonparametric sampling of Efros and Leung [1999]
and Wei and Levoy [2000]. When wB = 1, the estimated conditional MRF
density becomes

p(I (v) | I∂v) =
∑

i

αiδ(I (v)− I (vi)),
∑

i

αi = 1,

where I (vi) is a pixel of the input sample texture Iin whose neighborhood I∂vi

matches I∂v. The weight αi is a normalized similarity scale factor. This is the
nonparametric sampling described in Efros and Leung [1999] and Wei and
Levoy [2000]. When wB = 1, the window size of Efros and Leung [1999] is
w = 2wE + 1, where wE is the boundary zone width.

Patch-Based Sampling Versus Patch Pasting. When the relative match-
ing error between the boundary zones becomes sufficiently large, say ε = 1.0,
the patch-based sampling algorithm is essentially the patch-pasting algorithm
of Xu et al. [2000].

3. PERFORMANCE OPTIMIZATION

When constructing the set 9B as defined in Equation (1) in Section 2.2, we
need to search the set of all wB × wB patches of the input sample texture Iin
for patches whose boundary zones match Ek

out . We formulate this search as a k
nearest neighbors search problem in the high-dimensional space consisting of
texture patches of the same shape and size as Ek

out . The k nearest neighbor prob-
lem is a well-studied problem. If we insist on getting the exact nearest neighbors
in high dimensions, it is hard to find search algorithms that are significantly
better than brute-force search. However, if we are willing to accept approx-
imate nearest neighbors (i.e., ANN), there are efficient algorithms available
[Arya et al. 1998].

When choosing acceleration techniques, our principle is to avoid acceleration
techniques that will introduce noticeable artifacts in synthesized textures. With
this principle in mind, we accelerate our ANN search at three levels.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

138 • L. Liang et al.

General acceleration. We accelerate the search at general level using an
optimized kd-tree [Mount 1998]. For patch-based sampling, this optimized kd-
tree performs as well as the bd-tree, which is optimal for ANN search [Arya
et al. 1998].

Domain-specific acceleration. We introduce a novel data structure called
the quadtree pyramid for accelerating the search based on the fact that the
datapoints in our search space are images.

Data-specific acceleration. We use principal components analysis (PCA)
[Jollife 1986] to accelerate the search for the given input sample texture.

The acceleration at all three levels can be combined to get a compound speed-
up of the ANN search.

3.1 Optimized KD-Tree

We use an optimized kd-tree [Mount 1998] as our general technique for ac-
celerating the ANN search. Initially we experimented with the bd-tree, which
is optimal for ANN search [Arya et al. 1998]. However, our experiments in-
dicate that bd-trees introduce minor but noticeable artifacts in the synthe-
sized textures. In terms of speed, bd and kd-trees are about the same for
our searching needs. As pointed out in Arya et al. [1998], the optimized kd-
tree, with all its optimizations [Mount 1998], performs as well as the bd-
tree on most data sets.3 We have also experimented with Nene and Nayar’s
[1997] algorithm as well as TSVQ [Wei and Levoy 2000]. For patch-based sam-
pling, Nene and Nayar [1997] and TSVQ introduce noticeable artifacts in some
synthesized textures.

A kd-tree partitions the data space into hypercubes using axis-orthogonal
hyperplanes [Friedman et al. 1977; Mount 1998]. Each node of a kd-tree cor-
responds to a hypercube enclosing a set of datapoints. When constructing a
kd-tree, an important decision is to choose a splitting rule for breaking the tree
nodes. We use the sliding midpoint rule [Mount 1998]. An alternative choice is
the standard kd-tree splitting rule, which splits the dimension with the max-
imum spread of datapoints. The standard kd-tree splitting rule has a good
guarantee on the height and size of the kd-tree. However, this rule produces
hypercubes of arbitrarily high aspect ratio. Since we only allow small errors
in boundary zone matching, we want to avoid high aspect ratios. The sliding
midpoint rule can also lead to hypercubes of high aspect ratios, but these hy-
percubes have a special property that prevents them from causing problems in
nearest neighbor searching [Mount 1998].

To search a kd-tree, we use an adapted version of the search algorithm from
Friedman et al. [1977] with the incremental distance computation of Arya et al.
[1998]. When the allowed matching errors are small, as is the case for us, the
algorithm of Friedman et al. [1977] is slightly faster than the priority search
algorithm, which is superior for finding exact nearest neighbors or for large
matching errors [Mount 1998].

3One case in which the bd-trees do perform significantly better is when the datapoints are clustered
in low-dimensional subspaces, but this is not the case with our texture data.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 139

Fig. 9. The quadtree pyramid: (a) two levels in a standard Gaussian pyramid. The pixels in the
red rectangle in the lower level do not have a corresponding pixel in the higher level; (b) two levels
in a quadtree pyramid. Every set of four pixels has a corresponding pixel in the higher level.

For implementation, we use the ANN library [Mount 1998] to build a kd-tree
for each of the three boundary zone configurations shown in Figure 3.

3.2 Quadtree Pyramid

The kd-tree acceleration does not directly take advantage of the fact that our
datapoints correspond to images. We introduce the quadtree pyramid (QTP) to
address this problem. QTP is a data structure for hierarchical search of image
data. To find approximate nearest neighbors for a query vector v, we find the
m initial candidates using the low-resolution datapoints and query vector v. In
general we should choose m ¿ n, where n is the number of datapoints. In our
system, we set m = 40. From the initial candidates, we can find the k nearest
neighbors using high-resolution query vector v and datapoints.

In order to accelerate the search of the m initial candidates, we need to filter
all datapoints and the query vector v into low resolution. A naive approach
to filter them is to do it one by one, which will be very expensive in terms of
both time and storage because of the large number of datapoints. With QTP,
we only need to filter the input sample texture Iin. The low-resolution data
can be extracted from the filtered Iin. As Figure 9 shows, a problem with the
standard Gaussian pyramid is that a patch in the high-resolution image may
not have a corresponding patch in the low-resolution image. QTP solves this
problem by building a tree pyramid. The tree node in QTP is a pointer to an
image and a tree level corresponds to a level in the Gauss pyramid. The root
of the tree is the input sample texture Iin. When we move from one level of the
pyramid to the next lower resolution level, we compute four children (lower-
resolution images) with different shifts along the x- and y-directions as shown
in Figure 9. With QTP constructed this way, each patch in the higher-resolution
image I corresponds to a patch in a child of I . In our system, we use a three-
level QTP. There are 1, 4, and 16 images of the size of the sample texture at
levels 1, 2, and 3, respectively.

3.3 Principal Components Analysis

The approximate nearest neighbors search can be further accelerated by con-
sidering the special property of the input sample texture. Specifically, we reduce

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

140 • L. Liang et al.

the dimension of the search space using PCA [Jollife 1986]. Suppose that we
need to build a kd-tree containing n datapoints {x1, . . . , xn}, where each xi is
a d -dimensional vector. PCA finds the eigenvalues and eigenvectors of the co-
variance matrix of these datapoints. The eigenvectors of the largest eigenvalues
span a subspace containing the main variations of the data distribution. The
datapoints {x1, . . . , xn} are projected into this subspace as {x′1, . . . , x′n}, where
each x′i is a d ′-dimensional vector with d ′ ¿ d . We choose the subspace dimen-
sion d ′ so that 97% of the variation of the original data is retained. For example,
let the texture patch size be wB = 64 and the boundary zone width be wE = 4. If
we analyze data at the top level of a three-level pyramid for the L-shaped bound-
ary zone in Figure 3(d), the dimension of datapoints is d = 3 · (16 + 15) = 93
and PCA typically reduces the dimension to about d ′ = 20.

4. RESULTS

We have tested the patch-based sampling algorithm on a wide variety of tex-
tures ranging from regular to stochastic. Figure 10 shows some typical results.
All patch-based sampling results in this article are generated by the accel-
erated algorithm; the results by the unaccelerated algorithm of Section 2 do
not look different visually and hence are not included. The time to synthe-
size a texture in Figure 10 is about 0.02 seconds on a 667 MHz PC. For space
economy, the synthesized textures in Figure 10 are set to be about the same
size as the sample textures. Figure 11 provides an example of synthesizing a
large texture.

We examined documented cases for which Efros and Leung [1999], Wei and
Levoy [2000], and Ashikhmin [2001] cease to be effective and have found that
our algorithm continues to produce good results. As pointed out in Efros and
Leung [1999], a problem with pixel-based nonparametric sampling techniques
is that they tend to wander into the wrong part of the search space and grow
garbage in the synthesized texture. The example in Figure 12(b) is taken from
Efros and Leung [1999], which uses this example to demonstrate the garbage
generated by pixel-based nonparametric sampling. The patches in our sampling
scheme implicitly provide constraints for avoiding such garbage. The result of
our patch-based sampling is shown in Figure 12(c). A texture synthesized by
patch-based sampling can be divided into two types of areas: one includes the
majority of the synthesized texture and is the middle part of a pasted texture
patch; this type of area has no garbage. The other type of area is a blend of two
boundary zones and cannot have garbage either because the boundary zones
themselves have no garbage and the blending is done on boundary zones with
matched features.

Another problem documented in Efros and Leung [1999] is verbatim copy-
ing of the sample texture at large scale, that is, the scale of the input sample
texture. Figure 13(b), taken from Efros and Leung [1999], shows a large area
of the sample texture directly copied onto the synthesized texture (see lower
left corner). For patch-based sampling, verbatim copy at the scale of the patch
size wB is obviously unavoidable. However, with our algorithm it is easy to
obtain textures that do not exhibit verbatim copying at large scale. Because

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 141

Fig. 10. Texture synthesis results. Each example includes the 200× 200 input sample and
256× 256 result. The time to synthesize a texture is about 0.02 seconds on a 667 MHz PC.

patch-based sampling is fast, the user can synthesize visually different tex-
tures at an interactive rate with the slightly different randomness parameter
wB. Most of these textures do not exhibit verbatim copying at large scale. Figure
13(c) and (d) are examples. In our experiment, we generated 200 textures with
slightly different values of wB and found that 93% of the synthesized textures
had no verbatim copying at large scale.

The quality problems of Wei and Levoy’s algorithm [2000] on a class of tex-
tures have been reported by Ashikhmin [2001]. He calls this class of textures
“natural textures”; that is, textures “consisting of small objects of familiar but

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

142 • L. Liang et al.

Fig. 11. Texture synthesis from a 200× 200 input sample to an 800× 800 result. The time to
synthesize the texture is about 0.65 seconds on a 667 MHz PC.

irregular shapes and sizes.” Figure 14 compares Wei and Levoy’s [1999] algo-
rithm, Ashikhmin’s [2001] algorithm, and patch-based sampling. The results
of Wei and Levoy’s algorithm were downloaded from their Web page. In the
first two examples in Figure 14, “strawberry” and “pebbles,” Wei and Levoy’s
algorithm produces poor results, whereas Ashikhmin’s algorithm works well.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 143

Fig. 12. Patch-based sampling continues to generate good results when pixel-based nonparametric
sampling ceases to be effective: (a) input sample texture; (b) result by Efros and Leung [1999],
showing the “garbage” generated by pixel-based nonparametric sampling. The result by patch-
based sampling in (c) does not have this problem.

Fig. 13. (a) 132× 110 input sample texture; (b) 216× 216 result by Efros and Leung [1999], show-
ing verbatim copying at large scale; (c) result of patch-based sampling with patch size wB = 32; (d)
result of patch-based sampling with patch size wB = 40. Both (c) and (d) do not exhibit verbatim
copying at large scale.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

144 • L. Liang et al.

Fig. 14. Column (a): input sample textures; Column (b): results of patch-based sampling; Column
(c): results of Wei and Levoy’s algorithm; Column (d): results of Ashikhmin’s algorithm. Results of
Wei and Levoy’s algorithm are taken from their Web page.

However, Ashikhmin’s algorithm is a special-purpose algorithm designed for
“natural textures”; it performs poorly for other textures, such as those that
are relatively smooth or have more or less regular structures. In the third
example in Figure 14, “clouds,” Ashikhmin’s algorithm fails while Wei and
Levoy’s algorithm generates a good texture. The patch-based sampling works
well in all three examples and is about an order of magnitude faster than
Ashikhmin’s algorithm.

Figure 15 compares patch-based sampling with our earlier patch-pasting
algorithm [Xu et al. 2000]. The patch-pasting algorithm works well on stochas-
tic textures such as the example shown in the top row of Figure 15. However,
when the sample texture has a more or less regular structure (e.g., a brick
wall) the patch-pasting algorithm fails to produce good results because of mis-
matched features across patch boundaries. See the middle and bottom rows
of Figure 15 for examples. The patch-based sampling algorithm works well on
all examples.

Figure 16 compares patch-based sampling with concurrent work by Efros
and Freeman [2001] on texture quilting. In this comparison, we are mainly in-
terested in comparing texture quality for feathering, used by patch-based sam-
pling, and the minimum error boundary cut (MEBC) used by texture quilting.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 145

Fig. 15. Column (a): input sample textures; Column (b): results of patch-based sampling; Column
(c): results of patch pasting.

We found that feathering produces more smooth color changes than MEBC,
which can generate abrupt color changes at various places along the boundary
cut. See the top and middle rows of Figure 16 for examples. However, there are
examples in which MEBC produces better results than feathering. For the text
shown in the bottom row of Figure 16, feathering produces a smeary effect that
is less apparent in the result obtained with MEBC.

Table I summarizes the performance of the patch-based algorithm with and
without acceleration techniques applied. The table also compares the speed of
patch-based sampling with Heeger’s algorithm [Heeger and Bergen 1995] and
Wei and Levoy’s [2000] algorithm. We choose to compare timing with Heeger’s
algorithm and Wei and Levoy’s algorithm because they are fast general-purpose
texture synthesis algorithms. The timings for the patch-based sampling al-
gorithm and Heeger’s algorithm are measured by averaging the times of

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

146 • L. Liang et al.

Fig. 16. Column (a): input sample textures; Column (b): results of patch-based sampling; Column
(c): results of Efros and Freeman’s algorithm.

500 trial runs with different textures. Timings are also taken from Wei and
Levoy [2000].

Table I also demonstrates three possible ways to combine our acceleration
techniques. The QTP method uses QTP to filter all datapoints into low res-
olution. Then exhaustive search is invoked for finding the initial candidates
in low resolution and for choosing the ANNs from the initial candidates in
high resolution. The QTP+KDtree method is similar to the QTP method; the

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 147

Table I. Timing Comparison: Patch-Based Sampling and Other Algorithms∗

Method Analysis Time Synthesis Time
QTP+KDTree+PCA 0.678 0.020
QTP+KDTree 0.338 0.044
QTP 0.017 0.256
Exhaustive∗∗ 0.000 1.415
Heeger 0.0 32
Wei and Levoy∗∗∗ 22.0∗∗∗ 7.5∗∗∗

∗Timings are measured in seconds on a 667 MHz PC for synthesizing 200 × 200 textures from 128 × 128
samples.
∗∗Exhaustive means no acceleration is used.
∗∗∗Wei and Levoy’s timings are taken on a 195 MHz R10000 processor.

Fig. 17. Some failure examples of the patch-based sampling. The input sample textures are shown
in the top row. The synthesized textures are in the bottom row.

only difference is that a kd-tree is built when searching for the initial candi-
dates among the low-resolution datapoints. The QTP+KDtree+PCA method
further accelerates the QTP+KDtree method by projecting all low-resolution
datapoints into a low-dimensional subspace when searching for the initial can-
didates using a kd-tree.

Finally, Figure 17 shows some failure examples of the patch-based sampling.
In column (a), we have a sample texture of easily recognizable objects. Since
our texture synthesis algorithm has no explicit model for these objects, objects
in the synthesized texture do not always resemble those in the sample texture.
Like most existing texture synthesis techniques, patch-based sampling can only
handle frontal-parallel textures. In column (b), the sample texture is not frontal
parallel and the synthesized texture is of poor quality. In Figure 17, column (c),

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

148 • L. Liang et al.

we see interrupted object boundaries in the synthesized texture. This is because
the distance metric for the patch boundary zone matching gives no preference
to object boundaries or any other high-frequency features. A possible future
research topic is to develop a better distance metric to improve the continuity
of high-frequency features across patch boundaries.

5. CONCLUSION

We have presented a patch-based sampling algorithm for texture synthesis.
Our algorithm synthesizes high-quality textures for a wide variety of textures
ranging from regular to stochastic. The algorithm is fast enough to enable real-
time texture synthesis on a midlevel PC. For generating textures of the same
size and comparable (or better) quality, our algorithm is orders of magnitude
faster than existing texture synthesis algorithms. Patch-based sampling com-
bines the strengths of nonparametric sampling [Efros and Leung 1999; Wei
and Levoy 2000] and patch pasting [Xu et al. 2000]. In fact, both patch-pasting
and the pixel-based nonparametric sampling [Efros and Leung 1999; Wei and
Levoy 2000] are special cases of the patch-based sampling algorithm. We ex-
amined documented cases for which Efros and Leung [1999], Wei and Levoy
[2000], and Ashikhmin [2001] cease to be effective and our results indicate that
patch-based sampling continues to produce good results in these cases. In par-
ticular, the texture patches in our sampling scheme provide implicit constraints
for avoiding garbage as found in some textures synthesized by Efros and
Leung [1999].

For future work, we are interested in extending the ideas presented here for
texture synthesis on surfaces of arbitrary topology [Wei and Levoy 2001; Turk
2001; Ying et al. 2001]. With patch-based sampling, we can eliminate a number
of problems with existing techniques, for example, the need for manual texture
patch creation and feature mismatches across patch boundaries [Praun et al.
2000]. Other interesting topics include texture mixtures and texture movie
synthesis [Heeger and Bergen 1995; Bar-Joseph et al. 2001].

ACKNOWLEDGMENTS

Many thanks to the anonymous TOG reviewers for their constructive cri-
tique. This article is a revised version of our ill-fated SIGGRAPH ’01 submis-
sion (available as a technical report Liang et al. 2001) and we want to thank
SIGGRAPH ’01 reviewers for their critique. A special thanks to Dr. Song-Chun
Zhu for useful discussions on many texture-related issues.

REFERENCES

ARYA, S., MOUNT, D. M., NETANYAHU, N. S., SILVERMAN, R., AND WU, A. Y. 1998. An optimal algorithm
for approximate nearest neighbor searching. J. ACM 45, 891–923.

ASHIKHMIN, M. 2001. Synthesizing natural textures. In Proceedings of the ACM Symposium on
Interactive 3D Graphics (March), 217–226.

BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND WERMAN, M. 2001. Texture mixing and texture
movie synthesis using statistical learning. IEEE Trans. Vis. Comput. Graph.

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

Patch-Based Sampling • 149

DE BONET, J. S. 1997. Multiresolution sampling procedure for analysis and synthesis of texture
image. In Computer Graphics Proceedings, Annual Conference Series (August), 361–368.

EFROS, A. AND FREEMAN, W. 2001. Image quilting for texture synthesis and transfer. In Computer
Graphics Proceedings, Annual Conference Series (August).

EFROS, A. A. AND LEUNG, T. K. 1999. Texture synthesis by non-parametric sampling. In Proceedings
of International Conference on Computer Vision.

FOURNIER, A., FUSSELL, D., AND CARPENTER, L. 1982. Computer rendering of stochastic models.
Commun. ACM 25, 6 (June), 371–384.

FRIEDMAN, J., BENTLEY, J., AND FINKEL, R. 1977. An algorithm for finding best matches in logarith-
mic expected time. ACM Trans. Math. Softw. 3, 3, 209–226.

HEEGER, D. J. AND BERGEN, J. R. 1995. Pyramid-based texture analysis/synthesis. In Computer
Graphics Proceedings, Annual Conference Series (July), 229–238.

HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D. 2001. Image analogies. In
Computer Graphics Proceedings, Annual Conference Series (August).

IVERSEN, H. AND LONNESTAD, T. 1994. An evaluation of stochastic models for analysis and synthesis
of gray scale texture. Pattern Recogn. Lett. 15, 575–585.

JOLLIFE, I. T. 1986. Principal Component Analysis. Springer-Verlag, New York.
LEWIS, J.-P. 1984. Texture synthesis for digital painting. In Comput. Graph. (SIGGRAPH ’84

Proceedings) 18, 245–252.
LIANG, L., LIU, C., XU, Y. Q., GUO, B., AND SHUM, H. Y. 2001. Real-time texture synthesis by patch-

based sampling. Microsoft Research Tech. Rep. MSR-TR-2001-40, March.
MOUNT, D. M. 1998. ANN Programming Manual. Department of Computer Science, University

of Maryland, College Park, Maryland.
NENE, S. A. AND NAYAR, S. K. 1997. A simple algorithm for nearest-neighbor search in high dimen-

sions. IEEE Trans. PAMI 19, 9 (Sept.), 989–1003.
PERLIN, K. 1985. An image synthesizer. Comput. Graph. (Proceedings of SIGGRAPH ’85) 19, 3

(July), 287–296.
POPAT, K. AND PICARD, R. W. 1993. Novel cluster-based probability model for texture synthesis,

classification, and compression. In Proceedings of SPIE Visual Communication and Image Pro-
cessing, 756–768.

PORTILLA, J. AND SIMONCELLI, E. 1999. Texture modeling and synthesis using joint statistics of com-
plex wavelet coefficients. In Proceedings of the IEEE Workshop on Statistical and Computational
Theories of Vision.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped texture. In Computer Graphics
Proceedings, Annual Conference Series (July), 465–470.

SZELISKI, R. AND SHUM, H.-Y. 1997. Creating full view panoramic mosaics and environment maps.
In Proceedings of SIGGRAPH ’97 (August), 251–258.

TURK, G. 1991. Generating textures on arbitrary surfaces using reaction-diffusion. In Computer
Graphics (SIGGRAPH ’91 Proceedings) 25 (July), 289–298.

TURK, G. 2001. Texture synthesis on surfaces. In Computer Graphics Proceedings, Annual Con-
ference Series (August).

WEI, L. AND LEVOY, M. 2001. Texture synthesis over arbitrary manifold surfaces. In Computer
Graphics Proceedings, Annual Conference Series (August).

WEI, L. Y. AND LEVOY, M. 2000. Fast texture synthesis using tree-structured vector quantization.
In Computer Graphics Proceedings, Annual Conference Series (July), 479–488.

WITKIN, A. AND KASS, M. 1991. Reaction-diffusion textures. In Computer Graphics (SIGGRAPH
’91 Proceedings), 25, (July), 299–308.

WORLEY, S. P. 1996. A cellular texturing basis function. In SIGGRAPH’96 Conference Proceedings,
Holly Rushmeier, Ed., Annual Conference Series (August), 291–294.

WU, Y. N., ZHU, S. C., AND LIU, X. W. 2000. Equivalence of Julesz ensemble and FRAME models.
Int. J. Comput. Vis. 38, 30, 245–261.

XU, Y. Q., GUO, B., AND SHUM, H. Y. 2000. Chaos mosaic: Fast and memory efficient texture syn-
thesis. Microsoft Res. Tech. Rep. MSR-TR-2000-32, April.

YING, L., HERTZMANN, A., BIERMANN, H., AND ZORIN, D. 2001. Texture and shape synthesis on sur-
faces. In Proceedings of the Twelfth Eurographics Workshop on Rendering (June).

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

150 • L. Liang et al.

ZHU, S. C., LIU, X., AND WU, Y. 2000. Exploring texture ensembles by efficient Markov chain Monte
Carlo. IEEE Trans. PAMI 22, 6.

ZHU, S. C., WU, Y., AND MUMFORD, D. B. 1997. Minimax entropy principle and its application to
texture modeling. Neural Comput. 9, 1627–1660 (first appeared in CVPR ’96).

ZHU, S. C., WU, Y., AND MUMFORD, D. 1998. Filters, random-fields and maximum-entropy (Frame).
Int. J. Comput. Vis. 27, 2 (March), 107–126.

ZUCKER, S. AND TERZOPOULOS, D. 1980. Finding structure in co-occurence matrices for texture anal-
ysis. Comput. Graph. Image Process. 12, 286–307.

Received May 2001; revised August 2001; accepted August 2001

ACM Transactions on Graphics, Vol. 20, No. 3, July 2001.

