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1 Introduction

Suppose we want to digitally enlarge a photograph. The inputis a single, low-resolution image, and the desired
output is an estimate of the high-resolution version of thatimage. This problem can be phrased as one of “image
interpolation”: we seek to interpolate the pixel values between our observed samples. Image interpolation is
sometimes called super-resolution, since we are estimating data at a resolution beyond that of the image samples.
In contrast with multi-image super-resolution methods, where a high-resolution image is inferred from a video
sequence, we are interested in estimating high-resolutionimages from a single low-resolution example [10].

There are many analytic methods for image interpolation, including pixel replication, linear and cubic spline in-
terpolation [22], and sharpened Gaussian interpolation [23]. When we interpolate in resolution by a large amount,
such as a factor of four or more in each dimension, these analytic methods typically suffer from a blurred appear-
ance. Following a simple rule, they tend to make conservative, smooth guesses for image appearance.

We can address this problem with two techniques. The first is to use an example-based representation to handle
the many special cases we expect. We describe the pre-processing and representaton issues for our example-based
representation below. Second, we use a graphical model framework to reason about global structure. The super-
resolution problem has a structure similar to other low-level vision tasks: we accumulate local evidence (which
may be ambiguous) and propagating it across space. A Markov random field is an appropriate structure for this:
local evidence terms can be modeled by unary potentialsψi(xi) at a nodei with statesxi. Spatial propagation
occurs through pairwise potentials,φij(xi, xj), between nodesi andj, or through higher order potentials. The
joint probability then has the factorized form,

P~x(~x) =
1

Z

∏

i

ψi(xi)
∏

(ij)∈E

φij(xi, xj), (1)

whereE is the set of edges in the MRF denoted by the neighboring nodes, i andj, andZ is a normalization constant
such that the probabilities sum to one [17]. The local statistical relationships allow information to propagate long
distances over an image.

1.1 Image pre-filtering

To develop the super-resolution algorithm, we first specifythe desired model of subsampling and image degrada-
tion that we seek to undo. For the examples in this paper, we assume we low-pass filter the desired high-resolution
image, then subsample by a factor of four in each dimension, to obtain the observed low-resolution image. The
low-pass filter is a 7x7 pixel Gaussian filter, normalized to have unit sum, of standard deviation 1 pixel. We start
from a high-resolution image, and blur it and subsample to generate the corresponding low-resolution image. We
apply this model to a set of training images, to generate somenumber of paired examples of high-resolution and
low-resolution image patch pairs.

It is convenient to handle the high- and low-resolution images at the same sampling rate–the same number of
pixels. After creating the low-resolution image, we perform an initial interpolation up to the sampling rate of
the full-resolution image. Usually this is done with cubic spline interpolation, to create what we will call the
“upsampled low-resolution image”.

We want to exploit whatever invariances we can to let the training data generalize beyond the training examples.
We use two heuristics to try to extend the reach of the examples. First, we don’t believe that all spatial frequencies
of the low-resolution are needed to predict the missing high-frequency image components, and we don’t want



to have to store a different example patch for each possible value of the low-frequency components of the low-
resolution patch. So we apply a low-pass filter to the upsampled low-resolution image in order to divide it into two
spatial frequency bands. We call the output of the low-pass filter the “low-band”,L; the upsampled low-resolution
image minus the low-band image gives what we’ll call the “mid-band”,M . The difference between the upsampled
low-resolution image and the original image is the “high-band”,H .

A second operation to increase the scope of the examples is contrast normalization. We assume that the relationship
of the mid-band,M , to high-band,H , data is independent of the local contrast level. So we normalize the contrast
of the mid- and high-band images in the following way:

[M̂, Ĥ] =
[M,H ]

std(M) + δ
(2)

wherestd(·) is standard deviation operator, andδ is a small value which sets the local contrast level below which
we do not adjust the contrast. Typically,δ = 0.0001 for images that range over zero to one.

1.2 Representation of the unknown state

We have a choice about what we estimate at the nodes of the MRF.If the variable to be estimated at each node is
a single pixel, then the dimensionality of the unknown stateat a node is low, which is good. However, it may not
be feasible to draw valid conclusions about single pixel states from only performing computations between pairs
of pixels. That may place undo burden on the MRF inference. Wecould remove that burden if a large patch of
estimated pixels is assigned to one node, but then the state dimensionality at a node may be unmanagably high.

To address this, we work with entire image patches at each node, to provide sufficient local evidence, but use
other means to constrain the state dimensionality at a node.First, we restrict the solution patch to be one of some
number of exemplars, typically image examples from some training set. In addition, we take advantage of local
image evidence to further constrain the choice of exemplarsto be from some smaller set of candidates from the
training set. The result is an unknown state dimension of 20 to 40 states per node.

Figure 2 illustrates this representation. The top row showsan input patch from the (bandpassed, contrast normal-
ized) low-resolution input image. The next two rows show the30 nearest-neighbor examples from a database of
658,788 image patches, extracted from 41 images. The low-res patches are of dimension25×25, and the high-res
patches are of dimension9×9. The bottom two rows of Fig. 2 show the corresponding high-resolution image
patches for each of those 30 nearest neighbors. Note that themid-band images look approximately the same as
each other and as the input patch, while the high-resolutionpatches look considerably different from each other.
This tells us that the local information from the patch by itself is not sufficient to determine the missing high
resolution information, and we must use some other source ofinformation to resolve the ambiguity. The state
representation is then an index into a collection of exemplars, telling which of the unknown high resolution image
patches is the correct one, illustrated in Fig. 3. The resulting MRF is shown in Fig. 1.

1.3 MRF parameterization

We can define a local evidence term and pairwise potentials ofthe Markov random field if we make assumptions
about the probability of encountering a training set exemplar in the test image. We assume any of our image
exemplars can appear in the input image with equal probability. We account for differences between the input and
training set patches as independent, identically distributed Gaussian noise added to every pixel. Then the local
evidence for a node being in sample statexi depends on the amount of noise needed to translate from the low-
resolution patch corresponding to statexi to the observed mid-band image patch,~p. If we denote the band-passed,
contrast normalized mid-band training patch associated with statexi as ~M(xi) then

ψi(xi) = exp |~p− ~M(xi)|
2/(2σ2) (3)

where we write 2-d image patches as rasterized vectors.
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Figure 1: Patch-based MRF for low-level vision. The observationsyi are patches from the mid-band image data.
The states to be estimated are indices into a dataset of high-band patches.

To construct the compatibility term,φij(xi, xj), we assume we have overlapping high-band patches that should
agree with their neighbors in their regions of overlap, see Fig. 4. Any disagreements is again attributed to a
Gaussian noise process. If we denote the band-passed, contrast normalized high-band training patch associated
with statexi as ~H(xi), and introduce an operatorOij that extracts as a rasterized vector the pixels of the overlap
region between patchesi andj (with the ordering compatible for neighboring patches), then we have

φij(xi, xj) = exp |Oij(H(xi))−Oji(H(xj))|
2/(2σ2), (4)

In the examples we show below, we used a mid-band and high-band patch size of 9x9 pixels, and used a patch
overlap region of size 3 pixels.

Input patch

Closest image

patches from database

Corresponding 

high-resolution

patches from database

Figure 2: top: input patch (mid-band bandpass filtered, contrast normalized). We seek to find the high-resolution
patch associated with this. Middle: Nearest neighbors fromdatabase to the input patch. The found patches match
this reasonably well. Bottom: The corresponding high-resolution patches associated with each of the retrieved mid-
band bandpass patches. These show more variability than themid-band patches, indicating that more information
than simply the local image matches is needed to select the proper high-resolution image estimate. Since the
resolution requirements for the color components are lowerthan for luminance, we use an example-based approach
for the luminance, and interpolate the color information bya conventional cubic spline interpolation.

1.4 Loopy belief propagation

We have set-up the Markov Random Field such that each possible selection of states at each node corresponds to
a high-resolution image interpretation of the input low-resolution image. The MRF probability, the product of all
the local evidence and pairwise potentials in the MRF, assigns a probability to each possible selection of states
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Figure 3: The state to be estimated at each node. Using the local evidence, at each node, we have a small collection
of image candidates, selected from our database. We use the belief propagation to select between the candidates,
based on compatibility information.

Figure 4: The patch-patch compatibility function is computed from the sum of squared pixel differences in the
overlap region.

according to Eq. (1). Each configuration of states specifies an estimated high-band image, and we seek the high-
band image that is most favored by the MRF we have specified. This is the task of finding a point estimate from a
posterior probability distribution.

In Bayesian decision theory [3] the optimal point estimate depends on the loss function used–the penalty for
guessing wrong. With a penalty proportional to the square ofthe error, the best estimate is the mean of the posterior.
However, if all deviations from the true value are equally penalized, then the best estimate is the maximum of the
posterior. Using Belief Propagation [20], both estimates can be calculated exactly for an MRF that is a tree.

We consider first the case of the posterior mean, which requires marginalizing the posterior over the states of all
other nodes. For a network without loops, the sums over node states for the marginalization can be distributed
efficiently over the network in a message-passing algorithm. We define a set of messages,mij(xj) along each
direction of each edge; the messages can be initialized to random values between zero and one. The messages are
functions of the states of the node receiving the message. A message from node i to node j is updated according to,

mij(xj)←
∑

xj

φ(xi, xj)φj(xj)
∏

k∈η(j)ı

mkj(xj) (5)

For the case of a tree network, these updates occur until the messages no longer change. Then the marginal
probability at each node is the product of all the incoming messages and the local potential:

pxi
(xi) = φi(xi)

∏

j∈η(i)

mji(xi) (6)

When the Markov network forms a tree, belief propagation is simply an efficient redistribution of the sums involved
in marginalization, and iterations of Eq. (5) yield the exact marginals by Eq. (6).

Interestingly, for a network with loops, it is often still useful to apply the same update and marginal probability
equations, although in that case, the marginal probabilities are only an approximation. The message updates are
run until convergence, or for a fixed number of iterations (here, we used 30 iterations). Fixed points of these
iterative update rules correspond to stationary points of awell-known approximation used in statistical physics, the
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Bethe approximation [26]. Good empirical results have beenobtained with that approximation [12, 10], and we
use it here.

For our approximation to the MMSE estimate, we take the mean (weighted by the marginals from Eq. (6)) of the
candidate patches at a node. It is also possible to approximate the MAP estimate by substituting the summation
operator of Eq. (5) with “max”, then selecting the patch maximizing the resulting “max-marginal” given in Eq. (6).
These solutions are often sharper, but with more artifacts,than the MMSE estimate.

To piece together the final image, we undo the contrast normalization of each patch, average neighboring patches in
regions where they overlap, add-in the low and mid-band images, and add-in the analytically interpolated chromi-
nance information. Figure 5 summarizes the steps in the algorithm, and Fig. 6 shows other results. The perceived
sharpness is significantly improved, and the belief propagation iterations significantly reduce the artifacts that
would result from estimating the high-resolution image based on local image information alone. (Figure 7 pro-
vides enlargments of cropped regions from those two figures.) The code used to generate the images in Sect. 1.4 is
available for download at http://people.csail.mit.edu/billf/.

(a) Input (b) Bicubic x 4

(k) Ground truth high-res (l) Ground truth high-band

(h) Inferred high-band (BP # iterations = 30)(g) Inferred high-band (BP # iterations = 1)(f) Inferred high-band (Nearest neighbor)

(j) Super resolution results (add back color)

(d) Band-pass(c) Desaturated

(h(g) Infe ed high-band (BP # ite ti 1)(e) Contrast normalized band-pass

(j(j(i) Add back low-frequency to (h)

Figure 5: Images showing the example-based super-resolution processing. (a) input image, of resolution120×
80. (b) Cubic spline interpolation up to a factor of four higherresolution in each dimension. (c) We extract
the luminance component for example-based processing (anduse cubic spline interpolation for the chrominance
components). (d) A high-pass filtering of this image gives usthe mid-band output, shown here. (e) Display of
the contrast normalized mid-band. The contrast normalization extends the utility of the training database samples
beyond the contrast value of each particular training example. (f) the high frequencies corresponding to the nearest
neighbor of each local low-frequency patch. (g) After 1 iteration of belief propagation, much of the choppy high
frequency details of (f) are removed. (h) converged high resolution estimates. (i) Image (c) added to image (h)–the
estimated high frequencies added back to the mid and low-frequencies. (j) Color components added back in. (k)
comparison with ground truth. (l) true high frequency components.
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(a) Low-res input (b) Bicubic (c) Belief propagation (d) Original high-res

Figure 6: Other example-based super-resolution outputs. (a) Input low-res images. (b) Bicubic interpolation (x4
resolution increase). (c) Belief propagation output. (d) The true high-resolution images.
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(a) Low-res input (b) Bicubic (d) Belief propagation (e) Original high-res(c) Nearest neighbor

Figure 7: The closeups of Figure 5 and 6. (a) Input low-res images. (b) Bicubic interpolation (x4 resolution
increase). (c) Nearest neighbor output. (d) Belief propagation output. (c) The true high-resolution images.
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1.5 Texture synthesis

This same example-based Markov Random Field machinery may be applied to other low-level vision tasks, as
well [10]. Another application involving image patches in Markov Random Fields is texture synthesis. Here, the
input is a small sample of a texture to be sythesized. The output is a larger portion of that texture, having the same
appearance but not made from simply repeating the input texture.

Non-parametric texture methods have revolutionized texture synthesis. Notable examples include Heeger and
Bergen [15], De Bonet [5], Efros and Leung [7]. However, these methods can be slow. To speed them up, and
address some image quality issues, Efros and Freeman [6] developed a non-parametric patch-based method; a
related method was developed independently by Liang et al [18]. This is another example of the patch-based,
non-parametric Markov random field machinery described above for the super-resolution problem.

For texture synthesis, the idea is to draw patch samples fromrandom positions within the source texture, then
piece them together seamlessly. Figure 8, from [6], tells the story. In (a), random samples are drawn from the
source texture, and place in the synthesized texture. With random selection, the boundaries between adjascent
texture blocks are quite visible. (b) shows instead texturesynthesis with overlapping patches selected from the
input texture to match the left and top borders of the textureregion that has been synthesized so far. The border
artifacts are greatly suppressed, yet some are still visible. (c) Shows the result of adding an additional step to the
processing of (b): we select an optimal ragged boundary using “image quilting”, described shortly below.

There is an MRF implied by the model above, with the sameψij compatibility term between neighboring patches
as we had for the super-resolution problem. For this texturesynthesis problem, there is no local evidence term.1.
This makes solution of the problem using belief propagationto be nearly impossible, since there is not small list
of candidate patches available at each node. The state dimension cannot be reduced to a managable level.

As an alternative, we adopt a greedy algorithm, described indetail in [6], that only approximates the optimal
assignment of training patch to MRF node. We process the image in a raster scan fashion, top-to-bottom in
rows, left-to-right within each row. Except at the image boundaries, we always have two borders with patches
filled-in for any patch we seek to select. To add a patch, we randomly select a patch from the source texture
from the top 5 matches to the top and left boundaries values. This algorithm can be thought of as a particularly
simple, approximate method to find the patch assignments that maximize the MRF of Eq. (1), where the pair-wise
compatibilitiesφij(xi, xj) are as for super-resolution, but there are no local evidenceterms,φi(xi). Figure 9
shows nine examples of textures synthesized from input examples, shown in the smaller images to the left of
each synthesis example. Note that the examples exhibit the perceptual appearance of the smaller patches, but are
synthesized in a realistic non-repeating pattern.

1.5.1 Image quilting–dynamic programming

Now we return to the goal of finding the optimal ragged boundary between two patches. We seek the optimal
tear to minimize the visibility of artifacts caused by differences between the neighboring patches. We describe
the algorithm for finding the optimal tear in a vertical region and the extension to a horizontal tear is obvious.
Let the difference between two adjascent patches in the region of overlap bed(i, j), wherei andj horizontal and
vertical pixel coordinates. For each row, we seek the columnq(j) of an optimal path of tearing between the two
patches. This optimal path should follow a contour of small difference values between the two patches. We seek
to minimize

q̂ = argminq(j)

K∑

j

d(q(j), j)2 (7)

under the constraint that the tear forms a continuous line,|q(j)− q(j − 1)| ≤ 1.

1For a related problem, texture transfer [6], we can have local evidence constraints.
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This optimal path problem has a well-known solution throughdynamic programming [4], which has been exploited
in various vision and graphics applications [24, 6]. This isequivalent to finding the maximum posterior probability
through max-product belief propagation. We summarize the algorithm:

Initialization:
p(i,1)) = d( i, 1)

for j = 2:N
p(i,j) = p(i, j-1) + min_k d(k,j)

end

, where the values considered for the minimization overk are i, andi ± 1. Using an auxiliary set of pointers
indicating the optimal value of the mink operation at each iteration, the pathq(i) can be found from the values of
p(i, j). This method has also been used to hide image seams in “seam carving”, [1].

Figure 8: Patch samples of an input texture can be compositedto form a larger texture in a number of different
ways. (a) A random placement of texture samples gives strongpatch boundary artifacts. (b) We can select only
patches that match well with neighbors in an overlap region,but there are still some boundary artifacts in the
composite image. (c) Selecting the best seam through the boundary region of neighboring patches removes most
artifacts. Figure reprinted from [6].

2 Selected related applications by others

Markov random fields have been used extensively in image processing and computer vision. Geman and Geman
brought Markov random fields to the attention of the vision community, and showed how to use MRF’s as image
priors in restoration applications, [13]. Poggio, Gamble and Little used MRF’s in a framework unifying different
computer vision modules, [21].

The example-based approach has been built on by others. Thismethod has been used in combination with a
resolution enhancement model specific to faces [2] to achieve excellent results in hallucinating details of faces
[19]. Huang and Ma have proposed finding a linear combinationof the candidate patches to fit the input data, then
applying the same regression to the output patches, simulating a better fit to the input [25]. (A related approach
was also used in [11]).
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Figure 9: A collection of source (small image) and corresponding synthesized textures made using the patch-based
image quilting method. Figure reprinted from [6].

Optimal seams for image transitions were found in a 2-d framework, using graph cuts in Kwatra et al [16].
Example-based image priors were used for image-based rendering in the work of Fitzgibbon, Wexler, and Zisser-
man, [9]. Fattal used edge models for image upsampling [8]. Glasner et al also used an example-based approach
for super-resolution, relying on self-similarity within asingle image [14].
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