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1 Introduction

Suppose we want to digitally enlarge a photograph. The iigatsingle, low-resolution image, and the desired
output is an estimate of the high-resolution version of thretge. This problem can be phrased as one of “image
interpolation”. we seek to interpolate the pixel valueswasn our observed samples. Image interpolation is
sometimes called super-resolution, since we are estimdtin at a resolution beyond that of the image samples.
In contrast with multi-image super-resolution methodsemha high-resolution image is inferred from a video
sequence, we are interested in estimating high-resolutiages from a single low-resolution example [10].

There are many analytic methods for image interpolatiociugting pixel replication, linear and cubic spline in-

terpolation [22], and sharpened Gaussian interpolati8h Mhen we interpolate in resolution by a large amount,
such as a factor of four or more in each dimension, these tmatgthods typically suffer from a blurred appear-
ance. Following a simple rule, they tend to make consergasinooth guesses for image appearance.

We can address this problem with two techniques. The firgt isse an example-based representation to handle
the many special cases we expect. We describe the pre-pimogesd representaton issues for our example-based
representation below. Second, we use a graphical modeéfank to reason about global structure. The super-
resolution problem has a structure similar to other lowelaxsion tasks: we accumulate local evidence (which
may be ambiguous) and propagating it across space. A Madaiom field is an appropriate structure for this:
local evidence terms can be modeled by unary potentigls;) at a node; with statesr;. Spatial propagation
occurs through pairwise potentialg,; (z;, z;), between nodesandj, or through higher order potentials. The
joint probability then has the factorized form,
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whereF is the set of edges in the MRF denoted by the neighboring néded;, andZ is a normalization constant
such that the probabilities sum to one [17]. The local stasibrelationships allow information to propagate long
distances over an image.

1.1 Image pre-filtering

To develop the super-resolution algorithm, we first spettieydesired model of subsampling and image degrada-
tion that we seek to undo. For the examples in this paper, sumnas we low-pass filter the desired high-resolution
image, then subsample by a factor of four in each dimensmabtain the observed low-resolution image. The
low-pass filter is a 7x7 pixel Gaussian filter, normalized &drunit sum, of standard deviation 1 pixel. We start
from a high-resolution image, and blur it and subsample teegate the corresponding low-resolution image. We
apply this model to a set of training images, to generate sumaber of paired examples of high-resolution and
low-resolution image patch pairs.

It is convenient to handle the high- and low-resolution iemgt the same sampling rate—the same number of
pixels. After creating the low-resolution image, we penfioan initial interpolation up to the sampling rate of
the full-resolution image. Usually this is done with cubpise interpolation, to create what we will call the
“upsampled low-resolution image”.

We want to exploit whatever invariances we can to let theningi data generalize beyond the training examples.
We use two heuristics to try to extend the reach of the exasnpiest, we don’t believe that all spatial frequencies
of the low-resolution are needed to predict the missing {iigquency image components, and we don’t want



to have to store a different example patch for each possadleevof the low-frequency components of the low-
resolution patch. So we apply a low-pass filter to the upsadhjplwv-resolution image in order to divide it into two
spatial frequency bands. We call the output of the low-pitss the “low-band”,L; the upsampled low-resolution
image minus the low-band image gives what we’'ll call the “rhhd”, M. The difference between the upsampled
low-resolution image and the original image is the “higmtia H .

A second operation to increase the scope of the examplestimsbnormalization. We assume that the relationship

of the mid-band)\/, to high-bandH, data is independent of the local contrast level. So we nliwentoe contrast

of the mid- and high-band images in the following way:
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wherestd(-) is standard deviation operator, afits a small value which sets the local contrast level belowctvhi

we do not adjust the contrast. Typically= 0.0001 for images that range over zero to one.

1.2 Representation of the unknown state

We have a choice about what we estimate at the nodes of the KMRE.variable to be estimated at each node is
a single pixel, then the dimensionality of the unknown stdte node is low, which is good. However, it may not
be feasible to draw valid conclusions about single pixdkestérom only performing computations between pairs
of pixels. That may place undo burden on the MRF inference.cvdd remove that burden if a large patch of
estimated pixels is assigned to one node, but then the staemdionality at a node may be unmanagably high.

To address this, we work with entire image patches at eack,rtodprovide sufficient local evidence, but use
other means to constrain the state dimensionality at a rféidst, we restrict the solution patch to be one of some
number of exemplars, typically image examples from somiaitrg set. In addition, we take advantage of local
image evidence to further constrain the choice of exemptab® from some smaller set of candidates from the
training set. The result is an unknown state dimension ob2Mtstates per node.

Figure 2 illustrates this representation. The top row shamsput patch from the (bandpassed, contrast normal-
ized) low-resolution input image. The next two rows show 3@enearest-neighbor examples from a database of
658,788 image patches, extracted from 41 images. The lewatehes are of dimensi@h x 25, and the high-res
patches are of dimensidhx 9. The bottom two rows of Fig. 2 show the corresponding higgehation image
patches for each of those 30 nearest neighbors. Note thatithband images look approximately the same as
each other and as the input patch, while the high-resolyi#dohes look considerably different from each other.
This tells us that the local information from the patch blitss not sufficient to determine the missing high
resolution information, and we must use some other souréefofmation to resolve the ambiguity. The state
representation is then an index into a collection of exemsptalling which of the unknown high resolution image
patches is the correct one, illustrated in Fig. 3. The reguMRF is shown in Fig. 1.

1.3 MRF parameterization

We can define a local evidence term and pairwise potentialseoflarkov random field if we make assumptions
about the probability of encountering a training set exempi the test image. We assume any of our image
exemplars can appear in the input image with equal proltyabille account for differences between the input and
training set patches as independent, identically digeithGaussian noise added to every pixel. Then the local
evidence for a node being in sample statedlepends on the amount of noise needed to translate fromwhe lo
resolution patch corresponding to stateo the observed mid-band image patghif we denote the band-passed,
contrast normalized mid-band training patch associatéid stater; as]ff(a:i) then

wilai) = exp |5 — M (x)|*/(20%) 3)
where we write 2-d image patches as rasterized vectors.
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mid-band patches

Figure 1: Patch-based MRF for low-level vision. The obstovesy; are patches from the mid-band image data.
The states to be estimated are indices into a dataset ottasigpatches.

To construct the compatibility terna;; (x;, z;), we assume we have overlapping high-band patches thatdshoul
agree with their neighbors in their regions of overlap, sge & Any disagreements is again attributed to a

Gaussian noise process. If we denote the band-passedastombrmalized high-band training patch associated
with statez; asH (z;), and introduce an operat6¥;; that extracts as a rasterized vector the pixels of the qverla

region between patchésand; (with the ordering compatible for neighboring patchespntive have

¢ij (i, 25) = exp |Oi; (H (:)) — Oji(H ()] /(207), (4)

In the examples we show below, we used a mid-band and higti{batich size of 9x9 pixels, and used a patch
overlap region of size 3 pixels.

Input patch

Closest image
patches from database

Corresponding
high-resolution
patches from database

Figure 2: top: input patch (mid-band bandpass filtered,resbnhormalized). We seek to find the high-resolution
patch associated with this. Middle: Nearest neighbors fidatabase to the input patch. The found patches match
this reasonably well. Bottom: The corresponding high-k&tsmn patches associated with each of the retrieved mid-
band bandpass patches. These show more variability thanithband patches, indicating that more information
than simply the local image matches is needed to select thygephigh-resolution image estimate. Since the
resolution requirements for the color components are Idkger for luminance, we use an example-based approach
for the luminance, and interpolate the color informatioreliyonventional cubic spline interpolation.

1.4 Loopy belief propagation

We have set-up the Markov Random Field such that each pessldction of states at each node corresponds to

a high-resolution image interpretation of the input lowekition image. The MRF probability, the product of all

the local evidence and pairwise potentials in the MRF, assagyprobability to each possible selection of states
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Figure 3: The state to be estimated at each node. Using thbdaidence, at each node, we have a small collection
of image candidates, selected from our database. We uselibégropagation to select between the candidates,
based on compatibility information.

Patch i Patch j

Figure 4: The patch-patch compatibility function is comguifrom the sum of squared pixel differences in the
overlap region.

according to Eq. (1). Each configuration of states specifiesséimated high-band image, and we seek the high-
band image that is most favored by the MRF we have specified.i¥the task of finding a point estimate from a
posterior probability distribution.

In Bayesian decision theory [3] the optimal point estimagpehds on the loss function used—the penalty for
guessing wrong. With a penalty proportional to the squatheérror, the best estimate is the mean of the posterior.
However, if all deviations from the true value are equallpg@lezed, then the best estimate is the maximum of the
posterior. Using Belief Propagation [20], both estimai@s lbe calculated exactly for an MRF that is a tree.

We consider first the case of the posterior mean, which reguirarginalizing the posterior over the states of all
other nodes. For a network without loops, the sums over ntadessfor the marginalization can be distributed
efficiently over the network in a message-passing algorithtie define a set of messages;; (z,) along each
direction of each edge; the messages can be initializechtiora values between zero and one. The messages are
functions of the states of the node receiving the messageegsage from node i to node j is updated according to,

maj () < Y bl wy)y () [ mwsay) ©)

T ken(in

For the case of a tree network, these updates occur until #esages no longer change. Then the marginal
probability at each node is the product of all the incomingsages and the local potential:

Pas(@i) = dilwi) [ moi() (6)
Jjen(i)
When the Markov network forms a tree, belief propagatiommpdy an efficient redistribution of the sums involved
in marginalization, and iterations of Eq. (5) yield the exaarginals by Eq. (6).

Interestingly, for a network with loops, it is often stillefsil to apply the same update and marginal probability
equations, although in that case, the marginal probadsigre only an approximation. The message updates are
run until convergence, or for a fixed number of iterationsréheve used 30 iterations). Fixed points of these
iterative update rules correspond to stationary pointsmélknown approximation used in statistical physics, the
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Bethe approximation [26]. Good empirical results have bagained with that approximation [12, 10], and we
use it here.

For our approximation to the MMSE estimate, we take the meaighted by the marginals from Eg. (6)) of the
candidate patches at a node. It is also possible to apprtxitnea MAP estimate by substituting the summation
operator of Eq. (5) with “max”, then selecting the patch maixing the resulting “max-marginal” given in Eq. (6).
These solutions are often sharper, but with more artifédtés the MMSE estimate.

To piece together the final image, we undo the contrast nizatain of each patch, average neighboring patches in
regions where they overlap, add-in the low and mid-band @sagnd add-in the analytically interpolated chromi-
nance information. Figure 5 summarizes the steps in theitign and Fig. 6 shows other results. The perceived
sharpness is significantly improved, and the belief propagaterations significantly reduce the artifacts that
would result from estimating the high-resolution imagedsben local image information alone. (Figure 7 pro-
vides enlargments of cropped regions from those two figufidee code used to generate the images in Sect. 1.4 is
available for download at http://people.csail.mit.edif/b

(a) Input

(c) Desaturated (d) Band-pass

(i) Add back low-frequency to (h)  (j) Super resolution results (add back color) (k) Ground truth high-res (1) Ground truth high-band

Figure 5: Images showing the example-based super-resolptbcessing. (a) input image, of resolutit?i x

80. (b) Cubic spline interpolation up to a factor of four highresolution in each dimension. (c) We extract
the luminance component for example-based processingu@ndubic spline interpolation for the chrominance
components). (d) A high-pass filtering of this image giveghesmid-band output, shown here. (e) Display of
the contrast normalized mid-band. The contrast normabzatxtends the utility of the training database samples
beyond the contrast value of each particular training exangf) the high frequencies corresponding to the nearest
neighbor of each local low-frequency patch. (g) After 1atérn of belief propagation, much of the choppy high
frequency details of (f) are removed. (h) converged higbltg®n estimates. (i) Image (c) added to image (h)-the
estimated high frequencies added back to the mid and loguénecies. (j) Color components added back in. (k)
comparison with ground truth. (I) true high frequency comeats.



(a) Low-res input (b) Bicubic (c) Belief propagation  (d) Original high-res

Figure 6: Other example-based super-resolution outpajsnput low-res images. (b) Bicubic interpolation (x4
resolution increase). (c) Belief propagation output. (0¥ True high-resolution images.
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(a) Low-res input (b) Bicubic (c) Nearest neighbor (d) Belief propagation (e) Original high-res

Figure 7: The closeups of Figure 5 and 6. (a) Input low-resgesa (b) Bicubic interpolation (x4 resolution
increase). (c) Nearest neighbor output. (d) Belief profiagautput. (c) The true high-resolution images.



1.5 Texture synthesis

This same example-based Markov Random Field machinery reapplied to other low-level vision tasks, as
well [10]. Another application involving image patches iraMov Random Fields is texture synthesis. Here, the
input is a small sample of a texture to be sythesized. Theuigf larger portion of that texture, having the same
appearance but not made from simply repeating the inpuirtext

Non-parametric texture methods have revolutionized textiynthesis. Notable examples include Heeger and
Bergen [15], De Bonet [5], Efros and Leung [7]. However, thesethods can be slow. To speed them up, and
address some image quality issues, Efros and Freeman [6log@d a non-parametric patch-based method; a
related method was developed independently by Liang et8l [This is another example of the patch-based,
non-parametric Markov random field machinery describedralfor the super-resolution problem.

For texture synthesis, the idea is to draw patch samples fammdom positions within the source texture, then
piece them together seamlessly. Figure 8, from [6], teksdtory. In (a), random samples are drawn from the
source texture, and place in the synthesized texture. \ditdom selection, the boundaries between adjascent
texture blocks are quite visible. (b) shows instead textyrghesis with overlapping patches selected from the
input texture to match the left and top borders of the textagton that has been synthesized so far. The border
artifacts are greatly suppressed, yet some are still @sifa) Shows the result of adding an additional step to the
processing of (b): we select an optimal ragged boundarygugimage quilting”, described shortly below.

There is an MRF implied by the model above, with the samjecompatibility term between neighboring patches
as we had for the super-resolution problem. For this texdynghesis problem, there is no local evidence term.
This makes solution of the problem using belief propagatiione nearly impossible, since there is not small list
of candidate patches available at each node. The state siimmerannot be reduced to a managable level.

As an alternative, we adopt a greedy algorithm, describedktail in [6], that only approximates the optimal
assignment of training patch to MRF node. We process the énilag raster scan fashion, top-to-bottom in
rows, left-to-right within each row. Except at the image bdaries, we always have two borders with patches
filled-in for any patch we seek to select. To add a patch, weaoarty select a patch from the source texture
from the top 5 matches to the top and left boundaries valubg dlgorithm can be thought of as a particularly
simple, approximate method to find the patch assignmentsrthgimize the MRF of Eq. (1), where the pair-wise
compatibilities¢;; (x;,z;) are as for super-resolution, but there are no local evidéges, ¢;(x;). Figure 9
shows nine examples of textures synthesized from input plesnshown in the smaller images to the left of
each synthesis example. Note that the examples exhibitgteeptual appearance of the smaller patches, but are
synthesized in a realistic non-repeating pattern.

1.5.1 Image quilting—dynamic programming

Now we return to the goal of finding the optimal ragged boupdsatween two patches. We seek the optimal
tear to minimize the visibility of artifacts caused by difaces between the neighboring patches. We describe
the algorithm for finding the optimal tear in a vertical regiand the extension to a horizontal tear is obvious.
Let the difference between two adjascent patches in themegfioverlap bei(i, j), wherei and; horizontal and
vertical pixel coordinates. For each row, we seek the colgfpnof an optimal path of tearing between the two
patches. This optimal path should follow a contour of smédecence values between the two patches. We seek
to minimize

K
G = argmin; > d(g(5). j)* 7

under the constraint that the tear forms a continuous Jirf¢) — ¢(j — 1)| < 1.

For a related problem, texture transfer [6], we can have kddence constraints.
8



This optimal path problem has a well-known solution throdghamic programming [4], which has been exploited
in various vision and graphics applications [24, 6]. Thisdgsiivalent to finding the maximum posterior probability
through max-product belief propagation. We summarize lipersghm:

Initialization:
p(i,1)) =d( i, 1)

for j = 2:N
p(i,j) = p(i, j-1) + mn_k d(k,j)
end

, Where the values considered for the minimization dverre:, and: + 1. Using an auxiliary set of pointers
indicating the optimal value of the mjroperation at each iteration, the patfi) can be found from the values of
p(i, 7). This method has also been used to hide image seams in “se@myca[1].

Bl | B2 Bl: | | B2 B1§<EB2
block . - d .
random placement neighboring blocks minimum error
of blocks constrained by overlap boundary cut

Figure 8: Patch samples of an input texture can be compasiteaim a larger texture in a number of different
ways. (a) A random placement of texture samples gives stpatch boundary artifacts. (b) We can select only
patches that match well with neighbors in an overlap regiwt,there are still some boundary artifacts in the
composite image. (c) Selecting the best seam through thedaow region of neighboring patches removes most
artifacts. Figure reprinted from [6].

2 Selected related applications by others

Markov random fields have been used extensively in imageggsieg and computer vision. Geman and Geman
brought Markov random fields to the attention of the visiomaaunity, and showed how to use MRF’s as image
priors in restoration applications, [13]. Poggio, Gambid &ittle used MRF's in a framework unifying different
computer vision modules, [21].

The example-based approach has been built on by others. n#é#ttsod has been used in combination with a
resolution enhancement model specific to faces [2] to aehéxeellent results in hallucinating details of faces
[19]. Huang and Ma have proposed finding a linear combinaifdhe candidate patches to fit the input data, then
applying the same regression to the output patches, simglatbetter fit to the input [25]. (A related approach
was also used in [11]).
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Figure 9: A collection of source (small image) and corresfiog synthesized textures made using the patch-based
image quilting method. Figure reprinted from [6].

Optimal seams for image transitions were found in a 2-d freonk, using graph cuts in Kwatra et al [16].
Example-based image priors were used for image-basedriegdie the work of Fitzgibbon, Wexler, and Zisser-
man, [9]. Fattal used edge models for image upsampling [&sit&r et al also used an example-based approach
for super-resolution, relying on self-similarity withinsingle image [14].
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