
Scene Reconstruction
from a
Light Field

Changil Kim

Master Thesis
ETH Zürich
September 2010

Supervised by
Simon Heinzle,
Dr. Wojciech Matusik, and
Prof. Dr. Markus Gross

Analysis and Optimization of Spatial and 
Appearance Encodings of Words and 

Sentences

Christian Vögeli

Master Thesis
SS 2005

Prof. Dr. Markus Gross

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich





Abstract

This thesis addresses novel methods to reconstruct the scene from a light field. Light fields are
sampled radiances at all points along all directions in the scene. We propose to reconstruct the
scene by analyzing the structures of rays in the light field without any geometric assumption about
the scene. We first explore the general characteristics of light fields, and important operations such
as digital refocusing and synthetic aperture. Using those operations, we derive a representation
called a focal stack to describe the scene, and the mapping between the light field and the focal
stack. We then devise tools to measure the existence of surfaces in the focal stack. Being equipped
with these tools, we propose to reconstruct the depth of the scene, and then to reconstruct the
whole 3D volume of the scene. We also discuss the effects of the occlusion, and seek to reduce
its influence on the synthetic aperture imaging to make our methods more robust. Our methods
are tested using captured and synthetic data sets, and the experimental results are presented and
discussed.
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Scene pre-capturing for stereoscopic video 
 
	  
Introduction 
3D filming and display attracts worldwide attention and experts from the field argue that the 
transition from 2D to 3D is the next milestone after colour TV, stereo sound, and high-
definition. One of the main driving forces behind this trend is the digitalization of filming: 
digital 3D video sequences offer completely new means for pre- and post-processing . However, 
stereoscopic filming still requires extensive knowledge about the principles of stereography, 
and shooting 3D films still can only be performed by a handful of skilled operators.  
Disney Research Zurich and the Computer Graphics Laboratory of ETH Zurich have developed a 
digital acquisition system for high-quality stereo video. The goal of the system is to aid the 
camera operator and stereographer with semi-automatic means to adjust the two most 
important parameters: baseline and convergence. As one enhancement of the pipeline, the 
system should be augmented by a mechanism to „pre-capture“ the depth of a static scene, and 
to use this depth for the subsequent acquisitions of the actors in front of the pre-captured 
scene. 
 
Assignment 
• Familiarization with and assessment of existing algorithms for dense stereo acquisition of 

static and for dynamic scenes, as well as basic concepts in 3D movie making. 
• Evaluation of existing methods in terms of hardware requirements, scene assumptions, 

and quality of results. 
• Development and implementation of a pre-capture method meeting following key 

requirements: 
1. A set of densely sampled input images should yield an accurate and densely sampled 

depth field of the scene. 
2. The method should work without physical modification of the current hardware 

system in real-time. 
3. The method can either be adapted from previous work, or be developed by the 

student. 
• Integration into the existing hardware system. 
• Evaluation and results. 
• Extensions to this assignment are as follows: 

o Use pre-captured depth to determine a faithful depth of dynamic scene. 
o Use pre-captured depth for compositing with other captured scenes. 

 
Remarks 
A written report and an oral presentation conclude the work. The master thesis is overseen by 
Prof. Markus Gross and is supervised by Simon Heinzle, Institute for Visual Computing, and Dr. 
Wojciech Matusik, Disney Research Zurich. 
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1
Introduction

Since the light field was adopted in computer graphics it has been widely used in many applica-
tions, including image-based rendering, computational photography, and 3D displaying systems.
A light field contains visual appearances of a scene observed from various viewing positions and
directions. The virtue of the light field is that it is a simple and elegant representation of a 3D
scene, and can be constructed from a collection of 2D images. The light field does not require
scene geometry and complex models for the appearance of scene points, which are usually
needed by geometry based scene representations. This characteristic makes operations on light
fields simple and computationally efficient.

However, this advantage also comes with disadvantages. The scene geometry such as the depth
is one of the most important notions of the scene, and is still required by many algorithms and
applications. Despite its importance, the light field has no notion of the geometry. In addition,
there is a practical difficulty that a large amount of data must be acquired, processed, and
maintained to work with light fields. Since light fields reside in a high dimensional space and
should be acquired in a fine resolution to avoid aliasing, they are spatially demanding and
redundant. Thus, it is beneficial to convert the light field to another representation which is
compact and can be fed into required applications. In this thesis, we focus on reconstructing the
scene geometry by identifying the depth of visible scene points as well as the texture of scene
points.

In computer vision, the scene reconstruction has long been a fundamental problem. Many
approaches have been sought to reconstruct a good representation of a scene from images. Those
approaches typically use two views or some small number of views to reconstruct the scene depth,
and thus involve assumptions about prior knowledge about the scene and/or highly nonlinear
operations such as complex optimizations. In this context, capturing and analyzing a light field of
a scene can be understood as a mean of facilitating the scene reconstruction. Using the light field
as a scene capturing method, we can capture more information about the scene in a structured
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1 INTRODUCTION

way and exploit this additional information acquired by light field to reconstruct the scene with
simpler operations. With light fields, a scene can be analyzed more systematically, since light
fields are usually acquired in a regular sampling pattern.

In this thesis, we explore novel methods to reconstruct the scene from the light field. More
specifically, we propose to reconstruct 3D volumes containing scene geometry and texture
information of the scene. We first transform a light field to another scene representation called a
focal stack, which has a more intuitive relation to the 3D scene. We then extract scene points
lying on surfaces and their texture from the focal stack. In order to do this, we use focus measure
criteria to determine the confidence of surface existence at each point in the focal stack. The
influence of occlusions in the focal stack increases as the aperture (baseline) becomes wider.
Therefore, the occlusions are explicitly handled.

Our contributions are as follows. First, we analyze the light field with respect to the depth, and
devise depth measure criteria robust to occlusions. Second, we present a framework for the scene
reconstruction from light fields, and provide specific methods to extract a view-dependent depth
representation. Lastly, we propose an extended method to reconstruct the 3D scene volume from
a light field, and present a detailed analysis of the results.

The proposed methods may be used in the shape and texture recovery of, for example, archaeo-
logical sites as a passive 3D reconstruction algorithm. It can also be used to analyze the scene
in more specific purposes. For example, in 3D cinematography, the scene may be pre-captured
before the actual filming. 3D cameras can easily capture a light field by adjusting the baseline of
their two cameras. The acquired light field can then be used to analyze the scene to extract useful
information to cinematographers such as the scene composition and depth distribution.

A rough scene geometry can be captured along with the video stream using a linear array of
inexpensive cameras attached to a high quality main camera. The obtained scene geometry can
then be used to render the second view to produce a stereoscopic 3D movie. Lastly, the proposed
methods can be used to compress already acquired light fields by removing geometry-dependent
redundancy, and also plan a second phase acquisition to efficiently acquire a finer resolution light
field based on its coarse version.

The thesis starts with reviewing related previous work in Chapter 2. The theoretical background
including important notions used throughout the thesis is presented in Chapter 3. Then, we present
the methods to reconstruct the scene in Chapter 4. The experimental results and implementation
details are reported in Chapter 5. Finally, Chapter 6 concludes the thesis with the summary and
possible future work.
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2
Related Work

The thesis was inspired by the previous works about epipolar-plane image analysis, range finding
techniques, and light field photography. This chapter briefly reviews some of remarkable works
about them.

Epipolar-Plane Image Analysis. Before the introduction of the light field to computer graph-
ics and vision communities, its two dimensional slice known as epipolar-plane image (EPI) has
been researched extensively.

Bolles et al. [BBM87] introduced the notion of a spatio-temporal volume of a static scene
obtained by a camera motion. They investigated the techniques to analyze slices of this volume,
the EPIs, to extract the 3D positions of objects in the scene as well as the relation between the
objects such as occlusions of objects. They presented a method to estimate the depth of scene
points from the EPI formed by a linear camera motion based on detecting edge features, which
produces a map of free space not occluded by objects, yielding a sparse representation of the
scene. Due to the sparsity of detected edge features, however, this scene reconstruction was also
sparse, not generating a dense representation of the scene. They opened the possibility for their
methods to be applied to more complex camera motions and moving objects by analyzing the
projective duality, so that a free space map of the scene can be generated by a robot scanning the
scene.

While most approaches focused on a sparse set of features in EPI, the following methods proposed
to reconstruct a dense representation of the scene. Katayama et al. [KTOT95] proposed one of
the earliest methods for dense representation of the scene from EPI in their approach to generate
new views by the interpolation and reconstruction of multi-view images for autostereoscopic
displays. They discussed the detection of trace lines of correspondence points on EPIs. To detect
a trace line, they used the variance of color values on candidate straight lines, and accept the
least steepest one among all the possible trace lines with predefined range of slope giving the
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2 RELATED WORK

variance smaller than a threshold. They also proposed to remove the pixels in the EPI which were
already fitted to trace lines in order to deal with occlusions. However, their line fitting criterion
used only the variance, which is too simple to handle complex occlusions. The decision based on
thresholding is prone to errors, and may generate noisy reconstruction. Although their method
was rather simple and they did not investigated further about the scene reconstruction since their
interest was the view interpolation, their idea has been a starting point for the later researches
about the dense scene reconstruction.

Intille and Bobick [IB94] proposed a notion of disparity-space image (DSI) to model occlusions
and to help solve the stereo matching problem, which can be easily built from EPI. The DSI is a
2D slice of the discretized 3D volumetric model of the scene, which is similar with the focal
stack we use to represent the 3D scene. Crimisini et al. [CKS+05] proposed a method to segment
depth layers from EPI by exploiting the high degree of regularity found in the EPI. They also
used the intensity variance to identify trace lines corresponding to surface points, and used DSI to
identify coherent scene points constituting layers separated by occlusion boundaries. The method
iteratively peels off occluding points from the EPI while updating the variance computation.
They also proposed to segment EPI by detecting straight line and extracting the quadrilateral
bounded by most slanted straight lines.

Their method is relevant to ours in that the use of EPI and DSI in tandem is similar with ours
of the light field and the focal stack. However, they use DSI to compute occluded regions, and
maintained a visibility weight mask based on this computation, whereas we propose to compute
the focal stack and the focus measure free from the influence of occlusions. Although their
method was more sophisticated and mathematically based, they also used a simple variance
based criterion to identify trace lines. In addition, their ray removal scheme based on the visibility
mask is sensitive to discretization, and prone to errors in practice.

In computer vision community, the depth estimation from multiple views has been actively
studied. Among those researches, Kang and Szeliski’s proposal [KS04] to extract view-dependent
depth maps from image sequences is very relevant to our approach. In their proposal, a depth
map associated to each view is independently estimated, and all those depth maps are combined
to model the variation in object appearance with respect to the viewing position, which is similar
with our multiple view projection to reconstruct 3D volumetric representation of the scene. They
used the combination of shiftable windows and temporal selection to estimate depth maps, which
is also relevant to our ray selection scheme.

Range Finding Techniques. In 1987, Pentland [Pen87] and Grossmann [Gro87] proposed
independently new range finding techniques based on defocusing due to the finite depth of
field. Their methods are called depth from defocus, and depth from focus, respectively. The
methods based on defocusing have been applied to range finding such as auto-focusing as well
as depth estimation. Both methods use images covering the same amount of the scene taken with
different focus settings (depth from focus), or different aperture settings (depth from defocus).
Depth from focus (DFF) [Gro87, Kro87, DW88, NN90] seeks the depth of a scene point by
identifying the focus setting with the point sharpest focused. On the other hand, depth from
defocus (DFD) [Pen87, PDTH89, SS94] directly computes the depth using the ratio of the
spectral power of differently blurred images of the scene point. Thus, in general DFD needs less
images (two or three images) than DFF (more than ten images).

The properties of defocusing and the measurement of the sharpness of focus, or the focus measure,
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were already explored for the servo-controlled auto-focusing cameras [Kro87], most of which
can be applied to DFF methods. Schechner and Kiryati [SK00] investigated the fundamental
relation between defocus based methods and stereo based methods, and built a bridge between
them. In fact the defocus based methods share the same principles as the triangulation based
stereo methods. Recently, Hasinoff and Kutulakos [HK09] proposed a range finding technique
incorporating both the focus and aperture settings, called confocal stereo. They defined the
aperture-focus image (AFI), which is computed for each pixel of the image and the best fit of the
defocus profile is sought to yield the associated depth.

These defocus based methods are relevant to our method in that our method generates all
differently focused images during the depth estimation, which can be directly fed to those
methods. In principle, one of those methods may directly be applied to our synthetically refocused
scene volume called a focal stack. However, most of those approaches use cameras with the
aperture of a few centimeters at maximum, while our method uses a wide synthetic aperture. As
a result, the blur properties and the effect of occlusions become more complex. Furthermore,
we have to deal with the visibility problem due to the unmatched correspondences, which is
usually the case in wide baseline stereo based algorithms [SK00]. Therefore, in order to apply
the conventional defocus base methods, we first have to handle the difficulties caused by the
wide aperture.

Light Field Photography. Adenson and Bergen [AB91] introduced the concept of the plenop-
tic function to describe the visual information available from every point. The plenoptic function
is a 7D function of the radiance of the light rays measured at every possible location at every
possible angle for every wavelength at every time. In 1996, Levoy and Hanrahan [LH96] and
Gortler et al. [GGSC96] adopted the plenoptic function in a reduced dimension to image-based
rendering using the names “the light field” and “the lumigraph”, respectively. We use the term
light field in this thesis. The authors of both papers described the representation for the 4D light
field and its parameterization scheme, and proposed to use the light field to capture the visual
appearance of the scene from many views and to generate new views from arbitrary camera
positions by interpolating existing views from the light field without the need for scene geometry.
They discussed practical considerations including the acquisition, rendering, and compression,
and addressed typical applications. While the two proposals were almost the same, Gortler et al.
addressed the discretization assisted by rough geometric information to reduce aliasing.

Since then, the light field has been widely adopted to many existing problems, for example,
to extend the existing photography. The concept of imaging through a virtual aperture was
first mentioned by Levoy and Hanrahan. Isaksen et al. [IMG00] proposed a method to compute
photographs focused at a variable focus with a variable depth of field from light fields. The method
is based on dynamically reparameterizing light fields, which were originally parameterized by
two parallel planes, using a synthetic aperture lying on the camera plane and the frontoparallel
focal plane that is placed at an arbitrary distance to the camera surface. Vaish et al. [VGT+05]
extended this method to be able to refocus from light fields with a tilted focal plane using the
shear-warp factorization of planar homography. Several papers addressed how to capture light
fields using lenslets [AW92, NLB+05] and camera arrays [LH96, IMG00, WJV+05]. Chai et
al. [CTCS00] addressed the sampling strategy of light fields to achieve alias-free rendering as
well as efficient utilization of the storage.

Ng et al. [NLB+05] implemented a hand-held camera with a lenslet array inserted between
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the sensor and the main lens of the camera. As the applications of their plenoptic camera, they
demonstrated the extended depth of field to generate refocused or all-in-focus photographs, and
the view point manipulation within the extent of the camera aperture, which can be effective
in the close-up macro photography. In particular, they discussed and analyzed the technique to
digitally refocus from light fields. The work on these methods is often called synthetic aperture
photography [VWJL04], which is used to dynamically refocus photographs after the acquisition
with different camera parameters, and see through occluding objects by blurring them out using
very shallow depth of field [LCV+04, JAMK07].

The use of scene geometry was mentioned mostly in the context of reducing the aliasing with a
limited resolution of the light field, and compressing acquired light fields. Although the use of
scene geometry can help reduce aliasing and compress light fields, the scene geometry has been
assumed to be already available, and has not been sought to be extracted from the light fields.
The reconstruction of 3D geometry from multiple images has been an active area of research in
computer vision, and has much similarity to the geometry reconstruction from light fields. Thus,
many approaches can be taken to be applied to light fields. However, there have not been active
researches to relate those techniques to light fields. Recently, Ziegler et al. [ZBA+07] addressed
a method for depth estimation from light fields in their paper about the transformation between
light fields and holograms. Their method estimates the depth based on a criterion measuring the
variance over the rays or Fourier power spectrum over the 2D slice spanning the rays, and peel
depth layers from front to back to deal with occlusions. This method is very similar with previous
approaches regarding the EPI analysis as well as one of our proposed methods. However, the ray
removal from light fields that they used to deal with occlusion is prone to errors in real images
due to the same reason as for the previous work on depth estimation from EPIs.

Vaish et al. [VSZ+06] compared several cost functions used for 3D reconstruction in the context
of the synthetic aperture and the robustness to occlusions, which is relevant to our analysis
on focus measures. The cost function in their context is roughly equivalent to the reciprocal
of the focus measure described in this thesis. They also proposed two novel cost functions
based on median and entropy. Although we took a different approach from theirs to handle the
occlusion and to devise focus measures robust to occlusion—we used the selection and clustering
schemes—their analysis about the cost function and ours can be complement to each other.

Lastly, microscopy has a notable similarity to our problem. Especially, deconvolution microscopy
is worth noting in the sense that both the techniques deal with the projection of volumetric data
and reconstruction of objects from them [MKCC99]. Levoy et al. [LNA+06] applied light field
photography to microscopy. The focal stack of a specimen is constructed from a single shot light
field photograph, and is deconvolved using the estimated point spread function to remove the
light pollution. However, microscopy deals with transparent microscopic objects while we are
interested in mostly opaque macroscopic objects. Thus, this difference must be first attacked in
order for deconvolution microscopy techniques to be applied to the scenes we are interested in.
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3
Background

This chapter presents important concepts that will be used throughout the thesis. The two most
important concepts are the light field and the focal stack. First, we present the notion of the
light field and its representations, followed by the definition of the focal stack. We discuss how
synthetic imaging using digital refocusing and a synthetic aperture can be achieved, which
basically is to generate new images with different aperture and focus than the original images
constituting the light field. We describe how the focal stack can be built based on the synthetic
imaging. We then introduce the fundamentals of the depth estimation from the focal stack, which
will be the basis of the scene reconstruction and be discussed in a greater detail in the remaining
of the thesis. We close the chapter with the discussion of the effect of the wide aperture and the
presence of occlusions on the focal stack and the depth estimation.

3.1 Light Field

A light field is a collection of radiances sampled at every position in every direction of a space.
The term originates from Gershun’s paper [Ger39] about the radiometric property of light, and
was used in his paper to denote the irradiance vector field. However, it is used slightly differently
in computer graphics and vision communities to denote the function of radiance. The plenoptic
function introduced by Adelson and Bergen [AB91] is equivalent to this notion.

The light field is in general a 5D1 function of three coordinates to represent the position of a
three-dimensional point and two angles to represent the direction leaving the point. Ignoring the
effects of participating media such as scattering and absorption, and considering the region of

1It is a 7D function, when incorporating the time t and the wavelength λ , which is called a plenoptic function in
Adelson and Bergen’s paper [AB91].
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Figure 3.1: The two-plane parameterization of 4D light fields. The st plane parameterizes the directional
dimension, and is called a camera plane. The uv plane parameterizes the spatial dimension, and is called a
focal plane.

space free of occluders, the radiance can be assumed to be preserved along the ray conveying
it. With this assumption, the dimension of the light field can be lowered to yield a 4D function,
dropping the redundancy along 1D rays.

3.1.1 Parameterization

A 4D light field is often parameterized using 2 planes [LH96, GGSC96]. Although the two
planes can be placed arbitrarily, they are usually placed in parallel. A ray is then parameterized
by two points (s, t) and (u,v) on the two planes through which the ray passes (Figure 3.1). The
st plane on which rays enter is called a camera plane, and the uv plane from which rays exit is
called a focal plane. A point (s, t,u,v) in the light field is then defined as the radiance of the ray
parameterized by the two points (s, t) and (u,v). With this parameterization, the light field can
be conceptually constructed by taking 2D uv images at each st grid point in the camera plane,
and inserting those images into the 4D structure.

Although light fields can be acquired using various methods, in practice there are two distin-
guished approaches categorizing those methods. The first uses a camera array [WJV+05, LH96],
and the second uses lenslets [NLB+05, AB91]. In the first approach, 2D images are taken using
a 2D camera array placed along the camera plane. Each image covers the focal plane, and yields
a uv slice. Each camera position in the camera plane determines the st-coordinates of the uv
slice. In the second approach using lenslets, a miniature lens grid is placed between the image
sensor and the main lens of the camera, which effectively splits the rays focused at each lenslet
of the lens grid. The sensor surface under a single lenslet contains all directional components
at a particular spatial coordinate. Thus, the portion of the sensor surface covered by a lenslet
constitutes an st slice, and the position of the lenslet in the grid determines the uv-coordinates of
the st slice.

The two approaches have their own advantages and disadvantages. The acquisition using a
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Figure 3.2: Comparison of 2D light field parameterizations. (a) With the two-plane parameterization, a
ray is parameterized by (s,u), two points on the camera plane and the focal plane. (b) With the angular
parameterization, a ray is parameterized by (s,θ), the position on the camera plane and the angle formed
by the ray and the camera plane.

camera array can take advantage of a higher spatial resolution, and does not require the alteration
of the camera. The acquisition using a lenslet array can obtain a higher and finer directional
resolution, since the st grid resolution is not limited by the physical size of the camera. In
addition, the calibration of a single camera as well as the acquisition step using the single camera
is usually simpler than those with a camera array. One important factor with regard to the scene
reconstruction is that we can exploit the advantage of a wide baseline when using a camera array.
That is, the acquisition using a camera array can offer a wider range of directional differentiation
of rays, which is better suited for the scene reconstruction. The maximum directional range of
the light field acquired using the camera array spans the size of the camera array, while in the
acquisition using a lenslet, the range spans the size of the single camera’s aperture used in the
acquisition.

3.1.2 Representations

It is difficult to find an intuitive way to visualize a 4D light field, but lower dimensional slices of
the 4D light field provide meaningful representations. A uv slice of a 4D light field is a 2D per-
spective image with the center of projection placed at (s, t) and the plane of projection coinciding
the focal plane. An st slice appears less straightforward, but resembles a hypothetical radiance
function at the point (u,v) in the focal plane. See [LH96, Figure 6(b)] for an example of the st
slice. Typically the (u,v) coordinates are called spatial dimension, and the (s, t) coordinates are
called directional or angular dimension. The two-plane parameterization has several advantages.
It works well with the conventional camera’s ray sampling pattern, so that the acquisition of
light fields is straightforward. Furthermore, the operations on the light field to extract a new
image with different camera settings, such as focus and aperture, can be easily derived using the
two-plane parameterization.

If the uv plane is placed at infinity, a ray may be more intuitively parameterized by a position
and a direction. Since the direction is defined only by the (u,v) coordinates and is not influenced
by the (s, t) coordinates, this setup has the same effect as the (u,v) coordinates defined in a local
coordinate system affixed to each grid point in the st plane (Figure 3.4(a)). This setup has two
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Figure 3.3: An example light field. (a) A 3D slice L(s,u,v) of the 4D light field. The 3D volume is cut in
the middle of v-axis to show a possible 2D slice. (b) A 2D slice L(s,u) of the light field.

benefits. At the acquisition step, neither the camera at each st grid point has to be tilted nor the
images have to be perspectively sheared when taken without tilting the camera. Second, each
image can be taken with a fixed field of view as well as with other camera parameters fixed. This
setup is useful especially to capture the scenes having a large depth range. For these reasons, this
setup will be used throughout this thesis.

A similar parameterization is the angular parameterization, where a ray is defined by a 2D
position in the camera plane and two angles between the ray and the camera plane. See Figure 3.2
for the comparison of two parameterizations in 2D light fields. The angular parameterization
is different from the two-plane parameterization with the focal plane at infinity in that in the
former, the direction is discretized in equally divided angles, whereas in the latter, it is usually
discretized in rectilinear grids. We also use the angular parameterization to derive a focal stack
in later sections.

Fixing each one of the directional and spatial coordinates, e.g. t and v, the remaining two
coordinates (s,u) define a 2D light field, also called epipolar-plane image (EPI). This 2D light
field contains the rays traveling across a 2D flat space captured by a single scanline of 2D uv
images. Figure 3.3 visualizes 3D and 2D slices of an example light field. In a 2D light field,
a scene point on a Lambertian surface appears as a straight line with the slope determined by
its depth (Figure 3.4). In a 4D light field, the scene point forms a plane containing rays with a
uniform color, instead of a line. This property will play an important role to the depth estimation
of a scene point in the later parts of the thesis. For the sake of simplicity, we often use 2D light
fields in the following discussions, which can be generalized to deal with 4D light fields in most
cases.

3.2 Focal Stack

3.2.1 Digital Refocusing

In a conventional camera, the rays coming from a point in a range of distances are concentrated
in a small region in the image plane, hence the objects in that distance range have their sharp
images in the image plane. This process is called focusing. By changing focal length and placing
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3.2 FOCAL STACK

s

u u u u u

(a) Scene space: An example 2D scene with
the acquisition setup shown together

s

u

(b) Ray space: The 2D light field capturing
the 2D scene

Figure 3.4: An example of a 2D light field, or epipolar plane image (EPI). (a) The parameterization
of rays passing through scene points in a 2D flatland scene using two lines analogous to two-plane
parameterization in 4D. The black dot is at infinity. (b) The appearance of scene points in the 2D light
field. Scene points on Lambertian surfaces appear as straight lines in the 2D light field, whose slopes are
proportional to the depths of the points.

the image plane at an appropriate position, we can select the rays which will be focused, and
thus change the focusing. However, the rays arriving at the camera aperture with all different
directions are already integrated (focused) at imaging time, and cannot be separated afterwards.
In the light field, those rays are stored separately and can be differentiated after the acquisition.
Therefore, we can selectively integrate the rays contained in the light field after the imaging
time, and refocus the scene with a strategy of the ray selection determining the focusing. This
process is called digital refocusing, and becomes the basis of the synthetic imaging system using
the light field (Figure 3.5). A scene point is imaged (refocused) through the synthetic imaging
system by integrating all the rays leaving the point and arriving within the set of sampling points
on the camera plane. This set of sampling points defines a synthetic aperture.

For example, in a 2D light field, a scene point on a Lambertian surface appears as a straight
line with a slope determined by its depth (Figure 3.4). If we integrate the entire light field along
parallel lines of a particular slope, only the regions where there are surfaces in that distance will
have clear images because the slopes of the straight lines corresponding to those regions match
the slope of the integration lines. The scene points at the particular distance associated to the
slope will have sharp shapes (focused), but the points off the distance will be blurred (defocused).

If the focal plane is placed at infinity, the integration over the aperture yields an image focused at
infinity, since only the rays leaving a point at infinity form a straight line aligned along the camera
plane. To focus the scene at a different distance, the focal plane must be moved to the desired
distance and the light field must be reparameterized accordingly. Thus, the placing the focal plane
determines the focusing in the synthetic imaging system (Figure 3.5(b)). There is no limitations
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AI LF O

(a) Optical imaging system using lenses

C FA

(b) Synthetic imaging system aggregating multiple cameras

Figure 3.5: An optical imaging system using lenses vs. a synthetic imaging system aggregating multiple
cameras. (a) An example of a typical imaging system using lens optics, with the image plane (I), focal
plane (F), lens compound (L), aperture (A), an object (O). An object at O has its image at the image
plane I. The rays leaving O and passing through the aperture A are integrated and focused at I by the
lens L. (b) A synthetic imaging system, with the camera plane (C), synthetic aperture (A), and hypothetic
focal plane (F). The rays are sampled by cameras located at sampling points in the camera plane C. The
extent of the sampling points in the camera plane C constitutes a synthetic aperture A. An object can be
digitally focused by placing hypothetic focal plane F at the position of the object and integrating the rays
connecting appropriate points in C and F after the acquisition of the light field.
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3.2 FOCAL STACK

on the size and the shape of the aperture, as well as on the shape of the focal plane. The focal
plane may have an arbitrary shape if the light field can be appropriately reparameterized2. The
aperture can have an arbitrary shape, and can be extended to span many sampling positions in the
camera plane. In the following discussion, however, we use a planar focal plane parallel to the
camera plane. The reparameterization can then be achieved by shearing the light field parallel to
the camera plane, as derived in the following.

3.2.2 Derivation of Focal Stack

We define a new representation of the scene captured in a light field using digital refocusing.
By refocusing the light field with a range of distances between the camera plane and the focal
plane, we obtain a set of differently refocused images. Stacking those images according to their
distances yields a 3D volume, which we call a focal stack.

For the simplicity, we derive a 2D focal stack FS(x,z) from a 2D light field L(s,u). Without loss
of generality, we define the coordinate system of a focal stack to be aligned to the coordinate
system of a light field, such that x-axis and s-axis coincide and have the same metric. Then, a
point in the focal stack FS(x,z) is a point at the position x of the 1D image refocused at the
distance z from the camera plane. Then FS(x,z) is an integral of the rays passing through the
point x in the new focal plane placed at z over a synthetic aperture defined in the camera plane:

FS(x,z) =
∫
A

L(s,u(s,x,z)) ds, (3.1)

where A denotes the aperture, and u(s,x,z) represents the reparameterization of the light field L
according to the position of the new focal plane (See Figure 3.6).

The 2D light field L(s,u) is centered at origin by normalizing each parameter of L to be within the
interval [−1,1], which is depicted in Figure 3.6(b). When using the full aperture, the aperture A
becomes s ∈ [−1,1]. Then, by the trigonometry illustrated in Figure 3.6, we obtain

u(s,x,z) =
x− s

z
· 1

tan(ϑ/2)
, (3.2)

where ϑ is the field of view of the camera used to capture the light field.

Substituting (3.2) into (3.1), we have

FS(x,z) =
∫ 1

−1
L
(

s,
1

z tan(ϑ/2)
(x− s)

)
ds. (3.3)

The focal stack is defined in the region where a point has at least single ray passing through it
(Figure 3.7(a)), that is, where z > 0 and −1− z tan(ϑ/2)≤ x≤ 1+ z tan(ϑ/2).

Let the field of view be the same for all images, and thus c = tan(ϑ/2) be a constant. Here, the
constant c, or the field of view ϑ , relates the metric of the u-axis to the metric of the s-axis.

2There are several proposals for the light field reparameterization with a planar focal plane [IMG00, VGT+05]. To
our best knowledge, however, there has been no proposal of the reparameterization with an arbitrary shaped
focal plane.
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(a) The formation of a point of the focal stack FS(x,z) from the light field L(s,u). FS(x,z) is formed by
integrating the rays passing through the position x in the focal plane placed at the distance z and the position s
in the camera plane. Top-left box: the u-coordinate of the reparameterized light field can be computed using
the angle of the ray and the field of view of the camera which is used to acquire the light field.

u
s u

s

O

1

1−1

−1

(b) The 2D light field L(s,u). The rays which are inte-
grated to form the point in the focal stack FS(x,z)
in (a) are indicated in the light field.

Figure 3.6: Formation of the focal stack. (a) Rays in the shaded region are integrated to form a point at
(x,z) in the focal stack. (b) The associated rays in the 2D light field appear as a straight line.

14



3.2 FOCAL STACK

O 1−1 x

z

z0ϑNearest

Infinity

(a)

O 1−1 x

d
1/(cz )0Nearest

Infinity

(b)

Figure 3.7: Space defined by a 2D slice of a focal stack. (a) An orthographic focal stack for the depth
range z0 ≤ z < ∞, where a point in the focal stack matches directly to an actual scene point up to scale. (b)
A perspective focal stack covering the same depth range as (a). With cropping the areas not seen at the
view point s = 0, the 2D slice fits to a rectangular region and is able to include points at infinity, but has
perspective distortion. Note that disparity is used, instead of depth.

Then, (3.3) simplifies to

FS(x,z) =
∫ 1

−1
L
(

s,
1
cz
(x− s)

)
ds. (3.4)

Inspecting (3.4) carefully, we find that it represents an integral of an appropriately sheared and
then scaled light field, which means

FS(x,z) =
∫ 1

−1

[
Scaleu

(
1
cz

)
◦Shearu(−1)◦L

]
(s,x)ds, (3.5)

where Scaleu(α) and Shearu(β ) denote the applications of a scale and shear transformation
along the u-axis by the amount of α and β , respectively, and the operator ◦ denotes the function
composition. The scaling factor 1/(cz) compensates the perspective projection, making the
represented space view-independent. Thus, (3.4) defines a view-independent undistorted space,
which reflects the scene space up to scale3.

If we re-introduce the perspective distortion, and thus do not scale the light field along the u-axis,
but only shear it, then the focal stack becomes

FS(cz · x,z) =
∫ 1

−1
L
(

s,x− 1
cz

s
)

ds, (3.6)

where z > 0 and −1/(cz)−1≤ x≤ 1/(cz)+1. Furthermore, if we use the disparity d = 1/(cz),
instead of the depth z, and denote this volume as FSs=0 then we have

FSs=0(x,d) = FS(
1
d

x,
1
cd

) (3.7)

=
∫ 1

−1
L(s,x−d · s) ds (3.8)

=
∫ 1

−1
[Shearu(−d)◦L] (s,x)ds, (3.9)

3The scale for each axis does not have to be the same.
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(a) 3D focal stack
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(b) 2D focal stack

Figure 3.8: An example focal stack formed from the light field depicted in Figure 3.3. (a) A 3D focal
stack FS(x,y,d). The 3D volume is cut in the middle of y-axis to show a possible 2D slice. (b) A 2D slice
FS(x,d) of the 3D focal stack. The axes are depicted in both cases.

where c = tan(ϑ/2) is a constant, 0≤ d < ∞, and −d−1≤ x≤ d +1.

FSs=0 is perspectively distorted, and thus defines a view-dependent 2D focal stack which is
seen at s = 0 (Figure 3.7(b)). We may only take x within its range at the infinite depth, i.e., zero
disparity, which cuts the regions that are not seen at the current viewing position s = 0. Then, the
range of x becomes −1≤ x≤ 1. This 2D focal stack contains the 1D scene differently focused
at a range of depths.

In 4D light fields with the assumption of the same metric of t and v coordinates and the square
sampling grid of the uv plane—that is, the shape of the sensor elements of the camera used in
the capture is square—(3.4) can be extended to

FS(x,y,z) =
∫ 1

−1

∫ 1

−1
L
(

s, t,
1
cz
(x− s),

1
cz
(y− t)

)
dsdt, (3.10)

and (3.8) can be extended to

FSs=0,t=0(x,y,d) =
∫ 1

−1

∫ 1

−1
L(s, t,x−d · s,y−d · t) dsdt. (3.11)

Equation 3.11 will be used throughout the thesis to select the rays from the light field to form
a point in a focal stack. From this equation, a focal stack can be computed efficiently from a
light field by a series of shear transformation and subsequent axis-aligned integration. Figure 3.8
shows an example focal stack.

3.2.3 Synthetic Imaging

The process derived in the previous section can be summarized as follows, and understood more
intuitively in an analogy to the conventional photography.

1. Translating the light field in a direction parallel to the directional axes corresponds to
selecting the view point. Then the origin of the st camera plane after the translation
becomes the current view point, and the 2D uv-slice fixing s = 0 and t = 0 becomes the
view at the point.
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(a) 1. Translating along s-axis: selecting the
view point
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(b) 2. Shearing along u-axis: placing the focal
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(c) 3. Selecting the interval of s: adjusting the
size of aperture
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(d) 4. Integrating along the s-axis: imaging
the scene

Figure 3.9: Synthetic imaging in 2D light fields. The synthetic imaging can be achieved using digital
refocusing given the size of a synthetic aperture, a distance in focus, and a view point. The digital
refocusing can be illustrated by the four steps, which are depicted at (a)–(b).

2. Shearing the light field in a direction parallel to the spatial axes corresponds to placing the
focal plane at a particular distance.

3. Selecting the interval of integral in the directional coordinates corresponds to adjusting the
size of aperture. The 4D volume containing uv-slices in the selected interval of s and t is
the rays gathered through the aperture.

4. Integrating the light field along the directional axes at each spatial point (u,v) in the
interval defining the aperture corresponds to releasing the shutter and collecting photons
to image the scene using the settings defined above. The integration for all spatial points
produces a final 2D image that is focused at a given distance with a given aperture seen at
a given view point.

Figure 3.9 illustrates these four steps in the case of a 2D light field.
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In 2D light fields, the shear transformation reflects the tracking the slope of the straight line, and
matching the integration lines to the slope. When a line becomes aligned to the directional axes
after the transformation, this line integrates to a single point and the point is sharply focused. We
therefore focus on the scene points at the distance corresponding to the slope. In sum, focusing a
light field is a line integral over the light field, where the integration lines are parallel and their
slope determines the distance to the focal plane.

3.3 Depth from Focal Stack

The focal stack can be used to determine the depth of a scene captured in a light field. The
view-independent focal stack built from Equation 3.10 is a union of the view frustums at all
viewing positions on the camera plane. The z dimension is bounded by the closest and the
farthest distance in the range of z. The view-dependent focal stack built from Equation 3.11 is a
perspectively distorted version of its view-independent counterpart, to be fitted to a cuboid. It
is a bounded 3D space generated by deforming the view frustum at the viewing position into a
rectangular box. In a view-dependent focal stack, the center of projection is at infinity, whereas it
is on the camera plane in a view-independent focal stack. Thus, a 1D axis-aligned space of a
view-dependent focal stack for each (x,y) is identical to a hypothetical ray shot from the center
of projection in the corresponding direction in the undistorted view frustum. Finding the depth
of the scene from a particular perspective can be achieved by determining the first intersection of
each ray shot from the center of projection in a discretized direction in the view frustum. In the
view-dependent focal stack, it is equivalent to finding the d-coordinate satisfying some criteria
for each (x,y).

For example, if a scene point perspectively projected to a 2D point (x,y) is at a particular depth
z = 1/(cd), this point will be in focus and thus have the sharpest shape at the point (x,y,d) in
the focal stack. Thus, conventional range finding techniques, such as depth from focus (DFF),
may be applied to provide such a criterion to help extract a depth map from a focal stack.

A more flexible criterion is possible by examining the set of rays to be integrated to form each
point in the focal stack. If a point resides on a Lambertian surface, the rays in the set will be
of very similar color. If a point does not lie on a surface, the rays will have various colors. We
can use characteristics of this set to infer higher level information, such as the probability of
existence of surfaces. This analysis will form a basic framework of the methods explained in the
following chapter.

3.3.1 Effects of Wide Aperture

Since a focal stack contains the scene focused at a range of different distances, it is inherently fit
for the depth from focus (DFF) method [Gro87, DW88], where the most sharply imaged points
are selected as scene depths among a set of differently focused images. The defocus based ranging
techniques such as DFF can be interpreted as a small baseline stereo system [SK00], where the
baseline corresponds to the diameter of the aperture. In a single lens stereo system [AW92], the
parallax, also called the disparity, observed in the opposite sides of the aperture is directly used
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3.3 DEPTH FROM FOCAL STACK

to measure the depth. In these methods, even when a very wide lens is used, the parallax induced
by the lens aperture is an order of a few centimeters. Thus, the sensitivity—the depth resolution
in this case—of those algorithms becomes low.

In light fields, the images of a scene point captured at different sampling points produce the
parallax. The parallax can be used to infer the depth of the point as in the aforementioned
methods, since the parallax depends on the depth under the perspective projection. Shearing light
fields and trying to find the amount of shear transformation resulting the most uniform radiance
distribution with the lowest variance can be understood as matching the correspondences of a
scene point from different views and finding the parallax between the images of the scene point.
This is the way the problem is approached in the computer vision literature [KS04, CKS+05].

In the synthetic imaging system with a wide synthetic aperture, as introduced in Section 3.2.3,
the distance between two points in the aperture can be large, compared to the case of a typical
camera lens. Hence the parallax observed in different points within the aperture also becomes
large. This is advantageous to reconstruct the depth, and enables a higher depth resolution than
a typical single lens stereo. In fact, the synthetic aperture can be interpreted as a baseline in a
stereo system based on triangulations, and the synthetic imaging system inherits the merit of the
wide baseline stereo system. In the synthetic imaging system, the aperture size can be adjusted
within the size of the camera plane used to acquire the light field. With a large camera array
setup for the acquisition, the synthetic aperture can be very wide so as to be comparable to the
scene size.

However, the circle of confusion, although its shape may not be a circle any more, becomes large
and rays coming from a wide directional range are mixed together, so that the blur properties
become more complex. This also makes occlusion boundaries complicated. In addition, the
aperture can be of any shape, which may be a line in the case of a 1D sampling grid or a
rectangular region in the case of a 2D sampling grid. This irregular shape of the aperture may
tend to introduce either a strange vignetting or unnecessary high frequency to the refocused
images, which makes the direct application of existing algorithms difficult.

3.3.2 Effects of Occlusions

More importantly, a wider aperture introduces a stronger influence of occlusions, and causes a
visibility problem, where a scene point which is visible at part of the aperture is not visible at the
other part of the aperture. This limited visibility causes unmatched correspondences, and makes
the parallax computation ambiguous or impossible for those scene points having unmatched
correspondences. In a small aperture system (paraxial system) such as DFF and the single lens
stereo discussed in Section 3.3.1, scene points which is visible at one end of the aperture are
usually visible at the other end of the aperture. Thus, in most cases those methods can avoid the
visibility problem. In a triangulation based stereo method using a wide baseline, the depth is
reconstructed by identifying the correspondences of a scene point in all views and computing the
parallaxes. With a wider baseline, the parallax increases for the scene point of the same depth,
hence the depth resolution can also increase. However, each view can now have a more different
perspective from other views than with a small baseline. It is more likely to be the case that scene
points which are visible in some views are not visible in other views due to the occlusions, and
thus do not have correspondences in all views. In such cases as unmatched correspondences,
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(a) The rays coming from the front most surfaces. There
are no intersections between the stripes, and these
rays can be integrated integrated without any pollu-
tion.

(b) An example of occlusions. The brown objects are oc-
cluded by the front most objects in some views, and
therefore the integration along the rays coming from
those objects are polluted by the front most objects.
The red circle indicates the occlusion boundaries.

(a)

(b)

(c) The focal stack. The points corresponding to the integration lines
depicted in (a) and (b) are indicated. Note that the pollution caused
by the front most objects inside the red circle and the color difference
of the brown objects due to the occlusions inside the red ellipse.

Figure 3.10: The effect of occlusions in a 2D light field. The occlusion influences on the formation of the
focal stack, and hampers the depth estimation based on the focal stack.

the scene point may not be reconstructed correctly. The wide synthetic aperture inherits these
disadvantages as well.

The difficulty of the correspondence matching due to the occlusions and the visibility problem is
equivalent to the difficulty of the finding of uniform rays along the integration lines during the
ray integration over the light field. A naive approach will produce inaccurate depth estimations
and polluted focal stacks. Light fields contain special structures depending on the depth and the
visibility. As mentioned before, a scene point in a Lambertian surface appears as a straight line
in the scene’s associated 2D light field, and a plane in the 4D light field (see Figure 3.10(a) for
the 2D case). The slope of the line, or the orientation of the plane, is determined by the depth of
the point. In the 2D case, these straight lines can intersect each other when an occlusion occurs,
and the line of the closer point always hides the line of the farther point (Figure 3.10(a)). As
a consequence, the farther point in the focal stack has a different color from its original color,
since the integration includes the rays originated from the closer point (Figure 3.10(c)). Thus,
with the presence of a point occluded by others in some views, the digital refocusing derived
in Section 3.2 produces a polluted focal stack. Since this pollution hampers accurate depth
estimation, we are required to handle the pollution.

In the following chapter, we attack the problem in two ways—the first is to select only unoccluded
rays based on the characteristics of the ray set, and the other is to split the light field into parts to
make each of them occlusion-free.

20



4
Methods

In this chapter, we present detailed methods to estimate the depth of scene points and to
reconstruct the 3D volume based on the notions and representations we developed in the previous
chapter.

In the first two sections, we address how to build a 2D depth map from a light field. We especially
focus on developing tools to measure the existence of surfaces which are robust to occlusions. In
the third section, the methods are extended to deal with multiple depth layers which may not be
represented from a single viewing position, resulting in a 3D volume occupancy. In the fourth
section, we approach the problem from another side. We try to remove the artifacts caused by
occlusions by appropriately partitioning the light field so that each part is free from occlusions.
We briefly discuss the refinement of acquired volume occupancy in the final section.

4.1 Computing Depth for a Ray

We propose to estimate the depth of a scene by analyzing the rays that are focused to form a
point in the focal stack. More specifically, we define a function that takes a set of rays coming
from a given location, and returns the likeliness of a surface at that point. We call this function
a focus measure in analogy to conventional range finding techniques. We will present several
different focus measures in the subsequent sections.

Using such a focus measure function, we can then estimate the depth of a scene as follows. We
first measure how likely there exists a surface for each point (x,y,z) in a focal stack, and then we
select the points from the focal stack where surfaces are most likely to exist. For example, by
selecting a depth z with the strongest focus measure for each (x,y) in the focal stack, we obtain a
2D depth map. This depth map is the one seen at the viewing position used to build the focal
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Algorithm 4.1 Framework of the depth reconstruction

Input: 4D light field L(s, t,u,v), focus measure F(·), and ray integration function I(·)
Output: 3D perspective focal stack FS(x,y,d), 2D disparity map D(x,y), and 3D volume

reconstruction O(x,y,d)
1: O(·, ·, ·)← ‘empty’
2: for each (x,y,d) do
3: {Rxyd(s, t)}← L(s, t,x−ds,y−dt)
4: V (x,y,d)← F({Rxyd(s, t)})
5: FS(x,y,d)← I({Rxyd(s, t)})
6: end for
7: for each (x,y) do
8: D(x,y)←mind{V (x,y,d)}
9: O(x,y,D(x,y))← FS(x,y,d)

10: end for

stack, and thus view-dependent. In the following discussion, we use disparity d instead of depth
z. In this case, the reconstruction yields a 2D disparity map.

Algorithm 4.1 summarizes the framework of extracting a 2D depth map Ds=0,t=0(x,y) at the
viewing position (s, t) = (0,0)1. Let L(s, t,u,v) be a 4D light field. The set of rays to form a
point (x,y,d) in the view-dependent focal stack FSs=0,t=0 is collected from L by taking

Rxyd(s, t) = L(s, t,x−ds,y−dt) (4.1)

from (3.11), where we denote the ray set as {Rxyd(s, t)}. The ray set {Rxyd(s, t)} is defined at
each point (x,y,d) of a focal stack and parameterized by the directional coordinates s and t. Let
F(·) be a function to compute the focus measure given a set of rays, and I(·) be a ray integration
function associated to F(·) to compute the point in the focal stack FSs=0,t=0. V (x,y,d) is a focus
measure volume2 defined in the same space as the focal stack. The subscripts to indicate the
viewing position of the focal stack and the depth map will be omitted hereinafter when there is
no ambiguity. We often omit the subscript or the parameters of the ray set for the simplicity.

For each point (x,y,d) in the focal stack, we first collect the set of rays {Rxyd}. Then, the focus
measure is computed using F(·) and the focal stack is computed using I(·). After building the
focus measure volume V , we select the disparity d with the strongest focus measure at each
(x,y), which generates a 2D depth map D. By taking the point at the reconstructed depth from the
focal stack, we can reconstruct the radiometric volume representation O of the scene. However,
this 3D volume reconstruction does not contain more information than the 2D disparity map in
terms of the geometry, since we cannot reconstruct occluded surfaces. The reconstruction of the
occluded surfaces are discussed in Section 4.3.

In the subsequent sections, we define several focus measures. The same framework will be used
to build the 2D depth map using those focus measures.

1The viewing position is always assumed to be at the origin. A view-dependent focal stack can be built from
any perspective by translating the light field in the direction parallel to directional axes before the integration
(Section 3.2.3).

2When using variance as F , each xt-slice of V is known as disparity space image (DSI) [BI99].
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4.1 COMPUTING DEPTH FOR A RAY

4.1.1 Using Statistics of Rays

Our first focus measure is based on the statistics of the rays in the set {R}. If a set of rays
comes from the same scene point, the rays are likely to have a similar color, and thus have a low
variance. On the other hand, if the focal plane is not placed on the surface and the rays come
from different points, they are likely to have different colors, hence higher variance. Therefore,
the variance over the ray set contributing to each point in the focal stack can be used to determine
the existence of a surface; the lower the variance, the more likely a surface exists. This results in
a focus measure F defined as

F({Rxyz(s, t)}) =
1

Var({Rxyz(s, t)})
, (4.2)

and an integration function I defined as

I({Rxyz(s, t)}) = Mean({Rxyz(s, t)}). (4.3)

As a variant, the (normalized) sum of squared differences (SSD) between the ray seen at the
viewing position of the focal stack (s, t) = (0,0) and other rays can be used:

F({Rxyz(s, t)}) =
NsNt

∑s ∑t
{

Rxyz(s, t)−Rxyz(0,0)
}2 , (4.4)

where Ns and Nt are the number of samples in each dimension. When an occluding object is a
largely uniform surface, the variance can be undesirably low, since it computes the deviation
from the mean. However, the SSD measures the deviation of rays from R(0,0), the ray seen
at the view position of the focal stack, and thus the SSD gives more reliable measurement. As
explained later, the SSD works better with the ray selection and the ray clustering methods, since
those methods select rays based on the similarity to R(0,0). This step corresponds to estimating
the orientation of the plane of a uniform color in the light field which contains the ray R(0,0).
The orientation estimation is discussed in Section 4.3.2.

4.1.2 Selecting Rays

The focus measure defined by Equation 4.4 may give a good guidance to estimate the depth of
scene points unless the points are near to occlusion boundaries. That is because the rays coming
from occluding objects are integrated together with the rays coming from the scene point we
are interested in. Unless a point is open to all viewing positions in the camera plane, the focus
measure for the point is polluted, and therefore inaccurate. In such a case, it is desirable to take
only the rays coming from the object we want to focus. One choice is to select the rays sampled
in either side of the current viewing position, which is expected to be less polluted than the other
side (Figure 4.1(a)). The resulting focus measure in a 2D light field is

F({Rxyz(t)}) = min

{
∑
t<0

{
Rxyz(t)−Rxyz(0)

}2
,∑
t>0

{
Rxyz(t)−Rxyz(0)

}2

}
. (4.5)

In 4D light fields, only one quadrant of the {R(s, t)} is selected. The influence of occluding
objects can be avoided as long as the point is seen by at least half the viewing positions. However,
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s

Occluded region

This half of the rays is selected
 to compute the focus measure.

R(0)

Rays coming from
 occluding objects

The point (x, d) of the focal stack 

The current view s = 0

(a) By selecting the rays in either side of the current view,
the occlusion can be handled. The left side is more
similar with the ray visible in the current view R(0)
than the right side, and therefore selected to compute
the focus measure.

s
(b) Although the scene point (x,d) has

more than half the visibility to the
camera plane, both sides of the rays
do not give precise focus measures
when using Equation 4.5. However,
Algorithm 4.2 can handle this case
correctly.

s
(c) Selecting the rays which are more

similar with the ray R(0) can handle
more complex occlusions.

Figure 4.1: Selecting rays. With the presence of occluding objects the focus measure becomes inaccurate,
since the rays coming from the occluding objects are mixed into the computation. By selecting fraction of
the rays, the influence of the occluding objects can be considerably reduced.
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4.1 COMPUTING DEPTH FOR A RAY

Algorithm 4.2 Focus measure based on selecting rays

Input: set of rays {R(s, t)}, ray selection rate r
Output: value of the focus measure F , value of the ray integration function I

1: i← 0
2: for each (s, t) do
3: SD(i) = {R(s, t)−R(0,0)}2

4: RI(i) = R(s, t)
5: i← i+1
6: end for
7: sort SD in ascending order
8: rearrange RI in the same order as SD
9: F ← ∑

i<rNsNt
i=0 SD(i) // Ns and Nt are the number of samples in each dimension

10: I← 1
rNsNt

∑
i<rNsNt
i=0 RI(i)

if there are more than one occluding object along the viewing positions, this measurement also
suffers from the pollution (Figure 4.1(b)).

Instead of taking all rays on either side, we can take half the rays which are more similar to the ray
R(0,0) than the other half—no matter whichever side the ray is—in the hope that the rays coming
from the same point will be of the similar color. By doing so, we can deal with multiple small
occluding objects, or spatially periodic occluding objects like fences. Figure 4.1(c) illustrates
an example case. However, this selection scheme also needs more than 50% of the visibility
of the scene point. The focus measure F(·) is defined as follows. Algorithm 4.2 describes the
procedure of computing F(·). For each ray in the set {R(s, t)}, the squared difference between
the ray and R(0,0) is computed. Half3 the rays with smaller squared differences are selected.
Then, the focus measure F(·) is the sum of the squared differences of the selected rays. The
ray integration function I(·) is defined as the mean of the selected rays. In practice, the SSD is
normalized when the number of rays change.

We can deal with partial occlusions, provided having the visibility of the scene point to more
than half the viewpoints. This gives a focus measure more robust to occlusions than taking all
the rays.

4.1.3 Clustering Rays

We further extend ray selection to ray clustering, so that we can deal with more complicated
cases where only a limited degree of the visibility is available. Furthermore, we can incorporate
more flexible criteria to select similar rays.

In a typical acquisition setup using RGB color images, rays are distributed in the RGB color
space4. If there is a portion of rays coming from the same point, those rays will distribute closely
and form a cluster. The remaining rays will probably be scattered. If we can find such a cluster

3Or a fixed portion r of the rays. Then, the focus measure is robust up to having a portion r of the visibility.
4Clustering the rays in the L*u*v* or L*a*b* color space may give a better result, since in the RGB space, the

color difference and the Euclidean distance in the color space show a relatively large gap.
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Algorithm 4.3 Focus measure based on clustering rays

Input: set of rays {R(s, t)}, bandwidth parameter h, small number ε

Output: value of the focus measure F , value of the ray integration function I
1: Rc← R(0,0) // initial guess of the cluster center
2: repeat

3: m←
∑s ∑t R(s,t)exp

(
− 1

2

∥∥∥Rc−R(s,t)
h

∥∥∥2
)

∑s ∑t exp
(
− 1

2

∥∥∥Rc−R(s,t)
h

∥∥∥2
) −Rc // compute the mean shift vector

4: p̂←∑s ∑t exp
(
− 1

2

∥∥∥Rc−R(s,t)
h

∥∥∥2
)

// compute the density estimate
5: Rc← Rc +m // translate the cluster center
6: until ‖m‖< ε

7: F ← p̂ // density estimate of the cluster
8: I← Rc // center of the cluster

and the cluster is dense enough for the member rays to be closely correlated, the rays in the
cluster can be regarded as originated from the same point lying on a surface.

A clustering algorithm well suited to our purpose is the mean shift clustering algorithm [CM02,
Che95]. The mean shift algorithm is a mode finding algorithm based on the non-parametric
density estimation in a feature space. The mode means the peak, or the most densely populated
point, of a distribution. Given data points, the algorithm seeks the mode of the probability density
using its gradient. The probability density of discrete data points is estimated using the kernel
density estimation, also known as Parzen’s window method [DHS01, Chapter 4]. The mean shift
clustering algorithm finds all local modes (local maxima) as the cluster centers and identifies the
cluster where each data point is contained.

The mean shift clustering algorithm fits to our requirements for the following reasons. It does not
require the number of clusters to be known beforehand. It seeks all the peaks where data points
are densely populated, and provides a measure of how densely the data points are gathered at
each peak. That is, we can find the cluster centers, their members, and the density of the clusters
with little prior knowledge about data points.

We use the density of the cluster containing the ray R(0,0) observed at the current viewing
position. The higher the density is, the more similar the rays are. The focus measure F(·) and the
integration function of rays I(·) are computed as follows. The mean shift clustering algorithm
is run over the set of rays {R(s, t)}. We used a Gaussian kernel k(x) = exp

(
−1

2‖x‖
2) with the

bandwidth parameter h = 0.01 for the estimation of the probability density. The mean shift
algorithm does not explicitly compute the density, but its gradient. However, the probability
density estimated using a Gaussian kernel is proportional to the gradient of the density up to a
constant, and thus can also be obtained without additional cost during the clustering. After all
clusters are found, the cluster containing the ray R(0,0) is selected. Then, we use the probability
density of the selected cluster as the value of F(·), and the cluster center as the value of I(·) at
the point. Algorithm 4.3 sketches this procedure.5 In practice, only the cluster containing R(0,0)
is sought, and the cluster membership is not explicitly computed.

5In Algorithm 4.3, although Rc, R(s, t), and m are actually vectors in such a multi-dimensional feature space as
color space, they are not notated as a bold face for the notational consistency.
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4.2 DEPTH ESTIMATION USING MULTIPLE RAYS

In the following section, we use neighboring points in the focal stack as well to increase the
robustness of the focus measures discussed here.

4.2 Depth Estimation Using Multiple Rays

Up to now, we only considered a single point (x,y) of the focal stack to infer the disparity d at
that point. In this section, we extend our method to use the neighborhood of the point in two
different ways. First, the spatial frequency of each xy-slice of the focal stack is used to infer the
depth. This method is known as depth from focus (DFF). Then, we introduce a focus measure
as an aggregator of another focus measure. This focus measure combines the focus measures
computed at the points within a small window in the xy-slice of the focal stack.

4.2.1 Using Spatial Frequency

The method described in this subsection uses the spatial frequency information of a 2D xy slice of
the focal stack at each disparity d. Assuming the scene has sufficient textures, the high frequency
information of the 2D slice can be used to measure how sharply a scene point is focused. We
employ a high-pass filter on the image to measure the high frequency information. A high-pass
filter can be approximated by the difference of two Gaussian images with different spatial
parameters6. Thus, the high frequency information is obtained by taking the image convolved
with a difference of Gaussians (DoG) filter.

The focus measure described here is not a function of rays, but can be computed at each point
(x,y,d) of a pre-built focal stack FS using Equation 4.3. Thus, the focus measure volume V is
computed as

V (x,y,d) = | [FS(·, ·,d)∗{G(σ1)−G(σ2)}] (x,y)|2, (4.6)

where FS(·, ·,d) is a 2D slice at disparity d of the pre-built focal stack, G(σ) is a Gaussian kernel
with spatial parameter σ , and ∗ denotes a 2D convolution.

In practice, each 2D slice of the focal stack is convolved with a DoG filter, and its magnitude
image is taken. Then, the image is convolved with a Gaussian filter to propagate the high
frequency information to neighbors in order to fill the possible frequency gaps. After the high
frequency images for all focal stack slices are computed, the maximum value for each point (x,y)
along the d-axis is selected to produce a 2D disparity map. This method is an application of the
depth from focus algorithm to the focal stack. Since a focal stack is a collection of all differently
focused images, the depth from focus method can be applied without additional cost.

Various approaches to measure the sharpest focus have been proposed, which include high-pass
filtering, gradient magnitude, gray-level variance, etc., and they have their own advantages and
drawbacks [Kro87]. Among them, high-pass filter was employed since it can be efficiently
implemented and computed using convolution, while providing a good measurement power.

6The difference of two Gaussians is in fact a band-pass filter, where the frequency bounded by two Gaussian
filters is preserved. In a discrete setup, appropriate selection of two spatial parameters for Gaussian filters will
effectively act as a high-pass filter, since the high frequency in a discrete image is already bounded by the
sampling frequency of the image.
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4.2.2 Frequency vs. Variance

Before proceeding to the second approach, we briefly discuss the relation between the frequency
based focus measure (Section 4.2.1) and the variance based focus measure (Section 4.1.1). Both
focus measures are simple and can be computed very efficiently. Since they do not handle the
occlusions explicitly, they fail to extract the scene points with a limited visibility. However, they
exhibit different characteristics.

Frequency based methods and variance based methods are complement to each other. The spatial
frequency of a surface texture is often too low in the regions with smooth color change, so that
those regions are not well reconstructed by frequency based methods. However, the variance
based methods can detect this subtle clue unless the color is exactly uniform, since the variance
can be sufficiently low in those regions, so that they can be detected as surfaces.

On the other hand, the variance based methods often fail in the regions with high frequency
textures, since a very small misalignment between the stripes in the light field and the resampling
pattern, or imperfection of the acquired light field such as noise and geometric distortion, can
cause the variance to be high. However, it is rare that the frequency based methods miss those
regions, since regardless of the existence of misalignment or data imperfection, the regions are
still likely to have enough high frequency after the integration.

As the frequency information is a good complement to the variance based method, they can be
combined to produce a better focus measure, such as

V (x,y,d) =
1

Vv(x,y,d)
+αVf (x,y,d), (4.7)

where Vv is the focus measure volume computed using a variance based method discussed
in Section 4.1.1, Vf is the focus measure volume computed using the method discussed in
Section 4.2.1, and α is a pre-determined constant to balance the influences of both measures.

In the next subsection, we discuss a different approach to incorporate the spatial information
present at each 2D slice of the focal stack to make our focus measures more robust.

4.2.3 Using Focus Measures of Neighbors

The focus measures discussed in Section 4.1 can be further improved if the neighboring rays
are considered as well. If we assume a smooth surface model of the scene, the focus measures
for the neighbors of a point in the focal stack probably have similar values to the focus measure
at the point. Considering spatial neighbors of the point helps remove the influence of noise or
data imperfection, and makes the focus measure more robust. The focus measure then can be
formulated as

F({Rxyz(s, t)}) = f ({Rxyz(s, t)})+ ∑
(xi,yi)∈Nd(x,y)

f ({Rxiyiz(s, t)}), (4.8)

where Nd(x,y) denotes the neighborhood of a point (x,y) in the 2D slice of the focal stack at the
given disparity d, and f is the base focus measure function.
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4.3 VOLUMETRIC SCENE RECONSTRUCTION

This aggregated focus measure, however, suffers at occlusion boundaries. If the point and its 2D
neighbors lie across an occlusion boundary, and indeed they are not neighbors in the 3D space,
the focus measure becomes inaccurate. To deal with this, we can adopt a similar approach to the
ray selection discussed in Section 4.1.2, so that we can remove from the sum the points that are
neighbors in the xy slice, but not in the d dimension. Similar to the ray selection, only n-closest
focus measures of its neighbors are summed to result the aggregated focus measure F , where
0 < n < |Nd(x,y)|. The base focus measure f can be any of those presented in Section 4.1.

Throughout Section 4.1 and 4.2, we focused on eliminating the effect of occlusions on the focus
measure, such as a mixed rays coming from the different sides of an occlusion boundary. Using
one of those focus measures, we selected only one depth d having the maximum focus measure
for each (x,y) in the focal stack. However, there may be more than one depth layer for an (x,y)
in the focal stack. Multiple depth layers are observed as multiple peaks (local maxima) in the
focus measure profile V (x,y, ·) for a given (x,y). By selecting the maximum, only the closest
and thus visible depth layer is reconstructed, since we compute the focus measure based on the
comparison to the ray seen at the viewing position of the focal stack.

In the following sections, we address multiple depth layers for each (x,y) in the focal stack to
reconstruct the 3D scene volume.

4.3 Volumetric Scene Reconstruction

One common limitation of the methods described so far is that only a single depth layer is
reconstructed per ray. We present three approaches to handle multiple depth layers in this section.
In the first approach, we warp all view-dependent depth reconstructions into the same 3D space,
and then reconstruct the scene volume. In the second approach, we reconstruct the occluded
scene point by iteratively removing the rays coming from the occluding point, once we identify
its presence. In the last approach, we partition the light field to minimize occlusions, so that each
partition is free from the occlusions. We discuss the first approach in this section, and the other
two in the next section.

4.3.1 Projection of Multiple Views

With the methods discussed in Section 4.1 and 4.2, we estimate the depth using the view of the
focal stack7 as a reference, and thus only visible points to the current view are reconstructed.
More specifically, we seek the depth d of a point (x,y) by searching the ray set containing most
similar rays to the ray Rxyd(0,0)—the ray observed at the current viewing position. If a scene
point is occluded in the current view, this point thus cannot be reconstructed. However, if we
can see this point in another viewing position (s, t), the point could be reconstructed in the focal
stack FSs,t . Ideally, all the scene points which are seen from at least two viewing positions within
the synthetic aperture can be reconstructed in one of those viewing positions’ associated focal
stacks.

7All xy slices of a focal stack FSs,t have the same view, which is the perspective projection of the seen at the
viewing position (s, t) used to build the focal stack.
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In this section, we reconstruct the depth from all available viewing positions within the aperture
using the methods from the previous sections, which produces the scene volume with a single
depth layer seen at each viewing position. We then warp each of them into a common 3D space
which represents the scene. We use the perspective view volume seen at (s, t) = (0,0), which is
again view-dependent.

The rationale behind the use of a view-dependent volume is that the rays sampled in our light
fields are not uniform over the 3D space. We place the second parameterization plane of the
light field at infinity, but the resolution of the uv plane is finite and fixed. Thus, the deeper the
depth, the sparser the samples. That also means that the uv slice is a perspective projection of
the 3D space, but the view frustum is not bounded. Thus, if we use undistorted space, we will
have very sparse samples in the regions far from the camera. On the other hand, one advantage
of the use of a view-dependent volume is that the infinite depth can be represented in the finite
3D volume. If we have enough samples, however, there is no restriction to chose the space into
which the view-dependent 3D volumes are warped. In fact, we can warp the scene volume into a
view-independent volume which can be directly related to the actual 3D object space up to scale,
provided the field of view ϑ of the camera used to acquire the light field.

We now derive the algorithm to construct the 3D volume from the 2D depth reconstructions. The
3D volume used here is a discretized voxel space in which the occupancy is marked. Thus, this
can be thought of as a 3D histogram, where the warped surface points falling into each bin are
counted.

We first apply Algorithm 4.1 for the depth reconstruction using one of the focus measures
described in Section 4.1 and 4.2 to all views8 in the light field. As a result of the algorithm,
we have the 3D volume reconstruction O at each viewing position. We warp all occupied
points (x,y,d) of each 3D volume O at the view (s, t) into the common view volume Ovol . For
each occupied point (x,y,d) at the view (s, t), the warped coordinates (x′,y′,d′) in Ovol can be
computed as

x′ = x+ds, (4.9)
y′ = y+dt, and (4.10)
d′ = d, (4.11)

where the view point of the the volume Ovol is at origin. After warping 3D volumes of all views,
the occupancies in Ovol with fewer votes than a threshold are discarded to remove outliers. A
2D depth map can be again derived from the 3D occupancy volume Ovol by taking the depth d
of the occupied voxel closest to the camera plane for each (x,y). Algorithm 4.4 illustrates the
framework for generating a 3D occupancy volume using multiple views.

4.3.2 Direct Analysis of Light Field

Estimating the depth for an (x,y) in the focal stack by computing the focus measure is equivalent
to examining the ray set corresponding to each disparity d. The ray set for a point (x,y) and a

8Since those algorithms run assuming the viewing position is at origin, the light field has to be appropriately
translated along the directional axes before the application of the algorithms. For example, if the depth should
be reconstructed at the viewing position (s, t), then the light field must be translated in the direction parallel to
the s and t axes, so that the point (s, t) is located to (0,0).
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4.3 VOLUMETRIC SCENE RECONSTRUCTION

Algorithm 4.4 Framework of the 3D volume reconstruction

Input: 4D light field L(s, t,u,v), focus measure F(·), ray integration function I(·), threshold T
Output: 3D volume reconstruction Ovol(x,y,d)

1: Hvol(·, ·, ·)← 0 // 3D histogram to count occupancies
2: Ovol(·, ·, ·)← ‘empty’ // 3D volume reconstruction with texture information
3: for each (s, t) do
4: // loop over Algorithm 4.1 for each view
5: for each (x,y,d) do
6: {Rxyd(s′, t ′)}← L(s′− s, t ′− t,x−d(s′− s),y−d(t ′− t))
7: V (x,y,d)← F({Rxyd(s′, t ′)})
8: FS(x,y,d)← I({Rxyd(s′, t ′)})
9: end for

10: // warp the view to the common space
11: for each (x,y) do
12: d′←mind{V (x,y,d)}
13: Hvol(x+d′s,y+d′t,d′)← Hvol(x+d′s,y+d′t,d′)+1
14: Ovol(x+d′s,y+d′t,d′)← Ovol(x+d′s,y+d′t,d′)+FS(x,y,d)
15: end for
16: end for
17: // post-process the occupancy volume
18: for each (x,y,d) do
19: if Hvol(x,y,d)< T then
20: Ovol(x,y,d)← ‘empty’ // discard the occupancy
21: else
22: Ovol(x,y,d)← Ovol(x,y,d)/Hvol(x,y,d) // will contain the texture of the point
23: end if
24: end for

disparity d is a plane containing the point (x,y), slanted by 1/d with respect to both u and t axes.
That means, determining the depth is changing the plane’s orientation with keeping it to pass
through (x,y) and finding the orientation which makes the plane span the most uniform area in
the light field.

In short, the depth estimation of a ray can be interpreted as an orientation estimation of the plane
of a coherent color containing the ray in the light field. This suggests that we can achieve the
depth estimation without explicit mapping between ray space and scene space. Estimating the
local orientation of a plane at each ray of the light field corresponds to estimating depth at each
point in each view. The discretization of depth is equivalent to the discretization of orientation.
Using this relation, the depth estimation can be run only in ray space. The problem of depth
estimation can be cast to the problem to find dense planar structures in a 4D volume.

All the focus measures discussed in Section 4.1 and 4.2 are equivalent to reshaping the aperture
where the rays are collected, which in turn is equivalent to adjusting the 4D window over the
light field where the orientation is computed. This window over the light field is the same as the
synthetic aperture. Then, the orientation estimation can be localized to cope with the occlusions
as well as the imperfection of captured light fields by adjusting the shape and size of the window.
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By reducing the window size, we simulate a smaller aperture with which the effect of occlusions
can be alleviated, and the imperfection of the acquired light field can be tolerated.

4.4 Handling Occlusions

The effect of occlusions is more influential when a wider aperture is used, and the integration of
rays over the occlusion boundaries are more polluted. In this section, we deal with this effect by
splitting the light field so that each part of the light field is free of occlusions. First, we describe
a method to peel off each depth layer from front to back so that closer layers do not influence
on farther layers. Then, we present a method to partition the light field to make each partition
occlusion free.

4.4.1 Peeling Off Depth Layers

The idea starts from the fact that the scene points open to all sampling points in the camera plane
are not influenced by occlusions, and therefore their depth can be computed accurately. Once the
depths of those points are computed, their influence on the other scene points can be reduced
by removing the rays coming from those points. Then, the scene points which were previously
occluded become visible in more views.

The rays in the light field are iteratively removed based on the value of the focus measure as each
focal plane in the focal stack is computed from front to back. For example, for a point in the focal
stack, the focus measure is computed based on a set of rays sampled from the light field. Then,
based on the focus measure, it is determined whether the rays which were used to compute the
focus measure will be removed or not. If the focus measure is so high that there is very likely to
be a surface, the associated rays in the light field can be removed so that they are not considered
any more in the later iterations. By doing so, the influence of those rays to the farther depth
layers can be removed. This step is repeated until all the depth layers are reconstructed and no
more rays remain in the light field. Algorithm 4.5 describes this method.

This method was also discussed in Ziegler et al.’s paper [ZBA+07]. However, the method has
two limitations. First, the method is sensitive to the resolution of discretization. If the resolution
of the depths is not fine enough, the rays which do not exactly match to a depth layer may be
incorrectly removed, which affects the depth reconstruction for the next depth layers. Second,
the method is sensitive to the imperfection of the acquired light field, notably radial distortion.
The rays lying on the plane corresponding to a depth should match to the rays coming from the
same scene point. If it is not the case due to the radial distortion, the rays unrelated to the scene
point will be removed.

4.4.2 Partitioning Light Field

The pollution due to occlusions can also be avoided by partitioning the light field so that the ray
integration does not span across occlusion boundaries. This ensures that a subvolume of the focal
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4.4 HANDLING OCCLUSIONS

Algorithm 4.5 Scene reconstruction by peeling off depth layers

Input: 4D light field L, focus measure F(·), ray integration function I(·), threshold Tw
Output: 3D volume occupancy O

1: O(·, ·, ·)← ‘empty’
2: for d = front to back do
3: for each (x,y) do
4: {Rxyd}← {L(s, t,x−ds,y−dt)}
5: w← 1/F({Rxyd})
6: if w < Tw then
7: {L(s, t,u−ds,v−dt)}← 0 // a surface is detected. remove the rays from L
8: O(x,y,d)← I({Rxyd}) // mark the occupancy
9: end if

10: end for
11: end for

stack associated to a light field partition has only one surface point along each ray. In other words,
this makes the focus measure profile have a single peak. Thus, once a light field is partitioned in
a proper way, extracting 3D occupancy volume can be greatly simplified; the occupancy volume
can be obtained by merging the occupancy volume associated to each partition.

There are following relations between a light field and its focal stack. Here, we assume 2D light
fields for the sake of simplicity.

• A line in the light field corresponds to a point in the focal stack. A point in the focal stack
is an image formed by integrating rays leaving that point and arriving within the synthetic
aperture. Those rays are the images of the point projected to viewing positions in the
camera plane, and are aligned along a straight line in the light field.

• A point, or a ray, in the light field corresponds to a straight line in the focal stack, which is
the path of the ray. The ray leaves some point lying in that straight line, and the color of
the ray will be the same as the color of the point.

Inspired by these relations, we can find a candidate scene point where a ray may have left, by
examining the color of all points lying in the ray’s associated straight line in the focal stack, and
picking the point with the closest color to the ray.

If the focal stack is under the influence of occlusion, however, a point in the focal stack may have
a mixed color with some other points. This makes the process inaccurate to determine the point
in the focal stack from which the ray comes. We use this inaccuracy to determine whether a scene
point is influenced by occlusions. If a ray does not have a point in its path in the focal stack with
sufficiently close color, the ray comes from an occluded point. The integration of rays including
such a ray is always polluted because the integration lines passing through the ray must span
across occlusion boundaries. In order for such a ray to be used to reconstruct the scene, either
the integration line must be adjusted not to pass across the occlusion boundary (Section 4.1), or
the occlusion boundary must be removed by modifying the light field (Section 4.4).

This property itself can be used to infer the existence of surfaces. By computing all the points
in the focal stack where rays come from, we can find all candidate points in the focal stack
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Algorithm 4.6 Light field partitioning
Input: 4D light field L, threshold T
Output: Light field partitions {LP1,LP2, . . . ,LPk}

1: i← 1
2: while there is a ray in L do
3: L̃(·, ·, ·, ·)← 0 // the light field to be reassembled
4: build FS from the current L using Algorithm 4.1
5: for each available (s, t,u,v) do
6: {Pstuv(d)}← FS(s−dx, t−dy,d)
7: p← the member in {Pstuv(d)} which has the most similar color with L(s, t,u,v)
8: L̃(s, t,u,v)← p // reassemble the light field L̃ using p
9: end for

10: ∆(·, ·, ·, ·)←‖L(·, ·, ·, ·)− L̃(·, ·, ·, ·)‖
11: take the rays from L in the region where ∆(·, ·, ·, ·)< T to create LPi
12: remove LPi from L
13: i← i+1
14: end while

that are maybe on surfaces. This inference is correct provided the elimination of the effect of
occlusions. Once we partition the light field to remove occlusions, the depth per ray may be
computed accurately using this property. However, in general, it is better to apply one of depth
estimation algorithms discussed in Section 4.1 and 4.2 to each partition. It is due to the fact that
the color comparison is a weaker constraint than other criterion used to determine the depth.

The light field partitioning can be achieved by the following algorithm. For each ray (s, t,u,v) in
the light field L, the points {P} lying in the path of the ray in the focal stack FS are collected.
Each point in {P} can be computed as

Pstuv(d) = FS(u−ds,v−dt,d), (4.12)

where the points on the straight line are parameterized by the depth d. Then, the point p having
the closest color to L(s, t,u,v) among {P} is identified. A new light field L̃ with the same
parameterization with L is assembled using the color of the point p for each (s, t,u,v). The
difference between the reassembled light field L̃ and the original light field L contains the
information about the influence of occlusions. After thresholding the difference using some
threshold T , the rays in the light field whose differences are less than T are taken as the first
partition. The rays in the partition are the rays whose associated scene points are predicted in
the focal stack up to the threshold T , and are considered not influenced by occlusions. These
steps are repeated for the remaining rays in light field until no more rays remain. The algorithm
is sketched in Algorithm 4.6.

For the partitions of the light field, one of the methods to reconstruct the depth described in
Section 4.1 and 4.2 is applied. Since the partitioned light fields are free from the influence
of occlusions, a simple reconstruction algorithm such as the one with a variance based focus
measure in Section 4.1.1 can be used to estimate the depth. Moreover, because of the absence
of the occluding depth layers within each partition, previously occluded surfaces can now be
reconstructed as they become visible to the current viewing position. After finding the occupancy
volume independently, the set of volumes can be simply merged to form a complete one.
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Another measurement can also be considered to identify the points partially occluded. As an
example of the orientation estimation in Section 4.3.2, for each ray in the light field and for all
orientations per ray, the maximum measure that gives the best orientation estimation can be used
as an error measure. If the maximum measure value for a ray among all possible orientations
is relatively low, the orientation measure for the ray is not confident enough, and under the
influence of other rays coming from occluding objects. In this case, the estimated orientation is
not reliable. Therefore, the maximum measurement value can be used as an indicator that shows
how confident the estimation is, and can be used as the replacement for the color difference in
Algorithm 4.6.

4.5 Reprojection to Light Field

After reconstructing the scene using the methods aforementioned, the resulting occupancy
map can be refined by reprojecting the occupancy map back into the light field representation
and examining the residual error from the original light field. Then, the volume occupancy is
iteratively refined by minimizing the residual error, enforcing the constraints on the value of the
volume occupancy.

O? =argmin
O

∥∥∥L− L̃(O)
∥∥∥

E

s.t. 0≤ O(x,y,z)≤ 1 for all (x,y,z), (4.13)

where L̃(O) is the reprojected light field of the volume occupancy O, and ‖ · ‖E is the norm of
the residual defined in some metric E.

However, this optimization step was not fully explored in this thesis. This step is mentioned here
for completeness, and is left for the future work.
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5
Experimental Results

To test our approaches, experiments were performed on three data sets, including two captured
data sets and a synthetic data set. Both the depth reconstruction (Section 4.1 and 4.2) and the
volume reconstruction (Section 4.3 and 4.4) were tested. The results of those experiments are
reported in this chapter. First, we discuss the light field acquisition, and then we present the
experimental results of the selected algorithms. We also provide an analysis about the influence
of the parameter selection.

5.1 Data Acquisition

For the experiments, a sequence of 2D images of the scene was taken along a 1D translation of
a camera. The camera movement was aligned to the horizontal image axis. The set of camera
positions constitutes the baseline. The camera was placed at equally spaced positions in the
baseline, looking at the same direction perpendicular to the baseline. Figure 5.1 shows the
acquisition set up.

This acquisition produces 3D light fields which are spatially 2D and directionally 1D. 3D light
fields are advantageous over 4D light fields in that the acquisition and the calibration becomes
less complicated, and that each 2D slice of the 3D light fields can be processed independently in
parallel.

Two captured data sets and one synthetic data set were used for experiments. The captured data
sets were taken from UCSD/MERL light field repository, which were acquired for the work of
Zwicker et al. [ZMDP06]. One is a scene consisting of a toy train and buildings (“train” data
set). This data set consists of 500 images, and the image resolution is 1255×473. The other is
a scene of an elephant model in front of plants (“elephant” data set). This data set consists of
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Baseline

Scene

Cameras

Figure 5.1: Acquisition of a 3D light field. 2D images of the scene are taken at equally spaced camera
positions. The images stacked together form a 3D light field.

460 images, and the image resolution is 1280×853. The images are linear RGB images. We
used half the images in each sequence, smoothed and downsampled to half the original size.
Figure 5.2 shows some of the used images. The data sets were taken using a camera on a 1D
linear translating gantry. All images of each data set were taken with the same camera, and the
camera positions were equally spaced. The images were geometrically calibrated and rectified,
but the non-linear distortion was not corrected. Radiometric falloff (vignetting) was corrected
to ensure that the image of equally illuminated surface would produce a flat image. No other
photometric calibration was performed. Therefore, the images exhibit slight intensity differences,
and have radial distortion.

We alleviated the radial distortion by picking several scene points manually and estimating the
coefficients of the polynomial distortion model [Bro66]. The coefficients were estimated up
to the fourth order. Tangential distortion was not corrected. The correction, however, did not
remove the distortion completely due to the unknown intrinsic camera parameters. Therefore,
the data sets still had geometric distortion. Although the data sets were not correctly calibrated,
our methods performed well as can be seen in the remainder of this chapter. Both data sets have
a few specular or translucent objects, but most surfaces are Lambertian and the scenes have no
transparent or reflective objects.

The synthetic data set (“cube” data set) contains a few geometric primitives such as cubes,
spheres, and pyramids. The data set was ray traced using Maya. It consists of 200 color images,
and the resolution is 640×209. See also Figure 5.2 for the synthetic data set.

5.2 Experiment Setup

The algorithms were implemented using MATLAB. The image interpolation routine and the
mean shift clustering algorithm were most time consuming, and thus implemented using CUDA
on NVIDIA graphics cards. MATLAB routines and CUDA routines interface through MATLAB’s
MEX binary files. We used a PC with an Intel i7 2.8 GHz CPU.
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5.2 EXPERIMENT SETUP

Figure 5.2: The three data sets used in the experiments, including two captured data sets (the first and the
second rows) and one synthetic data set (the third row). First row: “train” data set. Second row: “elephant”
data set. Third row: “cube” data set. The first column shows the images taken at the leftmost camera
position, the second column shows the images taken at the center, and the third column shows the images
taken at the rightmost camera position.

We tested the depth reconstruction algorithms (Algorithm 4.1) using SSD (Equation 4.4), ray
selection (Algorithm 4.2), and ray clustering (Algorithm 4.3) with or without using neighboring
rays (Equation 4.8), the depth from focus method without occlusion handling (Section 4.2.1), and
the volume reconstruction algorithms (Algorithm 4.4) using the same focus measures. The depth
peeling algorithm (Algorithm 4.5) was only applied to demonstrate the occlusion-free refocusing.
The results of the light field partitioning algorithm (Algorithm 4.6) are not reported in the thesis,
since our implementation was not complete, and hence did not produce better results than other
algorithms.

The resampling from 3D light fields involves a 2D shear transformation. The images are interpo-
lated to deal with subpixel shearing. Since shearing is axis-aligned, and we do not oversample
along the directional dimension, 1D linear interpolation over each 1D subimage was employed.
Except for the algorithms using neighboring rays discussed in Section 4.2, each ray can be
processed independently throughout the entire pipeline. In addition, the interpolation and the
clustering routine can be designed not to access the same ray at the same time, which is well
suited for the parallel processing. Although in our implementation, only a small portion was
implemented using CUDA, the whole pipeline may be implemented more efficiently using
parallel processing to further reduce the processing time. We believe there is much room for
improvement, which is left for future work.

Since the algorithm runs independently for each 2D slice of the 3D light field, we processed
each slice at a time. In our implementation, it took about 1.5 seconds to process one slice of the
3D light field of the “train” data set with the discretization of 300 disparities using occlusion
handling based on ray clustering described in Section 4.1.3. It took about three minutes to
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process the whole light field and to generate the 2D disparity map in an “embarrassingly parallel”
processing mode, where the algorithm runs in parallel simply in multiple MATLAB instances.

5.3 Depth Reconstruction

The depth reconstruction algorithms using different focus measures were applied to the three
data sets. Figure 5.3–5.5 show brief comparisons between the methods. Each figure shows the 2D
disparity maps reconstructed by the depth reconstruction algorithm (Algorithm 4.1) with three
different focus measures (left page), and the reconstruction using neighboring rays, multiple-view
projection, and spatial frequency (right page). For “elephant” scene, the last two results were
omitted.

Figure 5.6 shows the effects of different ray selection rates. When all the rays are used, partially
occluded objects are not reconstructed correctly. By reducing the portion of selected rays, we
can reconstruct occluded objects which are seen by at least the same portion of camera positions
within the aperture. For example, if half the rays are selected to compute the focus measure,
the objects visible at more than half the camera positions can be reconstructed. With a low
selection rate, the focus measure can tolerate the imperfect acquisition. However, as the selection
rate becomes lower, the reliability of the focus measures also decreases. It also becomes less
discriminative and less robust to noise. Thus, too low selection rate produces noisy outputs. In
Figure 5.7, the relation between the ray selection rate and the visibility rate is clearly observed.
The reconstruction quality of the background area between the leftmost cube and the second
leftmost cube improves as the ray selection rate decreases.

The aperture size also affects the quality of reconstruction (Figure 5.8). With a wider aperture,
the reconstruction is more smooth, and has less outliers. However, the effects of occlusions
become more noticeable, so that surfaces with a limited visibility are not well reconstructed.
With a smaller aperture, the reconstruction is less influenced by occlusions, but shows a similar
tendency observed with a low ray selection rate, resulting in noisy outputs. In addition, it is more
difficult to reconstruct the area with a uniform color when using a smaller aperture. The wall
above the plants is correctly reconstructed when the full aperture is used (Figure 5.6(a)), but is
not when a small aperture is used (Figure 5.6(b)). If a very wide aperture is used, the depth of
a uniform region is bounded by the depth of the neighboring textured regions. With a smaller
aperture, however, this is not the case. It is more intuitive to cast the depth estimation to the
orientation estimation of the light field stripe. If we use a wide aperture and thus consider more
views, the slope of the uniform stripe is more tightly bounded by the neighbor stripes. On the
other hand, if the aperture size is smaller than the width of the uniform region, the orientation is
not bounded at all, and the region cannot be reconstructed correctly.

Similar to the ray selection rate, reducing the aperture size can be beneficial to compensate the
imperfect data set, such as radial distortion. The reconstruction with the full aperture is slightly
worse in the region of close objects than with a reduced aperture (see the table in the front in
Figure 5.6(a) and (b)), since a closer object exhibits a larger disparity, hence spans larger extent
of the image plane between images for different viewing positions.

Using the focus measures of the neighboring rays, the reconstruction produces smoother results.
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In particular, many outliers are removed, compared to the reconstruction without considering
neighbors. However, thin structures narrower than the width of the spatial window are eroded by
the objects surrounding them. Figure 5.9 shows the effect of the use of neighboring rays.

Figure 5.3(a), 5.4(a), and 5.5(a) present the reconstruction using ray clustering, showing that
the method can adapt to a wide range of visibility conditions, compared to the fixed rate of ray
selection. The mean shift clustering has only one parameter called bandwidth parameter which
determines the window size used for the kernel density estimation (Section 4.1.3). Figure 5.10
shows the comparison with varying this parameter. If we increase the bandwidth parameter, the
results becomes more similar to the result using all rays without any discrimination. If we set the
bandwidth parameter as large as to cover the whole extent of the feature space, all the data points
will be in the same cluster, and the cluster center becomes the (weighted) mean of the samples.
The feature space in our case is the RGB color space, which is a cube with a unit volume. On
the other hand, if too small a bandwidth is used, most data points form their own clusters. Thus,
clustering loses its discriminating power.

In sum, the reconstruction using the ray selection with the full aperture produced good results,
and the ray clustering method gave the best results. If no occlusion handling is used, the aperture
size should be very small. However, it trades off the confidence of the estimated depth.
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5 EXPERIMENTAL RESULTS

(a) Ray Clustering with bandwidth h = 0.01

(b) Ray Selection with selection rate r = 50%

(c) SSD

Figure 5.3: Comparison of Focus Measures. The comparison of the depth reconstruction of the “train”
data set using different focus measures. The methods using SSD and DFF do not have an occlusion
handling mechanism. Their respective results (c) and (f), however, are included to show the importance of
the occlusion handling.
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(d) Ray Clustering with Neighboring Rays within 3×1 window, with bandwidth h = 0.01

(e) Multiple-View Projection using all view-dependent depth map with a small (about 7%) aperture

(f) DFF using spatial frequency

Figure 5.3: (continued) Comparison of Focus Measures. The comparison of the depth reconstruction of
“train” data set using different focus measures. The methods using SSD and DFF do not have an occlusion
handling mechanism. Their respective results (c) and (f), however, are included to show the importance of
the occlusion handling.
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(a) Ray Clustering with bandwidth h = 0.01

(b) Ray Selection with selection rate r = 50%

Figure 5.4: Comparison of Focus Measures. The comparison of the depth reconstruction of “elephant”
data set using different focus measures. The results using SSD and DFF are omitted due to the limited
space here.
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(c) Ray Clustering with Neighboring Rays within 3×1 window, with bandwidth h = 0.01

(d) Multiple-View Projection using all view-dependent depth map with a small (about 7%) aperture

Figure 5.4: (continued) Comparison of Focus Measures. The comparison of the depth reconstruction
of “elephant” data set using different focus measures. The results using SSD and DFF are omitted due to
the limited space here.
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(a) Ray Clustering with bandwidth h = 0.01

(b) Ray Selection with selection rate r = 12.5%

(c) SSD

Figure 5.5: Comparison of Focus Measures. The comparison of the depth reconstruction of “cube” data
set using different focus measures. The methods using SSD and DFF do not have an occlusion handling
mechanism. Their respective results (c) and (f), however, are included to show the importance of the
occlusion handling.
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(d) Ray Clustering with Neighboring Rays within 3×1 window, with bandwidth h = 0.01

(e) Multiple-View Projection using all view-dependent depth maps with a small (about 7.5%) aperture

(f) DFF using spatial frequency

Figure 5.5: (continued) Comparison of Focus Measures. The comparison of the depth reconstruction of
“cube” data set using different focus measures. The methods using SSD and DFF do not have an occlusion
handling mechanism. Their respective results (c) and (f), however, are included to show the importance of
the occlusion handling.
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(a) Full aperture and 25% rays used (b) 1/4 aperture and 50% rays used

(c) Full aperture and all rays used (d) 1/4 aperture and all rays used

(e) A depth map extracted from the 3D occupancy map
built using the full aperture and 50% rays selected

(f) A depth map extracted from the 3D occupancy map
built using 7.5% aperture and 50% rays selected

Figure 5.6: Effect of Aperture Size. The reconstruction of “elephant” data set. The scene was recon-
structed using a single view in (a)–(d), and using the multiple-view projection in (e) and (f). For (e) and (f),
the depth estimations from all views were projected, and the voxels with less than 7 votes were considered
as outliers and discarded.
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(a) Full aperture with 50% rays selected (b) 1/2 aperture with 50% rays selected

(c) Full aperture with 25% rays selected (d) 1/2 aperture with 25% rays selected

(e) Full aperture with 12.5% rays selected (f) 1/2 aperture with 12.5% rays selected

(g) Depth map from the 3D occupancy map, thresholded
by 5. 50% rays within about 1/10 aperture were used
to build the 3D occupancy map

(h) Depth map from the 3D occupancy map, thresholded
by 10. The same setting was used as (g).

Figure 5.7: Effect of Ray Selection Rate. The reconstruction of ‘cube’ data set. The first three rows
show the direct reconstruction of 2D depth maps. The last row shows the 2D depth map extracted from the
3D occupancy map. (a), (c), and (e) used the full aperture, whereas (b), (d), and (f) used half the aperture.
(g) and (h) show the effect of the thresholding. The threshold value for (g) was 5, and (h) was 10.
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(a) Full aperture and 50% rays used (b) Full aperture and 25% rays used

(c) 1/2 aperture and 50% rays used (d) 1/2 aperture and 25% rays used

(e) 1/4 aperture and 50% rays used (f) 1/4 aperture and 25% rays used

(g) Full aperture and all rays used (h) A depth map extracted from the 3D occupancy map
built using 7.5% aperture and 50% rays selected

Figure 5.8: Effect of Ray Selection Rate. The reconstruction of ‘train’ data set. The scene was recon-
structed using a single view in (a)–(g), and using the multiple-view projection in (h). The aperture size
decreases from the first row to the third row. (g) used the full aperture and all rays within the aperture, and
thus does not handle occlusions. (h) was extracted from a 3D occupancy map.
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(a) Using no neighboring rays

(b) Using all the neighboring rays within 3×1 window (c) Using half the neighboring rays within 3×1 window

(d) Using all the neighboring rays within 5×1 window (e) Using half the neighboring rays within 5×1 window

(f) Using all the neighboring rays within 7×1 window (g) Using half the neighboring rays within 3×1 window

Figure 5.9: Using Neighboring Rays. The reconstructed 2D depth maps of “train” scene using ray
clustering with bandwidth h = 0.01. The scene was reconstructed with different window size and strategy
over the neighboring rays. The window size increases from top to bottom. All the neighboring rays in the
window were used in the left column, whereas only half the rays were used in the right column. As the
window size increase, the outliers are reduced. However, the objects are eroded, and some thin structures
disappear.
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(a) Bandwidth h = 0.5 (largest) (b) Bandwidth h = 0.1

(c) Bandwidth h = 0.05 (d) Bandwidth h = 0.01

(e) Bandwidth h = 0.005 (f) Bandwidth h = 0.001 (smallest)

Figure 5.10: Effect of Bandwidth Parameter in Ray Clustering. The reconstructed 2D depth maps of
“elephant” scene using ray clustering with various bandwidth parameters. With a larger bandwidth, the
scene points with limited visibility are not well reconstructed, and the reconstruction becomes more similar
with the case of no occlusion handling. On the other hand, with a smaller bandwidth, the reconstruction
becomes noisier.
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5.4 Volume Reconstruction

Figure 5.11 shows the volume reconstruction based on the projection of multiple view-dependent
depth maps (Algorithm 4.4). At each viewing position, the aperture spanning 50% of viewing
positions were used to create the 2D depth map. 50% of rays within the aperture were selected to
compute the focus measure. Figure 5.11(e) and (f) are the horizontal slices of the 3D occupancy
volumes of “train” and “elephant” data sets, respectively. With the comparison to the cross
section of the single view reconstruction (Figure 5.11(c) and (d), respectively), the surfaces that
are occluded from the given viewing position can be observed. However, for the captured data
sets, the reconstructed surfaces become fatter, because the depth estimations in different views
are slightly different, and thus do not map to the same scene point. We suspect this is caused by
radial distortion existing in the captured data sets.

In Figure 5.12, the 2D depth maps extracted from the 3D occupancy map are presented with
the directly computed depth maps. Taking the closest points to the camera plane in the 3D
occupancy map yields a 2D depth map. The reconstructed surfaces are more smooth, but have
more holes, compared to their correspondences in the direct 2D depth maps. Note the difference
of the aperture size. The full aperture was used for the depth reconstruction, whereas less than
10% of the aperture was used for the volume reconstruction. With the volume reconstruction
method, the aperture size can be more reduced than the depth reconstruction methods, because
the reconstructed scene points are accumulated in the 3D voxel space. Thus, the surfaces with
more limited visibility can be handled. However, the object boundaries are usually more noisy,
because small errors in depth estimation are amplified during the view warping. If there is some
error in a few number of views, this erroneous estimation affects the occupancy map, and is more
conspicuous in the object boundaries. The holes are due to the thresholding.

5.5 Occlusion-Free Refocusing

Figure 5.13 shows the examples of refocused images, which are 2D xy slices of 3D focal stacks.
In the refocused images without occlusion handling, the trace of the occluding object (e.g. the
elephant in Figure 5.13(g)) is present in the object (e.g. the net in Figure 5.13(i)) behind it. With
occlusion handling using the depth peeling method described in Algorithm 4.5, the occluded
object can be more clearly focused. That is, we can remove most of the rays coming from the
occluding objects instead of blurring them out. Thus, the rays coming from the object behind
the occluding objects are integrated to form the scene point. Consequently, with the occlusion
handling, we can see the scene through the occluders. In the Figure 5.13(i) and (l), the elephant
was mostly removed from the scene, and the net and plants are seen more clearly. However, the
gray area (Figure 5.13(l)) is still observed near to the center of the area where the elephant was.
This area is a completely occluded region by the elephant. The scene point in that region is not
visible from any camera position, and thus cannot be reconstructed.
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(a) A 2D depth map of the “train” scene (b) A 2D depth map of the “elephant” scene

(c) The xd-slice indicated in (a) of the 3D scene volume
using the depth reconstruction method

(d) The xd-slice indicated in (b) of the 3D scene volume
using the depth reconstruction method

(e) The xd-slice indicated in (a) of the 3D scene volume
using the volume reconstruction method

(f) The xd-slice indicated in (b) of the 3D scene volume
using the volume reconstruction method

Figure 5.11: 3D volume reconstruction. xd-slices of the reconstructed 3D volume. First row: 2D depth
maps of the “train” and “elephant” data sets, where the y-coordinates of the xd-slices are indicated as a
red line. (a), (c), and (e) are from the “train” data set, and (b), (d), and (f) are from the “elephant” data
set. Second row: The xd-slice of the reconstructed 3D volume from the depth reconstruction algorithm
(Algorithm 4.1), where only a single depth layer for each x-coordinate is reconstructed. Third row: The
xd-slice of the reconstructed 3D volume from the volume reconstruction algorithm (Algorithm 4.4), where
multiple depth layers are reconstructed as well as the scene depth is more faithfully reconstructed.
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(a) 2D depth maps (b) 2D depth maps extracted from 3D occupancy maps

Figure 5.12: 2D depth map vs. 3D occupancy map. The comparison between 2D depth maps directly
computed from the depth reconstruction algorithm (left column) and 2D depth maps extracted from 3D
occupancy maps (right column). For the captured data sets, the 2D depth maps extracted from the 3D
occupancy maps show smoother surfaces, but more holes. For the synthetic data set, however, the surfaces
of the single shot 2D depth map look better.
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(a) View from the center (b) Refocused image (c) Refocused w/occlusion handling

(d) View from the center (e) Refocused image (f) Refocused w/occlusion handling

(g) View from the center (h) Refocused image (i) Refocused w/occlusion handling

(j) View from the center (k) Refocused image (l) Refocused w/occlusion handling

Figure 5.13: Occlusion-free refocusing. The first column shows the view from the camera position
at center. The images in the second column were refocused without occlusion handling, whereas the
images in the third column were refocused with occlusion handling using the depth peeling method
(Algorithm 4.5). The church ((b) and (c)) and a pole ((e) and (f)) in the “train” scene are observed more
clearly with occlusion handling. Especially, the pole is not visible at the given view point. In the “elephant”
scene, the elephant can be almost removed from the scene ((i)) by refocusing with occlusion handling.
Note that in (h), there is the trace of the elephant when refocused. However, the regions that are not visible
from any camera position cannot be reconstructed. In (l), most of the elephant was removed, but there is a
gray region at the center of images, which is completely occluded.
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6
Conclusions

6.1 Summary

In this thesis, we have explored novel methods for the depth reconstruction of the scene captured
in a light field. Digital refocusing with synthetic aperture was used as a main tool to build a scene
representation called the focal stack. We employed the concepts of measuring the depth from
differently focused images, taken from the depth from focus methods. These methods, however,
did not handle the increased influence of occlusions due to the wide synthetic aperture. In light
fields, we have access to all rays which are not yet integrated to form an image of the scene,
enabling more flexible and powerful methods to determine the existence of surfaces.

Using digital refocusing, we first defined the focal stack from the light field as a mean to represent
the scene. We then introduced focus measure functions to determine how likely there exists a
surface, given a collection of rays to be focused at a point. The focus measures are computed for
all points in the focal stack using one of such functions. Picking the points with the strongest
measure along the depth, we can reconstruct the depth of the scene.

Due to the wide synthetic aperture, however, the effect of occlusions in the synthetic imaging is
more noticeable and complicated than the conventional photography. With a limited visibility
condition, it is often difficult to accurately measure the existence of surfaces. Therefore, we
proposed novel approaches to attack this problem. First, focus measures based on selecting
the rays not influenced by occlusions were presented. Those new focus measure functions are
more robust to the occlusions. Then, we discussed how to systematically extract the occluding
objects from the scene. This was approached twofold. The first was to remove occluding objects
before focusing on objects behind them. The second was to partition the light field to make each
partition occlusion-free to ease the depth reconstruction on each partition.
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We then extended the depth reconstruction to the volume reconstruction. Each view-dependent
depth map is warped to the common scene space, where the volume occupancy is marked. If a
voxel is marked as a surface point enough times, then this voxel is accepted as occupied. Then
again, a depth map can be constructed from the volume occupancy map by taking the closest
occupied voxel to the camera. When we fail to reconstruct the scene in some regions due to the
limited visibility or a large uniform area, we can try to extract the depth map from the volume
occupancy, in the hopes of the area being better seen in some other view point.

We showed the effectiveness of our methods by the results presented in the previous chapter.
The results from our methods showed good reconstructions of real and synthetic scenes. We
presented a thorough evaluation of our methods and an analysis of the selection of parameters as
well.

6.2 Limitations and Future Work

Although many approaches to reconstruct the scene from light fields were explored throughout
the thesis, still there are areas to be further explored.

The obtained 3D occupancy map can be further refined by projecting the volume occupancy
back into the light field as briefly described in Section 4.5. The residual error between the
backprojected light field and the original light field can be obtained. Then, an optimization
scheme can be applied to refine the volume occupancy in the direction to reduce the residual
error, while enforcing some constraints on the volume occupancy. This capstoning step was not
fully addressed in the thesis, but will be one of the direct extensions to our work.

Another adaptive ray selection scheme can be devised. In the ray selection method (Section 4.1.2)
presented in the thesis, the acceptance rate of the rays is a fixed parameter. This limitation is
relaxed in the ray clustering method (Section 4.1.3), so that any degree of visibility can be
handled. However, the mean shift clustering algorithm we employed is an iterative nonlinear
algorithm, and may be prohibitive for large scale data sets. Thus, an efficient adaptive algorithm
is required for the method to be widely used in practice.

The light field partitioning discussed in Section 4.4.2 was limited in our implementation. It often
suffers from the mixed rays that blend two or more object from different depth layers. Those
rays arise mainly due to the limited discretization resolution. Thus, for the accurate partitioning
of the light field, some method based on the alpha matting technique is required. The method
has to deal with a multiple layer alpha matting, which is a challenging problem. This was not
explored thoroughly in the thesis. Future work may be inspired by the previous work about the
alpha matting using a camera array [JMA06].

Implementation-wise, the algorithms presented in this thesis are both computationally and
spatially intensive. However, they are highly parallelizable, and well suitable for the current
parallel computing framework such as GPU computing. Although some of the most time
consuming parts already run on GPUs, more efficient implementation using GPU will greatly
reduce the execution time. This is also left for future work.

We then want to pay attention to the remarkable similarity between the scene reconstruction
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from the focal stack and the reconstruction of a microscopic object from volumetric data.
Microscopy deals with a similar type of problems with ours. Especially, in deconvolution
microscopy [MKCC99], the volumetric representation of the space consisting of the specimen is
acquired, and then the specimen is reconstructed from the acquired light polluted volume data.
The point spread function of the optical device is first estimated, and then the volume data is
deconvolved with the point spread function. As a result, the blurring caused by the “occluding”
parts residing in the other focal plane is alleviated. There are similarities between the scene
reconstruction and the deconvolution microscopy in the complex blur properties, the effect of
occlusion, and the shape of the point spread function. In fact, the volumetric representation in
the deconvolution microscopy is nothing more than a focal stack.

However, there is a crucial difference between the two. The specimen in the microscopy is
translucent. Thus the volume can be integrated. However, most objects in the macroscopic world
are opaque, and thus the light rays are blocked and scattered. If the opacity of the scene can
be handled, the problem of the macroscopic scene will take the advantages of the microscopy
techniques. The microscopy using the light field representation of the specimen was addressed in
Levoy et al.’s work [LNA+06], but the opaque object was not handled.

In addition, computed tomography also has notable relation to our work as well as microscopy.
The integration of rays over the light field is the same as the line integral used in tomographic re-
construction. Computed tomography also deals with the reconstruction from volumetric data. The
Radon transform and the integration of the light field are only different in the parameterization
of the projection line.

Finally, the methods described in this thesis can be applied to the light fields acquired by a lenslet
based apparatus [NLB+05]. Then, hand-held cameras will be able to capture the depth image of
the scene along with the familiar photograph.
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