
Diss. ETH No. 22933

3D Reconstruction and Rendering
from High Resolution Light Fields

A thesis submitted to attain the degree of

Doctor of Sciences of ETH Zurich
(Dr. sc. ETH Zurich)

presented by

Changil Kim
MSc in Computer Science, ETH Zurich, Switzerland
born on June 19, 1979
citizen of the Republic of Korea

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner
Dr. Alexander Sorkine-Hornung, co-examiner
Prof. Dr. Brian Curless, co-examiner

2015





DISS. ETH NO. 22933

3D RECONSTRUCTION AND RENDERING

FROM HIGH RESOLUTION LIGHT FIELDS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

CHANGIL KIM

MSc in Computer Science, ETH Zurich

born on
June 19, 1979

citizen of
The Republic of Korea

accepted on the recommendation of

Prof. Dr. Markus Gross
Dr. Alexander Sorkine-Hornung

Prof. Dr. Brian Curless

2015





Abstract

This thesis presents a complete processing pipeline of densely sampled, high
resolution light fields, from acquisition to rendering. The key components of the
pipeline include 3D scene reconstruction, geometry-driven sampling analysis, and
controllable multiscopic 3D rendering.

The thesis first addresses 3D geometry reconstruction from light fields. We show
that dense sampling of a scene attained in light fields allows for more robust and
accurate depth estimation without resorting to patch matching and costly global
optimization processes. Our algorithm estimates the depth for each and every light
ray in the light field with great accuracy, and its pixel-wise depth computation
results in particularly favorable quality around depth discontinuities. In fact, most
operations are kept localized over small portions of the light field, which by itself
is crucial to scalability for higher resolution input and also well suited for efficient
parallelized implementations. Resulting reconstructions retain fine details of the
scene and exhibit precise localization of object boundaries.

While it is the key to the success of our reconstruction algorithm, the dense sam-
pling of light fields entails difficulties when it comes to the acquisition and pro-
cessing of light fields. This raises a question of optimal sampling density required
for faithful geometry reconstruction. Existing works focus more on the alias-free
rendering of light fields, and geometry-driven analysis has seen much less research
effort. We propose an analysis model for determining sampling locations that are
optimal in the sense of high quality geometry reconstruction. This is achieved by
analyzing the visibility of scene points and the resolvability of depth and estimating
the distribution of reliable estimates over potential sampling locations.
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A light field with accurate depth information enables an entirely new approach
to flexible and controllable 3D rendering. We develop a novel algorithm for mul-
tiscopic rendering of light fields which provides great controllability over the
perceived depth conveyed in the output. The algorithm synthesizes a pair of stereo-
scopic images directly from light fields and allows us to control stereoscopic and
artistic constraints on a per-pixel basis. It computes non-planar 2D cuts over a
light field volume that best meet described constraints by minimizing an energy
functional. The output images are synthesized by sampling light rays on the cut
surfaces. The algorithm generalizes for multiscopic 3D displays by computing
multiple cuts.

The resulting algorithms are highly relevant to many application scenarios. It can
readily be applied to 3D scene reconstruction and object scanning, depth-assisted
segmentation, image-based rendering, and stereoscopic content creation and post-
processing, and can also be used to improve the quality of light field rendering that
requires depth information such as super-resolution and extended depth of field.
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Zusammenfassung

Diese Dissertation präsentiert eine komplette Verarbeitungspipeline für dicht ab-
getastete, hochauflösende Lichtfelder, von der Akquisition bis zu deren Rendering.
Die wichtigsten Komponenten dieser Pipeline umfassen 3D-Szenenrekonstruktion,
Geometrie-gesteuerte Abtastanalyse, und kontrollierbares multiskopisches 3D-
Rendering.

Diese Dissertation beschäftigt sich zunächst mit 3D-Geometrierekonstruktion
von Lichtfeldern. Wir zeigen, dass dichte Abtastung einer Szene in Form von
Lichtfeldern eine robuste und genaue Tiefenmessung ermöglicht, und zwar ohne
Nachbarschaften von Pixeln zu vergleichen, und ohne auf kostspielige globale
Optimierungsprozesse zurückzugreifen. Unser Algorithmus schätzt die Tiefe für
jeden Lichtstrahl im Lichtfeld mit grosser Genauigkeit, und die resultierenden
pixelweisen Tiefenwerte sind von besonders hoher Qualität in der Nähe von Tiefen-
diskontinuitäten. In der Tat sind die meisten Operationen für kleine Abschnitte des
Lichtfeldes lokalisiert, was entscheidend für die Skalierbarkeit für höher aufgelöste
Eingabedaten ist und auch eine effiziente parallele Implementierung erlaubt. Die
resultierenden Rekonstruktionen erhalten feine Seznendetails mit einer präzisen
Lokalisierung von Objektkanten.

Während es der Schlüssel zum Erfolg unseres Rekonstruktionsalgorithmus ist,
führt die hohe Abtastdichte von Lichtfeldern zu Problemen bei deren Aufnah-
me und Verarbeitung. Dies wirft die Frage der optimalen Abtastsdichte auf wel-
che zur genauen Geometrierekonstruktion erforderlich ist. Bestehende Arbeiten
konzentrieren sich mehr auf das Alias-freie Rendering von Lichtfeldern und
Geometrie-getriebene Analyse hat deutlich weniger Forschungsanstrengungen
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gesehen. Wir schlagen ein Analysemodell zur Bestimmung von Aufnahmeposi-
tionen vor, die im Sinne von qualitativ hochwertigen Geometrierekonstruktion
optimal sind. Dies wird durch die Analyse der Sichtbarkeit der Szenenpunkte und
der Tiefenauflösbarkeit, sowie der Bestimmung der Verteilung der zuverlässigen
Schätzungen für potenzielle Aufnahmepositionen erreicht.

Ein Lichtfeld mit genauer Tiefeninformation ermöglicht einen völlig neuen An-
satz für flexibles und steuerbares 3D-Rendering. Wir entwickeln einen neuartigen
Algorithmus für multiskopisches Rendering von Lichtfeldern, der grosse Steuer-
barkeit über die wahrgenommene Tiefe in der Ausgabe erlaubt. Der Algorithmus
synthetisiert ein Paar von stereoskopischen Bildern direkt von Lichtfeldern und
ermöglicht es, stereoskopische und künstlerische Vorgaben auf Pixelebene zu steu-
ern. Er berechnet nicht-planare 2D-Schnitte in einem Lichtfeldvolumen, welche
die vorgegebenen Vorgaben bestmöglich erfüllen durch die Minimierung eines
Energiefunktionals. Die Ausgangsbilder werden durch Abtasten von Lichtstrahlen
auf den Schnittflächen synthetisiert. Der Algorithmus kann für multiskopische
3D-Displays verallgemeinert werden indem mehrere Schnitte berechnet werden.

Die resultierenden Algorithmen sind von grosser Bedeutung für viele Anwen-
dungsszenarien. Sie sind leicht anwendbar für 3D-Szenenrekonstruktion und
Objektscanning, Tiefen-gestützte Segmentierung, bildbasiertes Rendering sowie
stereoskopische Inhaltsgenerierung und Nachbearbeitung, und können auch ver-
wendet werden, um die Qualität von Lichtfeld-Rendering zu verbessern, welches
Tiefeninformation erfordert, wie zum Beispiel Super-Resolution und erweiterte
Tiefenschärfe.
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1
Introduction

Since its introduction to computer graphics and vision, the concept of light fields
has been widely adopted for many areas. It is one of the central representations for
image-based rendering and 3D display techniques attributed to being conceptually
simple while comprehensive. It serves as an invaluable tool for computational
photography, extending the capability of conventional cameras and creating new
applications such as digital refocusing. Popularized through the bullet time effect
shown in movies like “The Matrix,” light-field–based techniques are regularly
practiced in movie productions, but also used in other industrial areas like manu-
facturing inspection.

In particular, image-based rendering using light fields has been established as an
alternative to the traditional rendering pipeline based on 3D geometry and ray
tracing. With a scene captured as a light field, one essentially has so many light
rays at hand that rendering the scene from different perspectives reduces to simply
picking relevant rays and interpolating between them. This can be attractive in
many application scenarios since it is generally considered a hard problem to
digitize the scene into an accurate 3D model and to render the acquired model
photorealistically.

In its most general sense, a light field, also known as the plenoptic function,
represents the flow of light at all positions in 3D space towards all directions over
time. In geometrical optics, the flow is carried by rays and measured as radiance;
a light field is a function that relates a ray to the radiance it transports. The ray
is parameterized by a position, its direction, and time, making the light field a
multi-dimensional function. Thus every collection of one or more photographs
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Introduction

of a scene is a particular sub-sampling of the light field, and conversely, low
dimensional slices of a light field can be interpreted as some form of images,
albeit not all of them will look like conventional photographs. For instance, one
could consider Google Street View as one large light field. Pointing to a spot and
looking around from there, one fixes the position (and also the time to when the
location was captured) and gets a panoramic image at that point in time and space.
Such conceptual flexibility and comprehensiveness make the light field suited to
image-based rendering particularly well.

Although any collection of photographs constitutes a light field, we are often
interested in more structured sampling of the light field, such as those captured
using camera arrays or light field cameras. One characteristic observed in such
sampling is a high level of coherency, redundancy, and smooth variations in the
radiance of light fields. One of the central claims of this thesis is that such properties
provide us with a new perspective to approach several important problems in
computer graphics and vision. We support this claim by demonstrating examples
of 3D geometry recovery and controllable 3D rendering, which together make up a
complete rendering pipeline.

We first show that the coherency of dense light fields has unique properties that
are beneficial to 3D geometry reconstruction, and mitigate difficulties arising
with sparser sampling common in multi-view stereo setups. Dense directional
sampling spanning a near continuum of baseline provides rich information about
the trajectories of scene points according to changes in viewing positions. This
works favorably for correspondence matching, reducing the need for larger patches
to be compared to guarantee the required level of robustness. Our method uses
a pixel-wise depth computation, which performs particularly well around depth
discontinuities, advantageous for precise localization of object boundaries.

In addition, today’s advances on imaging hardware allow us to image the world
at much higher resolution with greater detail, while still many reconstruction
techniques are not scalable to process high resolution data or not designed to
deal with them. We propose a new concept we call fine-to-coarse refinement for
regularized output, getting rid of expensive, often non-scalable global optimization
from our pipeline without compromising the quality of results. Putting them
together, we present a high quality 3D reconstruction framework, arguing that
not only can the geometry reconstructed from light fields be used for improving
rendering, but also for high quality 3D reconstruction itself. We show other direct
applications as well including depth-assisted segmentation and free viewpoint
rendering.

The problem of finding the right sampling rate, e.g., the required number of images
and optimal capture locations, is important to minimize both the artifacts due
to insufficient sampling and the amount of effort spent for sampling. For these
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1.1 Contributions

reasons this problem has been extensively studied to provide a sound and valid
theoretical model for sampling light fields. However, most sampling analysis so
far is targeted at reconstructing light fields for alias-free rendering, and does not
provide an appropriate theory for sampling light fields in the context of geome-
try reconstruction. We address this and provide a theoretical foundation on the
sampling analysis and an adaptive algorithm to sample light fields accordingly.

Lastly, it is demonstrated that light fields, along with the acquired geometry, allow
us to render the scene in 3D with added controllability and flexibility over the
perceived depth. Creating satisfactory 3D content fulfilling complicated display
constraints and artistic requirements is not an easy task. Further, the content
often has to be edited stereoscopically for displays of varying 3D capabilities or to
achieve modified depth perception. Light fields are naturally suited to such tasks
since they contain a wealth of information about spatial and directional variations
of the scene. We present a method to synthesize stereoscopic image pairs directly
from light fields given stereoscopic constraints and desired depth, which can be
modified or specified at the user’s disposal. The method is further extended for
multi-view displays. While existing methods take sparser input and rely on image
warping and inpainting, our method calculates the exact light rays needed, samples
them from the light field, and composites them into complete images. Additionally,
we provide a formulation that jointly solves for both depth estimation and content
generation, removing the necessity of separate depth computation and additional
storage, and running more efficiently.

1.1 Contributions

This thesis presents an image-based rendering pipeline for densely sampled light
fields, from acquisition to rendering. It makes a number of technical contributions,
which have led to several scientific publications and are summarized below:

• A novel geometry reconstruction algorithm tailored to densely sampled light
fields. The algorithm makes use of the coherency in dense input and simplifies
the correspondence matching problem dramatically while achieving higher
quality reconstruction than other algorithms designed for sparser input. In
particular, dense angular sampling allows the algorithm to use pixel-wise
operations, which favor localizing object boundaries and fit greatly to today’s
parallelism in computing. This has led to our publication in 2013; see Sec-
tion 1.3 for the details of the publication.

• A theory on sampling of light fields specifically targeting depth reconstruction.
While in general dense sampling proves to be beneficial, it becomes more and
more cumbersome to capture larger amounts of input, and at certain point no
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Introduction

additional improvement can be achieved despite increasing amounts of data.
A natural question may be “how dense” the sampling should be. An answer is
sought for this question via an analysis model on sampling and an algorithm
to capture light fields according to this model. This led to a publication in 2015.

• An algorithm that renders stereoscopic content directly from a light field. The
algorithm utilizes the acquired depth information and allows for accurate
and flexible control over the perceived depth and stereoscopic viewing pa-
rameters, where effectively a set of such parameters can be specified for each
pixel individually. Additionally, we present the derivation of a more efficient
formulation incorporating both depth computation and rendering at once.
This has led to two publications in 2011 and 2014, respectively.

1.2 Organization

The thesis is organized as follows:

• Chapter 2 reviews the literature that is closely connected to our research, in
the area of light field acquisition, sampling analysis, geometry retrieval, and
rendering.

• Chapter 3 formally introduces the notion of light fields and their mathematical
representations, and discusses how light fields are acquired in practice using
commodity imaging hardware. The conventions and notations we assume for
the rest of the thesis are set in this chapter.

• Our the geometry reconstruction pipeline is presented in Chapter 4. This chap-
ter also provides extensive comparisons against the existing reconstruction
techniques as well as a number of immediate applications.

• Chapter 5 analyzes the sampling properties of light fields in the context of
geometry reconstruction. A sampling analysis model is presented for this, and
a sampling algorithm based on this model is proposed.

• Chapter 6 presents a framework for (multi-view) stereoscopic 3D rendering.
Two formulations are proposed to synthesize stereoscopic views directly from
light fields, along with ample results and comparisons.

• Finally, Chapter 7 concludes the thesis by recapitulating the core contributions
and opening a few avenues for future research.
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1.3 Publications

1.3 Publications

This thesis is based on the following peer-reviewed publications:

• C. KIM, A. HORNUNG, S. HEINZLE, W. MATUSIK, and M. GROSS. Multi-
Perspective Stereoscopy from Light Fields. In Proceedings of ACM SIGGRAPH
Asia (Hong Kong, China, December 12–15, 2011), ACM Transactions on Graphics,
vol. 30, no. 6, pp. 190:1–190:10, 2011.

• C. KIM, H. ZIMMER, Y. PRITCH, A. SORKINE-HORNUNG, and M. GROSS.
Scene Reconstruction from High Spatio-Angular Resolution Light Fields. In
Proceedings of ACM SIGGRAPH (Anaheim, USA, July 21–25, 2013), ACM Transac-
tions on Graphics, vol. 32, no. 4, pp. 73:1–73:12, 2013.

• C. KIM, U. MÜLLER, H. ZIMMER, Y. PRITCH, A. SORKINE-HORNUNG, and
M. GROSS. Memory Efficient Stereoscopy from Light Fields. In Proceedings
of International Conference on 3D Vision (Tokyo, Japan, December 8–11, 2014), pp.
73–80, 2014.

• C. KIM, K. SUBR, K. MITCHELL, A. SORKINE-HORNUNG, and M. GROSS.
Online View Sampling for Estimating Depth from Light Fields. In Proceedings of
IEEE International Conference on Image Processing (Québec City, Canada, September
27–30, 2015), 2015 (to appear).

Although not directly related, the following peer-reviewed paper was published
during the time period of this thesis:

• S. WENNER, J.-C. BAZIN, A. SORKINE-HORNUNG, C. KIM, and M. GROSS.
Scalable Music: Automatic Music Retargeting and Synthesis. In Proceedings of
Eurographics (Girona, Spain, May 6–10, 2013), Computer Graphics Forum, vol. 32,
no. 2, pp. 345–354, 2013.
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2
Related Work

The idea of light fields was invented as early as in the dawn of the 20th century,
although it is relatively recent when it was adopted in computer graphics and
vision. This chapter reviews the literature related to light fields. We limit ourselves
to the work closely connected to our research, since both the volume and the
variety of existing work are enormous.

2.1 A Brief History of Light Fields

In 1908, Lippmann published two articles about photographie intégrale, translated
literally as integral photography, which describes an imaging apparatus using
small lenses arranged on a 2D grid that are able to capture multiple images of
a scene with viewpoint variations [Lippmann, 1908a; Lippmann, 1908b]. The
captured scene is reproduced in 3D as the viewer sees the parallax while the
viewpoint changes. Since its invention, there had been many improvements of its
design through a series of patents by many inventors, but it was much later when
it started drawing attentions from research communities.

Adelson and Bergen [1991] proposed what they called the plenoptic function to
systematically categorize the visual elements (stimuli) in early vision, which in
combination, form visual information in the world. The plenoptic function rep-
resents the spectral radiance distribution of rays, and is defined as a multidimen-
sional function of a position, an angular direction at the position, a wavelength,
and a point in time. They cataloged the kind of visual stimuli as a local variation
in one or more dimensions of the plenoptic function. Adelson and Wang [1992]
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presented the design of the plenoptic camera where the light rays gathered through
the main lens are recorded separately using a lenticular array placed on the sensor
plane. They implemented the design using a set of relay lenses, and the light field
recorded with this camera was used to obtain the scene depth by analyzing the
directional variation of the radiance captured in the image.

In 1996, Levoy and Hanrahan [1996] and Gortler et al. [1996] proposed image-
based rendering algorithms that are based on the representations they called the
light field and the Lumigraph, respectively. Except for a few differences on the
acquisition setups and the use of geometry proxy, the representation itself was
largely in common, which is the now well-known two-plane light field. Further
research immediately followed and the light field became available to many other
areas, among which are computational photography [Veeraraghavan et al., 2007;
Levin et al., 2008b; Levin et al., 2009] and computational 3D displays [Wetzstein et
al., 2011; Lanman et al., 2011; Wetzstein et al., 2012]. Isaksen et al. [2000] studied the
reparameterization of light fields, which became the basis of one of the best known
applications of the light field—post-capture digital refocusing. Ng et al. [2005]
presented the prototype of the first hand-held light field camera based on the
design similar to that of Adelson and Wang, and demonstrated a few photographic
effects such as an extended depth of field. This work led to Lytro, the first consumer
light field camera.

2.2 Light Field Acquisition

A light field can be captured in various ways. Many of them rely on a controlled
acquisition setup. Levoy and Hanrahan [1996] used in their paper a robotic gantry
to position a camera to different viewing locations in a plane to sample the regular
4D ray space. Later researchers started using a few dozens of synchronized video
cameras so that they can incorporate the temporal dimension and capture dynamic
scenes. Yang et al. [2002] and Matusik and Pfister [2004] each built a system
including acquisition, transmission, and rendering of light fields, using an array
of video cameras and 3D displays, which amounts to a complete 3D TV system.
Wilburn et al. [2005] developed a large-scale, high-performance camera array
system, including 128 video cameras spanning about 1 meter horizontally and
vertically. Joshi et al [2006] used a one-dimensional camera array and a motorized
linear stage for their real-time matting system, which is similar to our acquisition
setup we describe in Chapter 3. The size of such camera arrays varies from the one
as tiny as a thumbnail [Venkataraman et al., 2013] that was deployed to mobile
phones, to light domes that can accommodate a full human body with greater
directional coverage [Kanade et al., 1997; Beeler et al., 2011; Joo et al., 2014].
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While these acquisition devices can be built without having to design custom
optics, they are often bulky and not portable, and require a huge data bandwidth
to be dealt with. To address such problems, researchers tried to use conventional
digital cameras. Ng et al. [2005] prototyped a hand-held light field camera, where
they placed a micro-lens array on the sensor plane of a medium-sized camera to
separate the light rays gathered by the camera’s main lens. They used the matching
f -number between each micro-lens and the main objective lens to maximize the use
of sensor pixels. They demonstrate interesting applications using their prototype
camera such as viewpoint change, refocusing, and all-in-focus imaging. Georgiev
et al. [2006] explored along a similar direction, but instead of placing a regular lens
array on the sensor plane, they placed a hexagonal array of lenses with varying
focal lengths in front of the camera’s main lens. Veeraraghavan et al. [2007] and
Liang et al. [2008] used coded aperture techniques to computationally demultiplex
the light rays collected through the camera’s main lens at the price of reduced
optical performance. Wetzstein et al. [2013] further discussed multiplexing light
fields onto a 2D image sensor and developed a theory for multiplexing and a
computational reconstruction algorithm. While these methods are usually more
portable and able to capture light fields single-shot, they have an inherent problem:
they have to share a single 2D image sensor to record both angular and spatial
samples, thereby forced to trade between the resolutions of them. Currently, the
designs based on micro-lenses are most common in the light field cameras on the
market.

While the aforementioned methods rely on controlled acquisition setups, some
strove for unstructured capture. Gortler et al. [1996] captured a collection of
unstructured images and used them to populate the 4D ray space. They used
markers to estimate the camera pose for each image and addressed the issues to
fill the regular 4D grid data structure using unstructured input. Davis et al. [2012]
further pursue this direction and proposed an interactive system which guides the
user to orient the camera to capture the under-sampled part of the light field. There
are hybrids of the structured and unstructured approaches; Zhang and Chen [2004]
and Nomura et al. [2007] proposed reconfigurable, non-rigid camera arrays that
allow the user to reshape or bend the camera array to meet a particular need of the
user.

Although many such acquisition methods are proposed and built for specific
applications in mind, design questions arising in the course are often answered
based on experiences or empirical estimates, e.g., the required number of cameras
and their locations, the resolution of cameras, etc. We address this issue later
in Chapter 5, where we propose an analysis model that can help answer such
questions.

A significant challenge of acquisition is that the captured set of images is very data-
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intensive and also redundant. Thus, the early papers already discussed compact
representations and compression schemes. Levoy and Hanrahan [1996] propose
several representations for 4D light fields and apply a lossy vector quantization
followed by entropy coding, while Gortler et al. [1996] applied standard image
compression like JPEG to some of the views, and also pointed out the importance
of depth information for sparser representation. Criminisi et al. [2005] investigated
the segmentation of epipolar-plane images (EPIs) in 3D light fields into tubes
representing layers of different objects. See Section 3.1.3 for an introduction to
EPIs and 3D light fields. Storing colors and depth for each tube then gives a
more compact representation of the light field. They also propose a method
for detecting and removing specular highlights, but no solution for compactly
storing this view-dependent information. Surface light fields [Wood et al., 2000;
Chen et al., 2002] are an attractive solution to capture view-dependent effects, but
they require accurate 3D geometry obtained by active scanning techniques. One
component of our contribution is a sparse light field representation presented in
Chapter 4 that differs from those previous approaches, fully reproduces the input
light field including view dependent surface reflectance, and tightly integrates
with our algorithm for depth estimation. The need for compact representation
and efficient acquisition further motivates our analysis on light field sampling in
Chapter 5.

2.3 Geometry Reconstruction

3D geometry reconstruction has been studied for decades and there is a huge body
of research work. We focus on the reconstruction methods applicable for light fields,
and cover methods in a broader context only briefly. One of the first approaches
to extract depth from a dense sequence of images is the seminal work of Bolles et
al. [Bolles et al., 1987; Bolles and Baker, 1987]. To our knowledge their technique
is the first attempt to utilize the specific linear structures emerging in a densely
sampled 3D light field for depth computation. However, the employed basic line
fitting is not robust enough for a dense reconstruction of real world scenarios with
occlusions, varying illumination, etc. and the reconstructions shown are sparse
and noisy. On the other hand, many other methods adopt techniques from classical
stereo reconstruction, i.e., matching corresponding pixels in all images of the light
field, essentially using robust patch-based block matching [Zhang and Chen, 2004;
Vaish et al., 2006; Bishop et al., 2009; Georgiev and Lumsdaine, 2010]. Along similar
lines, Fitzgibbon et al. [2005] and Basha et al. [2012] describe robust clustering
techniques to identify matching pixels. Ziegler et al. [2007] propose to analyze
the Fourier spectra of EPIs sheared according to a hypothesized depth. As we
demonstrate in our comparisons, such approaches often do not scale well to
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high resolution light fields in terms of reconstruction quality and computational
efficiency. Alternatively, one can extract depth from a light field using depth-from-
(de)focus techniques such as Pentland [1987] and Grossmann [1987] by refocusing
the light field at various focal planes and estimating the distance of the best focus,
or even combining both approaches based on defocus blur and correspondence
matching [Tao et al., 2013]. However, those methods face challenges similar to
standard stereo approaches such as inaccuracies at silhouettes, but also have
limitations due to the aperture size [Schechner and Kiryati, 2000].

In order to achieve higher overall coherence, various methods estimate depth
as the minimizer of a global energy formulation where smoothness assumptions
can be enforced [Adelson and Wang, 1992; Stich et al., 2006; Liang et al., 2008;
Bishop and Favaro, 2010]. Notably, the recent energy-based approach of Wanner
and Goldluecke [2012a] gives high quality depth maps from 4D light fields. But as
for any global optimization method this comes at a very high computational cost.
For example, the authors of the latter work report 10 minutes per single view depth
map at 1 megapixel resolution. The direct application of such approaches to higher
resolutions seems impractical. A second difficulty with approaches based on
global optimization is to tune the underlying smoothness assumptions to preserve
precise depth discontinuities at object contours, which are of highest importance in
practice [Sylwan, 2010]. Fine details are often lost due to the involved coarse-to-fine
multi-scale algorithms needed to avoid local minima. Our approach is particularly
suited for such applications as it reconstructs precise depth estimates at the single
pixel level, without the need for explicit global regularization; see more details in
Chapter 4.

To illustrate the novel challenges arising from high resolution, densely captured
light fields, we compare our results to some of currently best performing two-
and multi-view stereo algorithms. For a more complete overview please refer to
the evaluations of Scharstein and Szeliski [2002] and Seitz et al. [2006]. Despite
considerable progress in this area [Kolmogorov and Zabih, 2001; Hirschmüller,
2005; Rhemann et al., 2011], with only two input views available one has to rely on
complicated (patch) matching and some form of global smoothness. To alleviate
over-smoothing of discontinuities, one can operate on larger image segments, or
superpixels [Zitnick et al., 2004; Zitnick and Kang, 2007], but this may lead to
over-segmentation artifacts in the depth maps at textured image regions. Also,
with only a few views available, explicit detection and handling of occlusions is
often required [Humayun et al., 2011; Ayvaci et al., 2012], which further increases
the computational load. Some methods [Goldlücke and Magnor, 2003; Bleyer et
al., 2011] jointly estimate depth and segmentation, but these again rely on costly
global optimization. An alternative is to match a few reliable pixels only [Čech and
Šára, 2007], and to densify the result later by spreading the sparse estimates [Sun et
al., 2011]. However, existing approaches for sparse sample propagation generally
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require a global energy minimization [Geiger et al., 2010], are prone to artifacts
as shown in Szeliski and Scharstein [2002], or produce visually pleasing, but
often physically distorted results [Lang et al., 2012]. Multi-view stereo techniques
consider a larger number of images, spanning from tens [Seitz and Dyer, 1999;
Kang and Szeliski, 2004; Zitnick et al., 2004; Vu et al., 2009; Beeler et al., 2010;
Furukawa and Ponce, 2010] to several thousands [Snavely et al., 2008; Furukawa et
al., 2010] to compute a more complete scene representation rather than single depth
maps. However, these methods often provide either accurate but still sparse, or
dense but over-smooth geometry and often do not scale well to very high resolution
images. The coverage of the reconstructed scene with our method is higher than
that of two-view stereo techniques, but lower than full 3D models generated with
multi-view stereo. However, in contrast to the previously discussed techniques
our algorithm produces a dense scene reconstruction with precise contours that
is readily available for various applications such as novel view synthesis, depth-
based segmentation, and other image-based applications.

2.4 Sampling Analysis

In computer graphics, two broad classes of reconstruction problems have been
addressed from input of a collection of images (i.e., light rays). The goal of the
first class, including light field rendering, is to reconstruct the view (i.e., a set of
rays) from an arbitrary location from the measured values scattered in the domain.
The second class, which includes geometry reconstruction, strives to infer the
geometric structure of the scene from the measured radiance along light rays. This
second class overlaps with multi-view stereo algorithms in computer vision. We
concern ourselves with a general method of selecting the appropriate set of views
which will be supplied to improve the fidelity of the reconstruction.

With alias-free rendering as its goal a substantial body of literature studied sample
optimization strategies for light fields. Isaksen et al. [2000] and Gortler et al. [1996]
address how to resample rays from already captured light fields for high quality
rendering by reparameterizing light fields and using rough geometry, respectively.
Lin and Shum [2000] provide an analysis given constant depth assumption, while
Chai et al. [2000] further discuss the optimal sampling rate, e.g., the minimal
number of views, when provided with either accurate or approximate depth in
addition to the constant depth. Similarly, Shum et al. [2007] discuss light field
sampling for reconstruction under alternative levels of provided depth information.
Further, Zhang and Chen [2006] explore sampling analysis including reconfigu-
ration of camera positions for improved render quality, for their reconfigurable
camera array [Zhang and Chen, 2004]. Durand et al. [2005] explore more general
physical phenomena regarding light transport and analyze them using Fourier
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theory. Egan et al. [2011] derives the frequency analysis of occlusion in 4D ray
space and present a filter to lower sampling rates for soft shadows. The focus of
a target application area yields further opportunities for research, for example:
Zwicker et al. [2006] analyze the light field signal towards an optimal reconstruc-
tion filter in the context of multi-view stereoscopic displays; Levin et al. [2008a;
2009; 2010] discuss the light field sampling for a wide variety of acquisition se-
tups; and Davis et al. [2012] present an interactive light field acquisition system,
where they determine the optimal sampling based on reprojection errors derived
geometrically.

While it has been thoroughly studied for optimal rendering, the sampling prop-
erty for optimal geometry recovery has not received as much attention. On the
other hand, several previous works in robotics [Krainin et al., 2011], laser scan-
ning [Maver and Bajcsy, 1993; Scott et al., 2003], shape recovery [Kutulakos and
Dyer, 1994], and photogrammetry [Olague and Mohr, 2002] have pointed out the
benefits of planning or selecting a next best view for improved localization, inspec-
tion, and reconstruction quality. Selecting an optimal camera separation is impor-
tant for the quality of triangulation-based reconstruction methods. Okutomi and
Kanade [1993] and Gallup et al. [2008] proposed to use variable baseline lengths de-
pending on the hypothesized depth of a scene point, to improve the accuracy of tri-
angulations. Vazquez et al. [2003] propose a framework similar to ours, where they
develop a score that measures the amount of information seen from a viewpoint
and determine the minimal number of viewpoints in a greedy manner. However,
their score is motivated by image-based rendering while ours is based on geometry
recovery. Also closely related are the view selection and view clustering in multi-
view stereo, where one has to deal with a large collection of unstructured images
and thus it is an important problem to maintain the computation tractable while
not compromising the quality of reconstructions. For this, often employed strate-
gies are to subsample images from a larger image collection [Goesele et al., 2007;
Hornung et al., 2008], or cluster the images into several sets that can be processed
in parallel [Furukawa et al., 2010], while minimizing the negative influence on the
output quality. While these methods all achieve considerably improved results
by targeting their strategies to the specific underlying algorithms, they often do
not generalize well to other methods and do not always provide an extendable
theoretic framework.

We provide a sampling analysis model motivated by geometry reconstruction from
light fields, and propose a view sampling algorithm based on this model. Our
analysis is based on trading off between two conflicting criteria of the visibility
and the depth resolvability to determine whether the depth of a pixel can be
estimated with enough accuracy. Our algorithm analyzes the very scene that
is being captured, and estimates the distribution of pixels that can be faithfully
reconstructed, to locate the best sampling positions.
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2.5 Light Field Rendering

Since the light field was initially adopted for image-based rendering, there are
many related research works. As discussed before, the two papers of Levoy and
Hanrahan [1996] and Gortler et al. [1996] addressed many issues regarding light
field rendering, including rendering algorithms, pre-filtering for anti-aliasing, and
re-sampling and interpolation for novel view synthesis. In particular, Gortler
et al. addressed the use of depth for higher quality rendering. Later, Isaksen
et al. [2000] introduced synthetic aperture refocusing on fronto-parallel planes
via reparameterization of light fields. Vaish et al. [2005] extended the refocusing
to slanted planes. Shum and Kang [2000] review a broad range of early image-
based rendering techniques according to how much geometric information is
required. While previous techniques rely on regularly sampled light fields, i.e.,
those captured from cameras on a regular and planar grid, Buehler et al. [2001]
presented a rendering algorithm that takes unstructured light fields as input.
In particular, they integrated into a single framework two conceptually distant
rendering algorithms, namely, the rendering of regularly sampled light fields with
few geometric assumptions and the view-dependent texture mapping [Debevec
et al., 1996] which requires relatively accurate geometric models but a smaller
number of images. Davis et al. [2012] further extended it to an interactive system
that acquires and renders unstructured light fields.

Availability of rough scene geometry can be used to achieve more faithful rendering.
Isaksen et al. [2000] described how an approximate depth proxy may compensate
sparse angular sampling, extending the initial idea of Gortler et al. [1996]. Similarly,
Wanner et al. [2011] used a rough depth map to render light fields from a micro-
lens array camera. Bishop et al. [2009] used depth information to super-resolve
light fields. A few other methods reconstructed more elaborated 3D geometry
proxies for rendering from a wider range of viewing positions. Zitnick et al. [2004]
computed per-view depth maps for a layered scene representation and used border
matting when warping each layer and compositing one over another. Hornung
and Kobbelt [2009] proposed a GPU-accelerated particle rendering pipeline which
uses per-view dense geometry proxies consisting of silhouette-aware particles.
The rendering system integrates the particle cloud to generate output views at
an interactive rate from novel viewing positions. An image-based rendering
algorithm proposed by Chaurasia et al. [2013] uses superpixels, i.e., image over-
segmentations, as its rendering primitives to deal with missing or unreliable depth
information of the scene. These superpixels tend to honor object boundaries and
hence depth discontinuities, and synthesized depth values are assigned to those in
poorly reconstructed regions for plausible rendering with varying viewpoints.

In our rendering algorithm, novel images are synthesized directly from a light field.
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These output images are created out of diverse rays contained in the light field,
and effectively include the rays of multiple perspectives. This is the key to provide
a high level of flexibility that allows for fulfilling complex output stereoscopic
constraints.

In the history of art multi-perspective imaging has been used by painters and
artists as a fundamental stylistic tool. Similar methods have later been employed
by animators in movie production, e.g., for drawing backgrounds for 2D cell ani-
mation [Thomas and Johnston, 1995]. The computer graphics and computer vision
community further studied the geometry and applications of multi-perspective
imaging; a good overview is presented by Yu et al. [2010]. Wood et al. [1997] de-
scribe a first computer-assisted method to compute multi-perspective panoramas
from a collection of perspective images. In the recent years many other types
of multi-perspective cameras and corresponding images have been introduced:
pushbroom cameras [Gupta and Hartley, 1997] and related multiple-center-of-
projection images [Rademacher and Bishop, 1998], cross slit cameras [Pajdla, 2002;
Zomet et al., 2003], or general linear cameras [Yu and McMillan, 2004]. In our
work we do not assume any particular camera model. Instead the (multiple) per-
spectives of our images are optimized subject to prescribed stereoscopic disparity
constraints.

The two most related publications to our algorithm are the works by Seitz [2001]
and Peleg et al. [2001]. Seitz [2001] analyzes the space of all possible image types
that provide depth cues due to binocular parallax, including multi-perspective im-
ages. He formally showed that epipolar geometry generalizes to multi-perspective
images. His work provides a theoretical basis for our discussion of stereoscopic
constraints and light field parameterization in Chapter 6. Peleg et al. [2001] provide
a framework to construct multi-perspective omnidirectional stereoscopic images.
Their method takes a video cube that captures a 360° panorama, and constructs two
views that form a stereoscopic panorama with the disparity locally manipulated.
They show how to dynamically adapt the baseline to modify scene parallax by
a local selection scheme for image columns. Our work is inspired by these ideas
and extends them to a more general and flexible framework using light fields,
which generates globally optimal output views with respect to arbitrary, per-pixel
disparity constraints.

2.6 Stereoscopic Rendering

This section briefly reviews existing techniques about stereoscopic rendering and
content editing roughly in the order of increasing expressiveness. The readers
interested in a broader range of related techniques are referred to recent surveys,
such as Masia et al. [2013b].
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The most basic means of disparity modification is to change the inter-axial distance,
which is the distance between the two cameras’ optical centers and also known
as the baseline, and the convergence, the amount of rotation against each other
around their vertical axes. The inter-axial distance scales the amount of perceived
depth and the convergence translates the scene volume backward or forward when
displayed, by shifting the plane of zero binocular parallax. Woods et al. [1993]
identify such camera parameters that define the geometry of stereoscopic camera
and display systems, and analyze the image distortions due to the variation of
parameters. Jones et al. [2001] propose a method for controlling camera parameters
by analyzing the scene depth range and mapping it to a given disparity budget. For
this purpose, they separate the image space and the display space and provide a
transformation between them. Holliman [2004] describes a system that compresses
the scene depth for stereoscopic displays by identifying a region of interest and
optimizing the perceived depth for this region compared to the rest of the scene.
Zwicker et al. [2006] discuss how to optimize for the baseline and convergence by
reparameterizing an input light field when rendering it for 3D automultiscopic
displays. However, their concern is more on alias-free rendering rather then content
editing, and their approach is to map the desired depth range to the in-focus range
of the target display, blurring out the content outside the depth range.

In recent work, the control of baseline and convergence as well as other camera
parameters, such as the field of view, camera movement, and so on, is almost
fully automated according to the content of the scene about to be captured or
rendered. The computational stereo camera of Heinzle et al. [2011] analyzes
the scene it is capturing in real-time and adjusts those parameters, so that the
captured scene remains in the stereoscopic comfort zone [Shibata et al., 2011].
Oskam et al. [2011] implement a similar idea in the context of real-time rendering
such that the virtual scene is rendered in a fail-safe manner. Koppal et al. [2011]
provide a detailed discussion on camera parameters for optimal stereo in their
proposed shot-planning and post-production pipeline. Their tool converts the
desired stereoscopic edits to optimal camera parameters. The control capability
with only the camera parameters, however, is not enough for most application
scenarios. Their expressive power is notably limited in that their change introduces
a global effect over the entire screen space on the perceived depth, while in practice,
more local control over stereoscopic depth perception is preferred. In addition, the
parameters are determined with respect to a certain viewing condition, such as
the screen size and viewing distance, and the content generated for one particular
target cannot be easily adapted to different ones, requiring the same process to be
redone for other viewing conditions.

Besides capturing the content stereoscopically, many techniques have been devel-
oped for creating stereoscopic content from existing 2D content. For computer-
generated content, the scene depth is usually known and used to synthesize two
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or more views for the target display. Given target disparities, the output images
are rendered in several different manners, spanning from fast algorithms targeted
for real-time applications to more sophisticated image warping techniques based
on optimization and image decomposition. Bowles et al. [2012] proposed a fast
image warping technique using fixed point iteration that is ideally targeted for
real-time applications such as video games. Being part of the rendering pipeline,
it has access to almost the complete information about the scene including the
geometry, and the information additionally required can be rendered on demand.
Along a similar line is the method of Didyk et al. [2010], which takes a single
image and a depth buffer, and generates two views for the left and right eye using
image-space adaptive grid warping at an interactive rate. Masia et al. [2013a]
extend it to generate multiple output views to feed 3D automultiscopic displays.
They also present a perceptually based disparity remapping that can compensate
for the limited disparity bandwidth of 3D displays. Both methods use the same
rendering technique, which handles disocclusions by stretching grid quads and
may lead to visual artifacts.

While usually available in the animation pipeline for those method, precise depth
information is not generally given for real-world content, and obtaining it from
monoscopic input often requires manual interaction. Wang et al. [2011] propose an
interactive user interface for the creation and manipulation of stereo content from
existing 2D content, based on sparse user scribbles to annotate the scene depth
that are propagated to fill the entire image space. However, in their method the
resulting images are essentially warped versions of the original image, and thus
often include noticeable distortions around the occlusion boundaries in particu-
lar. Ward et al. [2011] propose a system for 2D-to-3D conversion, where they use
various computer vision and graphics techniques to aid the established workflow
in movie productions based on rotoscoping and inpainting. However, the con-
version essentially relies on image segmentation and warping, which are prone
to errors, sharing the same problem described above, are not capable to handle
view dependent effects such as specular highlights, and require intensive manual
interaction.

For finer control over the stereo depth perception of existing 3D content, the usual
strategy is to locally manipulate disparities of matching image features between
two views. Several approaches have been proposed to implement such manip-
ulation given particular requirements to the output stereoscopic images. The
method of Lang et al. [2010] computes sparse correspondences between given
two images and warps the images using a variational framework such that the
correspondences will have modified parallax in the deformed image pair. To
describe the desired artistic manipulation, they formally define a collection of
disparity remapping operations, including nonlinear ones, which enable sophis-
ticated control over disparity modification. Chang et al. [2011] proposed a sim-
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ilar editing process, but use an image warping technique based on 2D mesh
deformation to render output stereoscopic images. Didyk et al. [2013] used the
phase-based motion magnification technique [Wadhwa et al., 2013] to modify and
retarget disparities of stereo content to create pre-filtered, multi-view output for au-
tostereoscopic displays. Focusing on perceptual issues, Didyk et al. [2012b; 2012a;
2011] proposed remapping operators that minimize the discomfort perceived by
the human visual system. The modified disparity is rendered back to stereo views
using the technique based on image decomposition.

As for the single view methods, all of these methods use smooth 2D warping of
a stereoscopic image pair or image inpainting techniques to deal with modified
disparities, and thus they are prone to bend salient scene structures such as straight
lines. Furthermore, other visually relevant cues such as disocclusions cannot be
handled by these method. They are therefore restricted with respect to the amount
of remapping that can be achieved without producing noticeable visual distortions,
and do not allow for per-pixel control over disparities. Moreover, they cannot easily
generalize to more than two input views. Our approach inherently benefits from
richer scene information, and is fundamentally different from the aforementioned
methods: it selects actual light rays from an input light field in order to achieve
per-pixel disparity control, instead of using image deformations or inpainting.
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This chapter formally defines the light field and introduces the notations used
throughout the thesis. Common parameterization schemes of light fields are
presented as well as the their acquisition methods widely used in practice.

3.1 Light Field Parameterization

A light field represents the light transport at all positions in space for all directions
at all time. As the light ray is the elementary entity that transports light and the
radiance the unit for the amount of transport, a light field is a radiance function of
a ray, and its parameterization schemes directly follow those of rays. In the follow-
ing, common parameterization schemes are presented in the order of decreasing
dimensions.

3.1.1 The Plenoptic Function

When Adelson and Bergen [1991] proposed the plenoptic function, they defined it
as a function of a 7-dimensional domain and a scalar range:

P(x, y, z, θ, φ, λ, t). (3.1)

Its domain includes a 3D position (x, y, z), a direction at that position as a polar
angle (θ, φ), a wavelength λ, and a point in time t; its range is a real-valued spectral
radiance. Since it is unrealistic to sample the function directly because of its high
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dimensionality and measurement difficulties, simplification is further made in
many practical uses.

Often omitted in practice are the wavelength λ and the time t. In most represen-
tations widely used, the radiance is sampled at three wavelength bands, often
coinciding with red, green, and blue according to three types of photoreceptors in
the human visual system, and stored as a tuple of three real numbers. This drops
the wavelength, but turns the scalar function to a vector valued function in R3.
The time is often treated as a fixed parameter and one deals with a snapshot of the
light field captured at a particular time, further discarding one dimension. This lets
us drop two parameters from the full plenoptic function, leaving five geometric
parameters only—the position and the direction.

These five parameterize a ray in 3D space and form the so called ray space, where
a line (ray) is represented as a 5D point. In order to capture the complete visual
information of a 3D scene, one has to sample this 5D space as densely as required
for the postulated application scenario. In practice, it is not easy to place the sensor,
usually a camera, to measure the radiance in, e.g., concave parts of the scene with-
out blocking natural illumination. Further, the 2D rectilinear image of conventional
cameras has to be projected onto the surface of a spherical parameterization for
directional sampling, but so does only with large distortions. Together with its
limited field of view, it requires that a specialized, omnidirectional sensor probe be
designed and the projection be carefully handled. For those reasons, a few further
assumptions are made in most practical parameterizations: sensors are positioned
on a 2D convex manifold in 3D space, directions are sampled on 2D Cartesian
coordinates instead of spherical coordinates, and so on.

3.1.2 4D Light Fields

Among the most widely used parameterization schemes is the two-plane parame-
terization, where one is interested in only the rays passing though one plane π0,
followed by the other π1, and any such ray is parameterized by the coordinates
of its two intersections (s, t) and (u, v) with two planes π0 and π1, respectively;
see Figure 3.1. With this parameterization, one can only capture the radiance in
free space outside of a convex region, and may need to capture several light fields
to cover the entire exterior of the convex region. Further, the radiance of a ray is
assumed constant in free space along its progress. In practice such assumptions do
not impose much limitation, since it is rarely realistic to place a sufficiently large
number of sensors at 3D locations in a considered scene to measure the radiance,
and in many scenes there is little interaction between rays and the medium—
usually the air. As it requires four parameters to describe a ray, the light field
parameterized accordingly is a 4D function L4 : R4 → R3 with the radiance r ∈ R3
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Figure 3.1: Two plane parameterization of a ray. The ray is parameterized by the two
intersections (s, t) and (u, v) with planes π0 and π1, respectively.

given as:
r = L4(u, v, s, t). (3.2)

Since its first use in Levoy and Hanrahan [1996] and Gortler et al. [1996], the
two-plane parameterization is predominantly used in most literature. Its wide
adoption is largely due to its conceptual simplicity and, more importantly, its
native compatibility to the typical 2D rectilinear alignment of acquisition devices
like the micro-lenses or camera arrays, and the 2D regular pixel arrangement of
most imaging sensors.

3.1.3 3D Light Fields and EPIs

If we fix one of the two coordinates on π0, say t, so that π0 reduces to a line, the
ray space of the resulting light fields will span the u, v, and s dimensions of the
original ray space. We call a such parameterized light field a 3D light field. A 3D
light field can be denoted as a function L3 : R3 → R3. The radiance r ∈ R3 of a
light ray is given as

r = L3(u, v, s), (3.3)

where s describes the 1D ray origin and (u, v) represent the 2D ray direction.

Several 2D slices of a light field have been known already, but as different names.
A us-slice is obtained by reducing one dimension, v, also from π1. Often called
a flatland light field, it represents a light field of a hypothetical height-less world,
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where the light field is parameterized by two lines instead of planes. In this hypo-
thetical world, a light field may be obtained using (1D) pinhole cameras aligned on
a line. There, every pair of two pinhole cameras forms epipolar geometry, and in
particular, a special case of epipolar geometry where the epipolar plane of any pair
overlaps entirely with any other pair’s. Further, any (2D) point in the flat world
seen from one camera has the same epipolar line against any other cameras. For
these reasons, such slices were named as epipolar-plane images (EPI) by Bolles et
al. [1987]. We denote an EPI as Ev : R2 → R3, with radiance

r = Ev(u, s) (3.4)

of a ray at position (u, s) and fixed parameter v. We revisit the 3D light field and
EPI in Chapter 4 and study them more thoroughly.

A uv slice fixing s and t is simply a perspective pinhole image Is,t(u, v). A vs- or ut-
slice has been known as a push-broom image. Push-broom images can be obtained
using a line-sensor sweeping the scene in the direction orthogonal to its linear
sensor alignment, and have been widely used in satellite imaging [Gupta and
Hartley, 1997] and manufacturing inspection on belt conveyor systems [Soukup et
al., 2014].

3.1.4 Notational Conventions

In many works in computer graphics, the phrase plenoptic function refers to the
full 7D function, or less frequently the 5D function of geometric parameters, while
the light field and the Lumigraph specifically mean the 4D function. In this thesis,
we use the phrase light field exclusively regardless of the dimensionality, and
specify the dimension when necessary. Our notation for 4D light fields coincides
with that of Gortler et al. [1996], while (u, v) in our notation is (s, t) of Levoy and
Hanrahan [1996] and vice versa. For the rest of the thesis, we omit the subscript 3
or 4 from the notation for a light field L. However, the dimension of the light field
should be obvious from the context. In analogy to image-pixels, we often use in this
thesis the term EPI-pixel (u, s) instead of the term ray at (u, s) for disambiguation.
Much of our discussion considers individual EPIs with parameter v fixed, and we
often omit the subscript v from an EPI E for notational simplicity.

Often, the terms “spatial” and “angular” are used in a confusing way. We use
“spatial” to denote what is related to the uv-plane (π1), and “angular” to the st-
plane (π0), which seems more conventional in literature. This usage of words,
however, admits of ambiguity as a uv coordinate actually determines the direction
of a ray and an st coordinate its origin. We use the terms “directional” and
“positional” for disambiguation. We use either of the two sets of terms whenever
appropriate, but try not to mix them.
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Unless stated otherwise, we assume linearized RGB color space, where a sampled
radiance r is represented as a 3-vector (r, g, b) in the unit cube [0, 1]3 ⊂ R3. A
parenthesized list of scalars, e.g., (u, v), is used to denote a column vector [u v]T,
when there is no ambiguity.

3.2 Light Field Acquisition

While numerous methods are available for light field acquisition, they are largely
categorized into two classes, structured setups and unstructured setups, and the
structured setups may be further divided into two categories depending on the
types of optics used. This section describes only the most common acquisition
setups.

3.2.1 Camera Arrays and Gantries

A straightforward sampling approach of a light field parameterized by two planes
is to place cameras on one plane facing towards the other. In the acquisition setups
using a camera array or a camera gantry, these camera positions are populated by
multiple cameras or traversed sequentially by a single camera operated by, e.g.,
a robotic arm or stage. Each camera’s center of projection is usually placed on
a 2D regular grid on π0, such that the two-dimensional coordinate (s, t) of the
camera’s position on π0 directly relate to two of the four light field parameters.
The cameras are so oriented that the common virtual image plane matches π1 and
the image coordinates (u, v) coincide with the rest of light field parameters. Thus
any pixel in the collection of images represents a (box-filtered) sample radiance of
the ray that corresponds to a 4D point (u, v, s, t) in the ray space of the light field.
In practice, the captured images are rectified to compensate for alignment errors.
Rectification can be done by estimating a 2D homography between each image
and the reference coordinate frame of π1 and warping it according to the estimated
homography [Levoy and Hanrahan, 1996], but full 3D camera pose estimation can
also be used; see Section 3.3.

A special case includes when the coordinate system of π1 is defined local to each
camera position (s, t) ∈ π0. This happens when the principal axes of all cameras
are oriented the same and perpendicular to π0. Mathematically, this is when π1 is
placed at infinity. In this case, the (u, v) coordinates alone denote directions, the
two-plane parameterization reducing to the plenoptic function’s position–direction
representation with the position defined on a 2D manifold in 3D space.
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(a) (b) (c) (d) (e)

Figure 3.2: Schematic of a light field camera (not drawn to scale): (a) an object, (b) camera
(main lens) aperture, (c) main lens, (d) micro-lens array, and (e) image sensor.

3.2.2 Light Field Cameras

While their individual optics may vary, light field cameras usually feature a sheet
of micro-lenses aligned on a regular 2D grid (Figure 3.2d), between the main lens
(Figure 3.2c) and the image sensor (Figure 3.2e) compared to conventional cameras.
These micro-lenses cover a small portion of sensor pixels and create the focused
image of the main lens aperture from different viewing angles, behaving like micro-
cameras sitting atop the sensor plane. Each micro-lens splits the converged light
rays based on their directions, allowing the array of pixels underneath it to record
the individual rays from different sub-areas of the main lens. The optics is usually
designed such that each micro-lens records the sharpest image of the aperture
of the main lens and covers as many pixels underneath it as possible while not
producing overlap with another [Adelson and Wang, 1992; Ng et al., 2005].

Any light ray entering the camera passes through the main lens and a micro-
lens, intersecting a sensor pixel in the end. Letting (u, v) be the coordinate of
the micro-lens intersecting the ray within the 2D regular arrangement, and (s, t)
be the coordinate of intersection within the aperture of the main lens, the ray

Figure 3.3: Light field cameras. These show the first and second generation light field
cameras from Lytro, © 2015 Lytro, Inc.
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can be parameterized by these four parameters. The pixel where this ray ends
up samples the integral of the radiance over a small 4D box around (u, v, s, t) in
the ray space, spanned by the micro-lens and the pixel’s conjugate area in the
main lens aperture [Ng et al., 2005]. Thus, the resulting 2D image from the sensor
samples the (box-filtered) 4D light field inside the camera. Related to the two-plane
parameterization, the main lens corresponds to π0 and the micro-lens array to π1.
Figure 3.3 shows two light field cameras currently on the market.

3.2.3 Unstructured Light Fields

An unstructured light field includes a sequence of images, each with its associated
camera parameters. The camera parameters relate a 3D point at x = (x, y, z) and
its image space coordinates u = (u, v) projected by a particular camera. They
include the intrinsic and extrinsic parameters: the former abstracts the camera’s
imaging process while the latter represents the 3D pose of the camera. Although
these images can be resampled to a regular structure closely corresponding to, e.g.,
a 4D light field [Gortler et al., 1996], often rays of interest defined in 3D space are
looked up directly from the images [Davis et al., 2012]. The camera parameters are
used in both cases.

A simplified camera model based on the pinhole camera is provided here. We
assume the camera optics are free from non-linear distortions such as radial dis-
tortions and tangential distortions, which can be removed separately as a pre-
processing step. Let I(u) denote a pixel of image I at 2D coordinate u ∈ ΩI , the
domain of image I, which is usually a rectangular subset of the camera’s image
plane.

The camera intrinsics can be summarized in a single projection matrix:

K =

 fm/wm fm/wm·cot θaxis u0 0
0 fm/hm v0 0
0 0 1 0

 , (3.5)

where fm is the camera focal length, wm and hm are the physical width and height
of a pixel, all three in meters, θaxis measures the angle between the two image plane
axes, and (u0, v0) is the image space coordinate of the principal point.

By further assuming that pixels are square and the principal axis intersects the
origin of the image plane whose two axes meet at a right angle, the matrix simplifies
to a function of the focal length f measured in pixels:

K =

 f 0 0 0
0 f 0 0
0 0 1 0

 . (3.6)
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The extrinsic parameters encode the 3D pose of a camera, and define the geometry
between cameras with respect to a global reference frame. A camera’s 3D pose is
determined by the position of its center of projection and the orientation of the
principal axis, and can be represented by an affine transformation in 3-space:

M =

 R t

0 0 0 1

 , (3.7)

where the 3×3 rotation matrix R represents the camera’s orientation, and the
translation vector t = −RTc with the 3D position of the camera c.

The extrinsic matrix M transforms a 3D point in the global reference frame to the
camera’s coordinate frame. Let us denote the homogeneous coordinates with tilde,
e.g., x̃ = (x, y, z, 1). Then the matrix M transforms the coordinate system so that

x̃c = Mx̃ (3.8)

is defined in the camera’s coordinate system. The intrinsic matrix K further trans-
forms any point in the camera coordinate system to the 2D image coordinate
system:

ũ =

u
v
1

 =

 f xc/zc
f yc/zc

1

 ∼
 f xc

f yc
zc

 = Kx̃c, (3.9)

so that u = (u, v) indicates the pixel coordinates of the imaged 3D point xc.

By chaining the two matrix multiplications, we relate a 3D point imaged by a
camera to its pixel location in the image:

ũ ∼ Kx̃c = KMx̃ =: Px̃, (3.10)

where the camera matrix P is defined as

P = KM. (3.11)

Thus, to look up the radiance of a ray passing through a 3D point x and imaged by
some camera i whose associated camera matrix is Pi, one has to find the intersec-
tion u of the ray on the image plane of camera i by Equation 3.10 and then sample
the radiance from the image, i.e.:

r = Ii(u) (3.12)

if u ∈ ΩIi , where u is obtained from ũ by dividing each component by the last
component and taking the first two (see Equation 3.9).
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Digital SLR camera

Motorized linear stage

Controlling computer

Figure 3.4: Our acquisition setup using a digital SLR camera translated by a motorized
linear stage. Both the camera and the linear stage are controlled remotely from a computer.

3.3 Capture and Calibration

We primarily use a motorized linear stage to capture light fields in addition to
unstructured, hand-held capture. The light fields captured using a linear stage have
only one-dimensional angular variation, compared to those that are parameterized
by two planes. The camera plane is replaced with a line, where the camera is located
with uniform spacing. In the case of hand-held capture, images are captured at
arbitrary locations and orientations and the accurate locations and orientations,
i.e., 3D poses, are estimated using structure-from-motion.

3.3.1 Capture Using a Linear Stage

We capture 3D light fields by mounting a consumer digital SLR camera on a
motorized linear stage. The camera is a Canon EOS 5D Mark II with a 50 mm
lens, with which we capture images at various resolutions up to 5616×3744 pixels,
which feature about 21 megapixels (MP). The linear stage is a Zaber T-LST1500D
that is 1.5 meter long and can be controlled from a computer to obtain an accurate
spacing of camera positions. We typically capture 100 images of a scene with
uniform spacing between camera positions. The spacing ranges from 2 mm to
15 mm. Chapter 5 discusses the optimal number of images and amount of spacing.
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The described setup works well in practice for capturing high spatio-angular
resolution light fields: it is cheaper and easier to handle than a full array of
cameras, while yielding much higher spatial and angular resolutions than single
light field cameras based on micro-lens arrays or coded aperture. A typical capture
session takes about 2 minutes, because for every picture we first move the camera,
stop, take the picture, and move again to ensure accurate spacing as well as to
avoid motion blur during capture. With a continuously moving setup under the
illumination bright enough, the acquisition time can be reduced to a few seconds
using video capture. While the spatial resolution of videos is lower than that of still
images in the camera we use, one can capture light fields with a very high angular
resolution thanks to a higher framerate. We use such captured light fields when
evaluating our sampling model in Chapter 5. The camera is driven in a manual
mode, so that all parameters including focal length, exposure, and white balance
remain the same during each capture session.

3.3.2 Hand-Held Capture

For the geometry reconstruction addressed in Chapter 4 unstructured light fields
are also used as input. We use the same camera as for the capture using the linear
stage described in Section 3.3.1, and also fix all camera settings during each capture.
A single capture includes a various number of images, mostly ranging between 50
to 100. The camera trajectory is often along a curved line roughly parallel to the
ground, attributed to the ease of manual capture.

3.3.3 Post-processing of Captured Images

All the captured images are corrected for gamma in case a non-linear encoding is
used, so that the pixel intensity has the linear response to the radiance. To closely
approximate a pinhole camera model, we use relatively large f -numbers (usually
around f /8) and correct the captured images for non-linear lens distortions using
PTLens1.

To compensate for possible mechanical inaccuracies of the motorized linear stage,
we estimate the camera poses using Voodoo camera tracker2, compute the least
orthogonal distance line from all camera centers as a baseline, and then rectify all
images with respect to this baseline [Fusiello et al., 2000].

For hand-held capture, the captured images are not rectified. Instead, the estimated
camera parameters are directly used to look up the rays required, as presented in

1http://www.epaperpress.com/ptlens/
2http://www.digilab.uni-hannover.de/docs/manual.html
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Section 3.2.3. Again, the camera parameters are estimated using a structure-from-
motion technique. However, we use VisualSFM3 for this, since Voodoo camera
tracker is designed for near-linear camera paths and VisualSFM often outperforms
it for non-linear, unstructured camera paths. We run it with the radial distortion
coefficient excluded from the estimation. After successful execution, VisualSFM
returns the focal length in pixels, the camera rotation as a quaternion, and the
camera 3D position, which are used to construct the camera intrinsic and extrinsic
matrices in Equations 3.6 and 3.7.

3http://ccwu.me/vsfm/
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4
Geometry Reconstruction

This chapter describes a method for scene reconstruction of complex, detailed
environments from light fields. Densely sampled light fields on the order of 109

light rays allow us to capture the real world in unparalleled detail, but efficiently
processing this amount of data to generate an equally detailed reconstruction
represents a significant challenge to existing algorithms. We propose an algorithm
that leverages coherence in massive light fields by breaking with a number of
established practices in image-based reconstruction. Our algorithm first computes
reliable depth estimates specifically around object boundaries instead of interior
regions, by operating on individual light rays instead of image patches. More
homogeneous interior regions are then processed in a fine-to-coarse procedure rather
than the standard coarse-to-fine approaches. At no point in our method is any
form of global optimization performed. This allows our algorithm to retain precise
object contours while still ensuring smooth reconstructions in less detailed areas.
While the core reconstruction method handles general unstructured input, we also
introduce a sparse representation and a propagation scheme for reliable depth estimates
which make our algorithm particularly effective for 3D input, enabling fast and
memory efficient processing of “gigaray light fields” on a standard GPU. We show
dense 3D reconstructions of highly detailed scenes, enabling applications such as
automatic segmentation and image-based rendering, and provide an extensive
evaluation and comparison to existing image-based reconstruction techniques.
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Figure 4.1: Our method reconstructs accurate depth from light fields of complex scenes.
The images on the left show a 2D slice of a 3D input light field, a so called epipolar-plane
image (EPI), and two out of one hundred 21 megapixel images that were used to construct
the light field. Our method computes 3D depth information for all visible scene points,
illustrated by the depth EPI on the right. From this representation, individual depth
maps or segmentation masks for any of the input views can be extracted as well as other
representations like 3D point clouds. The horizontal red lines connect corresponding
scanlines in the images with their respective positions in the EPI.

4.1 Introduction

Scene reconstruction in the form of depth maps, 3D point clouds or meshes has
become increasingly important for digitizing, visualizing, and archiving the real
world, in the movie and game industry as well as in architecture, archaeology,
arts, and many other areas. For example, in movie production considerable efforts
are invested to create accurate models of the movie sets for post-production tasks
such as segmentation, or integrating computer-generated and real-world content.
Often, 3D models are obtained using laser scanning. However, because the sets
are generally highly detailed, meticulously designed, and cluttered environments,
a single laser scan suffers from a considerable amount of missing data at occlu-
sions [Yu et al., 2001]. It is not uncommon that the manual clean-up of hundreds of
merged laser scans by artists takes several days before the model can be used in
production.

Compared to laser scanning, an attractive property of passive, image-based stereo
techniques is their ability to create a 3D representation solely from photographs and
to easily capture the scene from different viewing positions to alleviate occlusion
issues. Unfortunately, despite decades of continuous research efforts, the majority
of stereo algorithms seem not well suited for today’s challenging applications,
e.g., in movie production [Sylwan, 2010], to efficiently cope with higher and
higher resolution images1 while at the same time producing sufficiently accurate
and reliable reconstructions. For specific objects like human faces stereo-based

1Digital cinema and broadcasting are in the process of transitioning from 2k to 4k resolution (~2
megapixels to ~9 megapixels).
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techniques have matured and achieve very high reconstruction quality (e.g., Beeler
et al. [2010]), but more general environments such as the detailed outdoor scene
shown in Figure 4.1 remain challenging for any existing scanning approach.

In this thesis we follow a different strategy and revisit the concept of 3D light
fields, i.e., a dense set of photographs captured along a linear path. In contrast to
sparser and less structured input images, a perfectly regular, densely sampled 3D
light field exhibits a very specific internal structure: every captured scene point
corresponds to a linear trace in a so called epipolar-plane image (EPI), where the
slope of the trace reflects the scene point’s distance to the cameras (see Figure 4.1).
The basic insight to leverage these structures for scene reconstruction was proposed
as early as in 1987 [Bolles et al., 1987], and has been revisited repeatedly since
then (see, e.g., Criminisi et al. [2005]). However, these methods do not achieve
the reconstruction quality of today’s highly optimized two or multi-view stereo
reconstruction techniques.

With today’s camera hardware it has become possible to capture truly dense 3D
light fields. For example, for the results shown in Figure 4.1 we captured one
hundred 21 megapixel (MP) images using a standard digital SLR camera, effec-
tively resulting in a “two–gigaray” light field. While such data can capture an
unparalleled amount of detail of a scene, it also poses a new challenge. Over many
years the basic building blocks in stereo reconstruction such as patch-based corre-
lation, edge detection and feature matching have been tailored towards optimal
performance at about 1–2 MP resolution. In addition, most algorithms involve
some form of global optimization in order to obtain sufficiently smooth results.
As a consequence, it is often challenging to scale such approaches to significantly
higher image resolution.

In this chapter we propose an algorithm that specifically leverages the properties
of densely sampled, high resolution 3D light fields for reconstruction of static
scenes. Unlike approaches based on patch-correlation our algorithm operates at
the single pixel level, resulting in precise contours at depth discontinuities. Smooth,
homogeneous image regions are handled by a hierarchical approach. However,
instead of a standard coarse-to-fine estimation, we reverse this process and propose
a fine-to-coarse algorithm that reconstructs reliable depth estimates at the highest
resolution level first, and then proceeds to lower resolutions, avoiding the need for
any kind of explicit global regularization. At any time the algorithm operates only
on a small set of adjacent EPIs, enabling efficient GPU implementation even on
light fields in the order of 109 rays. We further increase efficiency by propagating
reliable depth estimates throughout the whole light field using a novel sparse data
structure, such that the algorithm effectively computes depth maps for all input
images concurrently. We also discuss how our reconstruction algorithm generalizes
to 4D light fields and unstructured ones, and how it can be applied to general 3D
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reconstruction problems. We demonstrate dense reconstructions of challenging,
highly detailed scenes and compare to a variety of related stereo-based approaches.
We also present direct applications to segmentation and novel-view synthesis.

4.2 Sparse Representation

Light fields are typically constructed from a large set of images of a scene, captured
at different viewing positions. A suitable representation of such data depends on
a plethora of factors, including for example structured vs. unstructured capture
of light fields, the targeted processing algorithms and applications, or just the
sheer amount of data. Accordingly various representations have been proposed
in the past [Levoy and Hanrahan, 1996; Gortler et al., 1996; Isaksen et al., 2000;
Buehler et al., 2001; Davis et al., 2012]. Our main focus is on 3D light fields of very
high spatio-angular resolution, i.e., light fields constructed from hundreds of high
resolution 2D images with their respective optical centers distributed along a 1D
line. We introduce a novel compact representation that enables efficient parallel
processing without the need to keep the full input light field in memory, and that
can be efficiently constructed during our depth estimation described in Section 4.3.

A 3D light field can be denoted as a map L : R3 → R3 with the radiance r ∈ R3

of a light ray given as r = L(u, v, s), where s describes the 1D ray origin and (u, v)
represents the 2D ray direction. While for given s, a uv-slice of this light field
corresponds to an input image, denoted by Is, a us-slice for a fixed v coordinate
corresponds to an epipolar-plane image, or EPI, denoted by Ev : R2 → R3 with
radiance r = Ev(u, s). The left half of Figure 4.1 shows two out of 100 input images
and an exemplary EPI. The horizontal red lines visualize both the respective s-
parameters of the two input images in the EPI as well as the v-parameter in the
input images from which the EPI has been constructed. See Chapter 3 for details
on notations and on how to capture 3D light fields in practice.

When the ray space of a 3D light field L is sampled densely enough, each scene
point appears as a line segment in such an EPI with the slope of the line segment
depending on the scene point’s depth. Correspondingly, the EPIs of 3D light
fields exhibit high coherence and contain very redundant information that can be
utilized for a more efficient representation. Rather than storing the full EPI, we can
in principle reconstruct it by knowing the parameters of those line segments. While
this basic idea is well known, we propose a new representation that specifically
considers two new aspects, namely completeness and variation of the represented
light field.

Assume we can accurately estimate the slope of line segments or, equivalently, the
depth of scene points. A first idea could be to simply collect and store the line
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Figure 4.2: Illustration of our sparse representation, using a cropped section from the EPI in
Figure 4.1. (a) Concerning completeness, consider the region shaded in green on the right. It
is occluded by the white structure and thus propagating color values from only the central
view, marked by the red horizontal line, would not reconstruct the highlighted region.
View-dependent variation, e.g., due to reflections in the building windows, is highlighted in
the blue framed region. We increased color contrast in the inset for improved visibility of
the color changes. Again, a reconstruction solely from the central view would not capture
these effects. (b) 3D visualization of EPI Ê reconstructed from our sparse representation Γ.
(c) Visualization of the difference between the input EPI and our reconstructed EPI Ê.

segments and their color along a single horizontal line of an EPI. In principle this
corresponds to storing a single input image and a depth map. A large number
of captured light rays may be occluded in this particular part of the EPI, hence
completeness of the representation would be compromised. In addition, scene points
may change their color along their corresponding line segment due to specularities
or other view dependent effects. Hence the above representation would not capture
variation in the light field. See Figure 4.2a for a visualization of both effects.

Our strategy for representing 3D light field data addresses these two issues. First,
we sample and store a set Γ of line segments originating at various locations (u, s)
in the input EPI E, until the whole EPI is completely represented and redundancy
is eliminated to the extent possible. Second, we store a difference EPI ∆E that
accounts for variations in the light field. More specifically, the slope m of a line
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segment associated with a scene point at distance z is given by

m =
1
d
=

z
f ·b , (4.1)

where d is the image space disparity defined for a pair of images captured at adja-
cent positions or, equivalently, the displacement between two adjacent horizontal
lines in an EPI, f is the camera focal length in pixels and b is the metric distance
between each adjacent pair of imaging positions. Correspondingly an EPI line
segment can be compactly described by a tuple

p = (m, u, s, rT), (4.2)

where r is the average color of the scene point in the EPI. Γ is simply the set of all
tuples p. The actual scheme of how we collect line segments p is part of the depth
computation described in the following section.

From Γ, a reconstructed EPI Ê can be generated by rendering the line segments in
the order of decreasing slopes, i.e., render the scene points from back to front. See
Figure 4.2b for a 3D visualization of the full representation Γ. Hence, for efficient
EPI reconstruction, Γ is stored as an ordered list of tuples in the order of decreasing
slopes. The difference ∆E = E− Ê of the input E and the reconstruction Ê captures
the remaining variation and detail information in the light field, such as view
dependent effects. This is illustrated in Figure 4.2c, where 50 % gray corresponds
to zero reconstruction error. Note a high value of ∆E for the specularities and at
inaccurate slope estimates.

Both Γ and ∆E compactly store all relevant information that is necessary to re-
construct the full 3D light field as well as extract an arbitrary input image with a
corresponding depth map, or a full 3D point cloud. As an example, for the EPI in
Figure 4.2, ~277 k EPI-pixels are reduced to ~15 k tuples (about 5.7 %). Plain storage
of the full tuple information without any further compression already results in
a reduction to 21 % compared to the RGB EPI. As discussed above various alter-
natives exist to store a coherent light field. A main benefit of our representation
is its consistency with our algorithm for depth computation, enabling compact
representation and efficient parallel computation as described in the next section.

4.3 Depth Estimation

Constructing Γ amounts to computing the line slopes at the EPI-pixels, i.e., estimat-
ing the depth of scene points. As mentioned before the ray coherence of a dense
3D light field allows our algorithm to operate on individual EPI-pixels instead of
having to consider larger pixel-neighborhoods like most stereo approaches. As a
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consequence it performs especially well at depth discontinuities and reproduces
precise object silhouettes due to the color contrast in these regions. This property
is key to our fine-to-coarse depth estimation strategy: we estimate depth first at
edges in the EPI at the highest resolution, propagate this information throughout
the EPI, and then proceed to successively coarser EPI resolutions. In contrast to
classic coarse-to-fine schemes, this allows us to preserve sharp depth discontinu-
ities at object silhouettes, while also estimating accurate depth in homogeneous
regions. Additionally, our strategy increases computational efficiency by restricting
computations to small fractions of the high resolution input.

Starting at the full resolution of an EPI E, the first step consists of efficiently
identifying regions where the depth estimation is expected to perform well. To
this end we introduce a fast edge confidence measure Ce that is computed on the
EPI. The algorithm then generates depth estimates for EPI-pixels with a high
edge confidence. This is done by testing various discrete depth values d from the
setH of hypotheses and picking the one that leads to the highest color density of
sampled EPI-pixels. The density estimation is further leveraged to improve the
initial confidence towards a refined depth confidence Cd, which provides a good
indicator for the reliability of a particular depth estimate. All EPI-pixels with a
high reliability are stored as tuples in Γ and propagated throughout the EPI. This
process of depth estimation and propagation is iterated until all EPI-pixels with a
high edge confidence Ce have been processed.

At this point all confident, i.e., sufficiently detailed regions at the current resolu-
tion level of the EPI E have a reliable depth value assigned, while the depth in
more homogeneous regions is yet unknown. Our fine-to-coarse approach then
downsamples E to a coarser resolution and starts over with the above procedure,
computing edge confidence for yet unprocessed parts of the EPI and so forth. This
procedure is continued until a depth value is assigned to every EPI-pixel, i.e., the
line segment tuples in Γ reconstruct the complete light field.

4.3.1 Edge Confidence

As the edge confidence measure Ce is intended to be a fast test for which parts
of the EPI a depth estimate seems promising, we define it as a simple difference
measure

Ce(u, s) =
1

|N (u, s)| ∑
u′∈N (u,s)

‖E(u, s)− E(u′, s)‖2 , (4.3)

where N (u, s) is a 1D window in the EPI E around the pixel (u, s). The size of
this neighborhood can be small (9 pixels in our experiments) as it is supposed to
measure only the local color variation.
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Ce is then thresholded (with a value of 0.02), resulting in a binary confidence
mask Me, visualized as red pixels in Figure 4.5c–e. In order to remove spurious
isolated regions, we apply a morphological opening operator to the mask. During
the following depth computation this binary mask will be used to prevent the
computation of depth estimates at ambiguous EPI-pixels and hence speed up the
computation without sacrificing accuracy.

4.3.2 Depth Computation

Next our algorithm computes depth estimates for EPI-pixels in E marked as con-
fident in Me. For simpler parallelization on a GPU we perform this computation
per scanline in the EPI, i.e., we select a fixed parameter ŝ and compute a depth
estimate for all E(u, ŝ) with Me(u, ŝ) = 1. As discussed in Section 4.2, initially we
select ŝ as the horizontal centerline of E, as this generally allows us to compute a
large fraction of the line segments visible in the EPI.

Following Equation 4.1 we try to assign a depth z, or equivalently a disparity d, to
each EPI-pixel (u, ŝ). For a hypothetical disparity d ∈ H, the setR of radiances or
colors of these EPI-pixels is sampled as

R(u, d) = {E(u + (ŝ− s) d, s) | s = 1, . . . , n}, (4.4)

where n corresponds to the number of views in the light field. From the density
of radiance values inR(u, d) a depth score S(u, d) is computed in linearized RGB
color space. The assumption here is that the scene is essentially Lambertian, i.e.,
a set R is likely to represent an actual scene point if the radiance samples are
densely positioned in the underlying color space. Due to the high number of
available samples in a dense light field our measure is very robust to outliers and
hence implicitly handles occlusions. As we show in our results it is even robust to
inconsistencies such as moving elements. We also experimented with other color
spaces such as Lab and HSV with the hue angle represented by its sine and cosine.
However, we could not find a significant difference.

We compute the density efficiently using iterations of a modified Parzen window
estimation [Duda et al., 1995] with an Epanechnikov kernel, and define the initial
depth score as

S(u, d) =
1

|R(u, d)| ∑
r∈R(u,d)

K (r− r̄) , (4.5)

where r̄ = E(u, ŝ) is the radiance value at the currently processed EPI-pixel, and
the kernel

K(x) =


1−

∥∥∥x
h

∥∥∥2

2
if
∥∥∥x

h

∥∥∥
2
≤ 1,

0 otherwise.
(4.6)
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Figure 4.3: At high image resolutions silhouette pixels result in a clear peak with a distinc-
tive score profile whereas homogeneous regions lead to more flat and ambiguous scores.
On coarser resolutions the scores in homogeneous regions become more distinct, which
motivates our fine-to-coarse estimation.

The bandwidth parameter was set to h = 0.02 in our experiments. Gaussian
or other bell-shaped kernels also work well, but the chosen kernel is cheaper to
compute. For a rather noise-free EPI this initial depth score is sufficient. To reduce
the influence of noisy radiance measurements we borrow ideas from the mean-
shift algorithm [Comaniciu and Meer, 2002] by computing an iteratively updated
radiance mean

r̄← ∑r∈R K(r− r̄)r
∑r∈R K(r− r̄)

(4.7)

before computing Equation 4.5. Regarding the efficiency of this approach it is
important to note that a full mean-shift clustering process or even just running the
above mean-shift steps to convergence is counter-productive, as it significantly
increases the computational complexity, in particular on a GPU due to the required
branching and possibly different control flow. The main purpose, i.e., robustness
to noise, is achieved already after a few iterations, hence the algorithm performs a
constant number of 10 iterations for all results shown in this thesis.

For each EPI-pixel (u, ŝ) we compute scores S(u, d) for the whole range of admis-
sible disparities d, and assign the disparity with the highest score as the pixel’s
depth estimate

D(u, ŝ) = argmax
d

S(u, d). (4.8)

In addition we also compute the refined confidence Cd as a measure for the relia-
bility of a depth estimate. Cd combines the edge confidence Ce with the difference
between the maximum score Smax(u) and the average score S̄(u):

Cd(u, ŝ) = Ce(u, ŝ) |Smax(u)− S̄(u)|, (4.9)
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(a) No median (b) Standard median (c) Bilateral median

Figure 4.4: Our proposed bilateral median filter removes speckles, while preserving fine
details like the thin vertical string in the middle.

where
Smax(u) = max

d
S(u, d) (4.10)

and
S̄(u) =

1
|H| ∑

d∈H
S(u, d). (4.11)

The refined confidence measure Cd is meaningful as it combines two comple-
mentary measures. For instance, noisy regions of an EPI would result in a high
edge-confidence Ce, while a clear maximum Smax is not available. Similarly, am-
biguous homogeneous regions in an EPI, where Ce is low, can produce a strong,
but insufficiently unique Smax; see Figure 4.3.

In order to eliminate the influence of outliers that might have survived the density
estimation process, we apply a median filter on the computed depths. However,
we observed that a straightforward median filter compromises the precise local-
ization of silhouettes. We therefore use a bilateral median filter that preserves
the localization of depth discontinuities by leveraging information from the radi-
ance values of nearby EPIs. This is implemented by replacing the depth estimate
Dv(u, ŝ) by the median value of the set

{Dv′(u′, ŝ) | (u′, v′, ŝ) ∈ N (u, v, ŝ) ∧
‖Ev(u, ŝ)− Ev′(u′, ŝ)‖ < ε ∧
Me(u′, v′, ŝ) = 1 }, (4.12)

where (u′, v′, ŝ) ∈ N (u, v, ŝ) denotes a small window over Iŝ. The second condition
assures that we only consider EPI-pixels of similar radiance and the last condition
masks out unconfident EPI-pixels for which no depth estimation is available. In
all our experiments we use a window size of 11×11 and a threshold value ε = 0.1.
Correspondingly, we always store at most 11 EPIs during computation. The effect
of this filtering step is illustrated in Figure 4.4.
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4.3.3 Depth Propagation

Each confident depth estimate D(u, ŝ) with Cd(u, ŝ) > ε is now stored as a line
segment tuple p = (m, u, ŝ, r̄T) in Γ (see Equation 4.1), where r̄ represents the mean
radiance of (u, ŝ) computed in Equation 4.7. Then the depth estimate is propagated
along the slope of its corresponding EPI line segment to all EPI-pixels (u′, s′) that
have a radiance similar to the mean radiance, i.e., ‖E(u′, s′)− r̄‖ < ε with ε having
the same value as in Equation 4.12. This step amounts to a conservative visibility
estimation and ensures that foreground objects in the EPI are not overwritten by
background objects during the propagation.

As an alternative to the above test of radiance similarities, we experimented with
running the full mean shift clustering on the setR(u, d) and propagating the depth
estimate directly to the cluster elements, but we found that our simplified density
estimation and the above procedure provide similar results in a fraction of the
time.

Finally, low confidence depth estimates are discarded and marked for re-
computation, and all EPI-pixels with a depth estimate assigned during the propa-
gation are masked from further computations. A new part of the EPI is selected
for depth computation by setting ŝ to the nearest s with respect to the center of
the EPI that still has unprocessed pixels. The method then starts over with the
radiance sampling and depth computation as described in Section 4.3.2, until all
edge confident EPI-pixels at the current EPI resolution have been either processed
or masked during the propagation.

4.3.4 Fine-to-Coarse Refinement

Parts of the EPI without assigned depth values are either ambiguous due to homo-
geneous colors (insufficient edge confidence), or have a strongly view dependent
appearance (insufficient depth-confidence). However, since our method starts
processing at the highest available resolution, the set Γ provides reliable recon-
structions of all detailed features in the EPI and, in particular, of object silhouettes.
The core idea of our fine-to-coarse strategy is now to compute depth in less de-
tailed and less reliable regions by exploiting the regularizing effect of an iterative
downsampling of the EPI. Furthermore, we enhance robustness and speed up the
computation by using the previously computed confident depth estimates as depth
interval bounds for the depth estimation at coarser resolutions. See Figure 4.5 for
an example of our refinement strategy and note the improvement from Figure 4.5b
to f at the bricks.

First the depth bounds are set for all EPI-pixels without a depth estimate. As depth
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(a) Image (b) No fine-to-
coarse

(c) Level 0 (d) Level 1 (e) Level 2 (f) With fine-to-
coarse

Figure 4.5: Our fine-to-coarse refinement yields reliable depth estimates also in homoge-
neous image regions, like the bricks. This is achieved by applying our confidence measure
to detect unreliable pixels (marked in red) and estimate their depth at coarser image
resolutions with the depth range bounded by estimates on the higher resolutions.

bounds, the algorithm uses the upper and lower bounds of the closest reliable
depth estimates in each horizontal row of the EPI. Then the EPIs are downsampled
by a factor of 0.5 along the spatial u and v-dimensions, while the resolution along
the angular s-dimension is preserved. We presmooth the EPIs along the spatial
dimensions using a 7×7 Gaussian filter with standard deviation σ =

√
0.5 to avoid

aliasing. The required 7 EPIs are already in memory from the bilateral median
filtering step (Equation 4.12).

The algorithm then starts over at the new, coarser resolution with the previously
described steps, i.e., edge confidence estimation, depth estimation and propaga-
tion. EPI-pixels with reliable depth estimates computed at higher resolutions are
not considered anymore but only used for deriving the above described depth
bounds. This fine-to-coarse procedure is iterated through all levels of the EPI
pyramid until any of the image dimensions becomes less then 10 pixels. At the
coarsest level, depth estimates are assigned to all pixels regardless of the confi-
dence measurements. The depth estimates at coarser resolution levels are then
successively upsampled to the respective higher resolution levels and assigned to
the corresponding higher resolution EPI-pixels without a depth estimate, until all
EPI-pixels at the finest resolution level have a corresponding depth estimate. As a
final step we apply a 3×3 median to remove spurious speckles.

Note that unlike other algorithms based on multi-resolution processing and global
regularization, our fine-to-coarse procedure (similar in spirit to the push-pull algo-
rithm [Gortler et al., 1996]) starts at the highest resolution level and hence preserves
all details, which is generally very challenging in classical, coarse-to-fine multi-
resolution approaches. Our downsampling achieves an implicit regularization
for less reliable depth estimates so that all processing steps are purely local at the
EPI-level. Hence, even massive light fields can be processed efficiently.
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4.3.5 Extension to 4D Light Fields

In this section and the next, we extend our algorithm to input other than 3D light
fields. For such input, we lose the efficiency of the EPI-based processing, but the
core algorithmic steps generalize and the reconstruction quality remains.

It is straightforward to generalize our reconstruction algorithm to 4D light fields.
In a regular 4D light field the camera centers are both horizontally and vertically
displaced, and the additional vertical displacement is parameterized by t; see
Chapter 3 for details. This leads to a 4D parametrization of rays, and the radiance
of a ray is looked up as r = L(u, v, s, t). The ray sampling from Equation 4.4 is then
extended to

R(u, v, s, t, d) = {L(u + (ŝ− s) d, v + (t̂− t) d, s, t)
| s = 1, . . . , n, t = 1, . . . , m}, (4.13)

where (ŝ, t̂) is the considered view and m denotes the number of vertical viewing
positions. This leads to sampling a 2D plane in a 4D ray space instead of the 1D
line in case of 3D light fields.

4.3.6 Extension to Unstructured Light Fields

For arbitrary, unstructured input we use the camera poses estimated in the cali-
bration phase (see Section 3.3) to determine the set of sampled rays for a depth
hypothesis. More precisely, we back-project each considered pixel to 3D space in
accordance to the hypothesized depth and then re-project the 3D position to the
image coordinate systems of all other views to obtain the sampling positions.

Let us consider an image-space coordinate us = (u, v) at a view s and its aug-
mented vector ũs = (u, v, f ) with respect to the focal length f in pixels. Let Ms
denote the camera extrinsic matrix defined as Equation 3.7, which is a 4×4 affine
transformation matrix in 3-space, comprising the rotation and the translation of
the camera coordinate system of the view s with respect to a reference coordinate
system.

With this setting, the 3D position xŝ in the coordinate system of reference view ŝ
defined by uŝ and a hypothesized depth z is given by

xŝ =
z
f

ũŝ ≡
1
d

ũŝ, (4.14)

where d is analogous to the image space disparity as before, but defined up to scale.
The same 3D position seen from another camera at s can be computed as

x̃s = Ms M−1
ŝ x̃ŝ, (4.15)
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where
x̃ = (xT, 1) ∼ (ũT, d) = (u, v, f , d) (4.16)

denotes the homogeneous coordinate of a 3D position x. Thus the sampled set of
rays at position (u, v) in view s for a depth hypothesis d can be defined as

R(u, v, s, d) = {L(u′, v′, s) | M−1
s [ u′ v′ f d ]T = M−1

ŝ [ u v f d ]T,
s = 1, . . . , n}. (4.17)

4.4 Experimental Evaluation

This section presents results and evaluations of our method, including comparisons
to various state-of-the-art techniques in (multi-view) stereo. We also demonstrate
exemplary applications such as segmentation and image-based rendering. Finally,
we show the results of 4D and unstructured light fields.

4.4.1 Results

Using the acquisition setup presented in Section 3.3 we captured a variety of
3D light fields of challenging outdoor and indoor scenes. In Figures 4.6 and 4.7
we show example input images and corresponding depth maps. However, our
algorithm computes depth for every scene point that is visible in the input images.
Hence, from our internal representation we can efficiently extract depth maps
for each input view, as well as generate alternative scene representations like
3D point clouds. Figures 4.6 and 4.7 additionally show 3D meshes extracted
from our reconstructions. The meshes were obtained by triangulating individual
depth maps and merging them into a single model. To enhance visualization we
color coded vertices according to their depth (red for near vertices and blue for
far). Our method faithfully reproduces fine details of complex, cluttered scenes,
with precise reconstruction of object contours, performing well on homogeneous
regions at the same time. These properties are highly desirable in applications such
as segmentation (Figure 4.15) or novel view synthesis with moderate viewpoint
changes (Figure 4.16).

Figure 4.8 demonstrates the robustness of our algorithm for different numbers
of input views. We ran our experiments on a desktop PC with an Intel Core i7
3.2 GHz CPU and an NVidia GTX 680 graphics card, and tested a set of 256 depth
hypotheses for every EPI-pixel in all experiments. As a baseline solution, we
computed a result from 100 input views at the full 21 MP resolution and evaluated
the error using normalized sum-of-absolute differences (SAD). While our algorithm
benefits from a large number of input views, reasonable results can still be achieved
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Figure 4.6: Results of the Mansion dataset, which show the reconstructed depth map and
the closeup of the highlighted region along with an input view and a 3D mesh.

with only 10 input views (see Figure 4.8b). A typical runtime for a single depth
map using 100 views at 21 MP resolution is about 9 minutes. With our current
implementation, the full propagation to 50 views takes about 50 minutes. The linear
dependence of the runtimes on the number of images is illustrated in Figure 4.8a.
For example, for 10 views a single depth map requires about 1 minute.

Our method is robust against varying baseline and angular separations caused
by different distances between the camera positions and the scene points. For the
results shown in Figure 4.7 the angular separations range from 1.5° up to 13°. The
example in Figure 4.19 captured with a hand-held camera features a considerable
angular separation from 9° to 41° as well as a large baseline of about 300 meters. In
addition our algorithm is robust to non-static scene elements like people moving
in front of the camera or plants moving in the wind (Figure 4.9). For instance, the
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(a) Church (b) Bikes (c) Couch (d) Statue

Figure 4.7: Results on various 3D light fields. Top to bottom: One input image, correspond-
ing depth map, closeup of the highlighted region, and 3D mesh. For the Church dataset we
used color-based segmentation to exclude the homogeneous sky as no meaningful depth
can be computed there.

sparse horizontal color artifacts visible in the input EPI in Figure 4.1 are caused by
people passing by during capture. The density estimation in Equation 4.5 simply
regards those radiance values as outliers and still produces a consistent result from
the remaining samples.

The influence of the two most relevant parameters in our method, the kernel
bandwidth h and the color tolerance ε of the bilateral median, is conceptually
similar to adjusting the window size in stereo methods comparing image patches.
An increase of h and ε compared to our default values increases robustness to noise,
whereas smaller values better preserve fine details.

4.4.2 Comparisons

We processed the Mansion data set with a number of state-of-the-art techniques
in two-view and multi-view stereo, and also ran our algorithm on a number of
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(a) Errors and runtimes (b) Reconstruction from 10 views

Figure 4.8: Robustness of our method. (a) Reconstruction error and runtimes for varying
numbers of input views. (b) Reconstruction from only 10 views.

Figure 4.9: Our method is robust to inconsistencies and outliers in the data, such as people
walking by (horizontal lines) or plants moving in the wind (jagged green lines; see also
plants in Figure 4.1).

standard benchmark datasets. However, please note that most of these algorithms
have been designed with different application scenarios in mind. Hence these
comparisons are meant to illustrate the novel challenges for the field of image-
based reconstruction arising from the ability to capture increasingly dense and
higher resolution input images. For each method we hand-optimized parameters
and the camera separation of the input images for best reconstruction quality.

Comparison to Two-View Stereo

Comparing the results in Figure 4.10 and focusing on the closeups, issues of existing
methods with such highly detailed scenes become obvious. The popular graph
cuts [Kolmogorov and Zabih, 2001] as well as the more recent cost volume filtering
approach [Rhemann et al., 2011] are time and memory intensive and could not
process resolutions higher than 1 MP. Both methods reconstruct sharp boundaries,
but they are not well localized due to the low resolution. Homogeneous image
regions are problematic as well. Good performances in terms of memory and
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(a) Input
(b) Graph cut

(~1 day on
1 MP)

(c) Cost volume
filtering

(~1 day on
1 MP)

(d) Dense
seed-and-grow

(10 min)

(e) Semi-global
matching

(4 min on 4 MP)

(f) Ours
(9 min on

21 MP)

Figure 4.10: Comparison to two-view stereo methods on the Mansion dataset. (a) One
input image, (b) Kolmogorov and Zabih [2001], (c) Rhemann et al. [2011], (d) Geiger et
al. [2010], (e) Hirschmüller [2005], and (f) ours. The numbers in parentheses denote the
running time to compute a depth map, but are measured with different implementations
(C/Matlab) and processor types (CPU/GPU).

runtime are achieved by the dense seed-and-grow approach of Geiger et al. [2010]
and by semi-global matching [Hirschmüller, 2005] (as implemented in OpenCV).
However, these methods show problems in homogeneous regions and around
object contours as well (see black pixels). Leveraging the huge amount of data in
a corresponding light field of the scene, our method reconstructs detailed, well-
localized silhouettes and plausible depth estimates in homogeneous regions at
reasonable run times.

Comparisons to Multi-View Stereo

In Figure 4.11 we show results of recent multi-view stereo methods. For compari-
son to our result in Figure 4.11e we show a 3D rendering of the point clouds which
is colored in accordance to depth and selected a similar closeup region as before.
The method of Furukawa and Ponce [2010] leverages information from 50 views
of the light field. We also compare against the method of Beeler et al. [2010] that
was originally developed for high quality face reconstruction and that uses 8 input
images. As it is optimized for faces, its core assumptions regarding smoothness and
surface continuity are violated, hence the authors processed our dataset running
only the initial multi-view matching part of their pipeline. Overall both approaches
achieve good reconstructions, but lack details around contours and miss some ho-
mogeneous regions in comparison to our method. We also show a result produced
using a commercial tool, Autodesk 123D Catch2 that to our knowledge is based on

2http://www.123dapp.com/catch
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(a) Input
(b) Furukawa and

Ponce [2010]
(6 min on 10 MP)

(c) Beeler et al. [2010]
(20 min on 10 MP)

(d) 123D Catch
(5 min on 10 MP)

(e) Ours
(50 min on 21 MP)

Figure 4.11: Comparison to multi-view stereo methods. Each method was supplied with
as many views as it can process up to 50 views. The numbers in parentheses measure the
time required to compute the full reconstruction, e.g., 50 depth maps for our method.

the work of Vu et al. [2009]. The application could process 10 images and produced
a very smooth result that, however, lacks any detail.

Comparisons Using Stereo Data Sets

We also ran our method on classic stereo data that has been used in the stereo
community for benchmarking. These datasets differ significantly from the funda-
mental assumptions behind our algorithm as they encompass a relatively small
number of low resolution input images. In Figure 4.12 we show our result on the
Flower Garden sequence3 (50 images, 0.08 MP). On this small spatial resolution,
our method takes about 3 seconds to compute a depth map with quite accurate
silhouettes. However, due to missing texture in the sky, artifacts in the top left
corner arise.

In the following we show additional comparisons on classic stereo data sets of
Scharstein and Szeliski [2002], widely known as Middlebury data sets, and of Zit-
nick et al. [2004]. For this low spatio-angular resolution data the quality degrades
tangibly as our method has been specifically designed to operate on the pixel
level by leveraging highly coherent data. In such scenarios, methods employing
comparisons of whole image patches and global regularization are advantageous.

In Figure 4.13 we compare our method to two stereo methods [Zitnick and Kang,
2007; Szeliski and Scharstein, 2002]. Both methods initially match image segments
or patches and then refine these coarse estimates using a smoothing or propagation

3http://persci.mit.edu/demos/jwang/garden-layer/orig-seq.html
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Figure 4.12: Result on the Flower Garden sequence with 50 images. Left: One input image
with 0.08 MP resolution. Right: Our depth map. The computation time was 3 seconds.

strategy. For evaluation we use Middlebury stereo data sets with the ground
truth4, enabling a quantitative comparison. Note that we use all input images
(5 images for Tsukuba and 8 images for Venus and Sawtooth) whereas the other
methods use two images only. In Table 4.1 we compare the estimation errors, for
which we compute the percentage of bad estimates. We consider an estimate bad
if its difference from the ground truth disparity is larger than a threshold T.

Tsukuba Venus Sawtooth

Zitnick and Kang [2007] 1.87 % 1.85 % –

Szeliski and Scharstein [2002] 4.9 % – –

Ours 8.42 % 10.59 % 6.25 %
Run time 1.4 s 2.4 s 2.6 s

Table 4.1: Quantitative comparison on Middlebury stereo data. We report errors as the
percentage of bad pixels with T = 1.

It takes about two seconds for our method to process these data sets as they are
both angularly and spatially at low resolution (5 or 8 images with 0.1–0.2 MP
each). Szeliski and Scharstein [2002] report 4.7 seconds for Tsukuba data set, which
was measured on a 750 MHz Pentium III CPU. Zitnick and Kang [2007] do not
provide run times. The quality of our results for these data sets is not optimal. This
can be due to the low spatio-angular resolutions since our method is specifically
designed to operate at the pixel level by leveraging the redundancy and coherence
in high resolution light fields. For such data sets, methods based on image patch
comparisons and global regularization perform better.

In Figure 4.14 we compare our method to the multi-view stereo method of Zitnick et
al. [2004] using their data sets5 consisting of videos captured by eight synchronized
cameras at a resolution of 0.8 MP. Although the data sets are at a higher resolution

4http://vision.middlebury.edu/stereo/
5http://research.microsoft.com/en-us/um/people/larryz/videoviewinterpolation.htm
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(a) Input (b) Ground truth
(c) Zitnick and

Kang [2007]
(d) Szeliski and

Scharstein [2002] (e) Ours (~2 s)

Figure 4.13: Comparison to stereo methods on Middlebury datasets with ground truth.
Shown are Tsukuba, Venus and Sawtooth data sets from top to bottom.

(a) Input (b) Zitnick et al. [2004] (c) Ours (12 s)

Figure 4.14: Comparison to the multi-view stereo method of Zitnick et al. [2004] on their
8-view Breakdancing (top) and Ballet (bottom) data sets.
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than Middlebury stereo data, we found them particularly challenging for our
method. The main reasons are considerable noise and exposure changes between
cameras. As in the previous comparison, the assumptions our method is based on
do not hold with these data sets.

4.4.3 Applications

Scene reconstruction finds a number of immediate uses in applications related to
computer graphics besides generating a 3D model of a scene. In the following we
illustrate how the output of our method can be directly used for applications such
as automatic image segmentation as well as image-based rendering.

Segmentation

Despite being a common task in movie production, automatic segmentation like
background removal is still a challenge in detailed scenes. Due to the precise object
contours in our reconstructions we can use our method for automatically creating
high quality segmentations. For the shown results we simply thresholded all pixels
within a prescribed depth interval. Using our depth this approach is not only easy
to implement, but also supports real-time updates to the segmentation even on the
high resolution images. In Figure 4.15 we show results on the Mansion data set.
We wish to stress that such results would be very difficult to obtain using classical
color-based or manual segmentation due to the extreme detail in this scene and
the partially similar colors between foreground and background.

Figure 4.15: Closeups of depth-based segmentations of the Mansion dataset. Note the high
level of detail and that foreground and background would be very difficult to distinguish
solely based on color.

Image-Based Rendering

Another benefit of our method is that we get consistent depth estimates for any
input view of the light field, i.e., we compute as complete a scene reconstruction as
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possible from the available input data. Thus, we can directly visualize our results
as a colored 3D point cloud using splat-based rendering, with the ability to look
around occluding objects (see Figure 4.16). Moreover, we can use the delta EPI
representation to reproduce view dependent effects during rendering, e.g., using a
weighting scheme as proposed in Buehler et al. [2001].

Figure 4.16: Examples for novel view-synthesis by rendering a colored point cloud. The
leftmost image is from the set of input images.

4.4.4 Results for 4D and Unstructured Light Fields

A result for a 4D light field from the Stanford Light Field Repository6 is shown in
Figure 4.17 where we also provide a visual comparison to the 4D light field depth
estimation method by Wanner and Goldluecke [2012a]. While they achieve already
appealing results, our method resolves additional details, e.g., on the wheels and

6http://lightfield.stanford.edu/lfs.html

(a) Image
(b) Wanner and

Goldluecke [2012a] (15 min)
(c) Ours (1 min)

Figure 4.17: Comparison of (b) globally consistent labeling of Wanner and Gold-
luecke [2012a] to (c) our result on a 4D light field.
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(a) Input

(b) Ground truth

(c) Our results (28 s)

Figure 4.18: Results on 4D HCI light field data with ground truth. Results from Buddha,
Mona, Papillon and StillLife, from left to right, data sets are shown.

the small holes in the Lego bricks. They report a timing of 15 minutes, whereas
ours takes 64 seconds.

In Figure 4.18 we use synthetic light field data from the HCI lab7 to quantitatively
evaluate our results on 4D light fields using the available ground truth depth. The
error measures are summarized in Table 4.2 where we use the same measurement
as in Section 4.4.2. We report two error measures with different threshold values to
count the bad estimates. As can be observed, our method produces high quality
depth estimates on this data. Processing 9×9 images at a resolution of 0.6 MP
requires 28 seconds.

In Figure 4.19 we show an example for a challenging hand-held capture scenario.
The input images have been taken on a boat in front of the skyline of Shanghai,

7http://hci.iwr.uni-heidelberg.de/HCI/Research/LightField
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(a) One input image (b) Depth map

(c) Map overlay (d) Rendering

Figure 4.19: Results on a challenging unstructured light field, obtained by hand-held
capture, (a), from a floating boat. (b) A resulting depth map. (c) Overlay of our recon-
struction on a satellite image © 2013 DigitalGlobe and Google. (d) Rendering from a novel
viewpoint.

with considerable variation in orientation of the camera and of the colors within
the scene. We segmented the sky and the water surface. To assess the quality of
our reconstruction we also show a bird’s eye view overlaid on a satellite image of
this area. Computing depth took 162 seconds per view at 3 MP spatial resolution
using 100 images. For such unstructured input we observed an increase in running
time of about 50% compared to structured 3D input.

Buddha Mona Papillon StillLife

Bad estimates (T = 0.1) 0.89 % 3.81 % 4.93 % 4.33 %

(T = 0.5) 0.21 % 0.27 % 0.34 % 0.49 %

Table 4.2: Quantitative comparison on 4D light fields. We report errors as the percentage
of bad pixels using different threshold values T.
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4.5 Discussion

We presented a method for scene reconstruction from densely sampled 3D light
fields. A limitation of our method are surfaces with varying directional reflectance,
as they violate the assumptions behind the radiance density estimation. This is for
example apparent in the reconstruction of the metallic car surface on the bottom
left in the Statue dataset in Figure 4.7. This dataset also contains comparably large
homogeneous areas in the background, leading to slightly noisy depth estimates
in these regions. In some cases, however, like for the windows in the Mansion
dataset, the combination of our confidence measures and the fine-to-coarse ap-
proach succeeds in plausibly filling even such difficult regions. However, a more
principled approach would of course be desirable, e.g., following Criminisi et
al. [2005], and it would be worth investigating, e.g., to combine our ray density
estimation with more sophisticated reflectance models. Low contrast between
foreground and background objects over the whole light field may also lead to
problems, as witnessed on some parts of the cables in the Church sequence in
Figure 4.7. Finally, while our reconstructions feature precise contours and are
very complete as they produce a depth estimate for every input ray, we achieve
lower accuracy in terms of absolute distance measurements than a laser scanner.
To improve accuracy, investigating a continuous refinement of our discrete depth
labels also seems promising.

While the reconstruction of static scenes already has a number of applications,
extending our method to temporally varying light fields of dynamic scenes, e.g.,
using an array of high resolution cameras, provides many interesting new opportu-
nities and challenges. We believe that such very high resolution data may require
a rethinking of existing algorithm designs, e.g., using global optimization.
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Geometric information such as depth obtained from light fields finds more ap-
plications recently, as shown in Chapter 4. Where and how to sample images to
populate a light field is an important problem to maximize the usability of informa-
tion gathered for depth reconstruction. In this chapter, we formulate this as a view
sampling problem. We propose a simple analysis model for view sampling and an
adaptive, online sampling algorithm tailored to light field depth reconstruction.
Our model is based on the trade-off between visibility and depth resolvability for
varying sampling locations, and seeks the optimal locations that best balance the
two conflicting criteria.

5.1 Introduction

The attempts to recover geometric information such as depth of the scene captured
in the light field is gaining more and more attention. Not only does it play an
important role for rendering the light field [Gortler et al., 1996; Buehler et al., 2001],
super-resolving it [Bishop et al., 2009; Wanner and Goldluecke, 2012b], or finding
the focus plane for post-capture refocusing [Ng et al., 2005; Venkataraman et al.,
2013], but it also finds its way in 3D reconstruction and shape acquisition [Wanner
and Goldluecke, 2012a; Heber and Pock, 2014]. Understanding the underlying
sampling properties is important to maximize the gain from the effort of acquiring
the light field. However, the sampling properties of the light field have been
mostly studied in the context of reconstructing the original plenoptic function
and rendering it from different perspectives by re-sampling process [Chai et al.,
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2000; Durand et al., 2005; Levin et al., 2008a; Levin and Durand, 2010]. These
are classical sampling reconstruction problems where radiance is measured at a
number of locations in the multi-dimensional domain and the plenoptic function
is reconstructed from the sampled values. If each ray m is seen as a point in 5D
space D ≡ R5, then light field reconstruction amounts to reconstructing the height
field L(m) over this 5D domain.1

The problem of depth reconstruction, however, relies on the ill-posed step of
finding correspondences within this set of light rays. The caliber of depth re-
construction depends crucially on the accuracy of this step, which in turn to
a great extent relies on where the rays themselves are sampled—we formulate
this as a view sampling problem. Although a closely related topic of view se-
lection or planning has been studied in the computer vision and robotics com-
munities, often the proposed methods are tightly coupled to a specific recon-
struction scheme and do not generalize well to others [Goesele et al., 2007;
Gallup et al., 2008] or do not necessarily focus on the specific nature of the currently
popular light field acquisition setups [Olague and Mohr, 2002; Hornung et al., 2008;
Furukawa et al., 2010]. We try to bridge the gap between the light field sampling
analysis that has been done mostly regarding rendering, and the view sampling
that lacks the consideration of the light field. We propose a sampling analysis that
is tailored to this particular domain.

We exploit two basic observations:

• A large displacement of the camera between view samples potentially con-
fuses algorithms that find correspondences since it is possible that locations
previously visible are now occluded by other objects in the scene;

• However, if successive views are “too close” to each other, so that features
move by very tiny amounts over image space then it becomes increasingly chal-
lenging for correspondence algorithms to resolve the displacement [Szeliski
and Scharstein, 2003].

The right choice of displacement further depends on many factors such as the
resolution of the image, size of the camera sensor, distance to the scene, the nature
and scale of the scene, etc.

Motivated by these two observations we develop a simple but general sampling
analysis model and an online sampling algorithm based on it, to estimate “good”
placement of the camera for high fidelity depth reconstruction. For the derivation,
we assume that the sampling locations are restricted to a line,2 i.e., 3D light fields

1More precisely, the 5D domainD ≡ S2×R3, where S2 denotes a 2-sphere, since the 3D geometry
of a ray is determined by a position (x, y, z) ∈ R3 and a direction as a polar angle (θ, φ) ∈ S2.

2Likewise, the 3D domain can be more precisely defined as D ≡ S2 ×R, where the ray origin is
determined by a single parameter along a line.
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Figure 5.1: Resulting depth maps computed after several iterations with 2 views sampled
at each iteration. Our sampling strategy (top row) is compared to regular sampling (bottom
row). The plots on the right display the errors at each iteration against the best possible
depth (the lower, the better) and show the faster convergence of ours towards lower errors.

with D ≡ R3, and that the analysis is seeded with an inaccurate depth map, which
could be obtained using any reconstruction method. Given this, we analyze simple
statistics of the scene by trading off problems due to occlusion with those due to
depth resolvability, and successively determine locations for camera placement
improving the quality of reconstruction most.

Our model considers the very scene being captured and the correspondence algo-
rithm used for reconstruction to gather statistics. Our sampling algorithm uses the
model to identify a small set of sampling locations, and successively amasses statis-
tics of the scene, which in turn helps make better view placement in an iterative
manner. For example, Figure 5.1 reports the gain in accuracy of selectively locating
a small number of views over a few iterations, compared to the regular sampling
of the same number of views. While the reconstruction method of Chapter 4 is of
our biggest concern, we design our approach as general as to be applicable to any
depth reconstruction algorithm, in which a comparable reconstruction quality is
achieved with a smaller number of images.

5.2 Sampling Analysis Model

The problem of depth reconstruction relies on determining potential intersections
of rays. For this, we define an operator C : D ×D → {0, 1} that, given two rays
m1, m2 ∈ D, returns 1 if and only if the two rays originate from the same 3D
point. The process of evaluating this operator is known as correspondence matching
and the implementation of C has been a long-standing open problem in computer
vision. Any algorithm that attempts to be clever with view placement for depth
reconstruction must account, in some way, for C.
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Figure 5.2: Determining sampling intervals. (a) ρi(s) represents an interval of s where the
pixel ui is visible and thus matching is feasible. (b) ηi(s) represents an interval where the
depth is resolvable for ui up to accuracy function Acc(Cik). The two intervals are each
summed over all pixels to form the distributions ρ(s) of non-occluded pixels and η(s) of
the pixels with resolvable depth, respectively, over s.

5.2.1 Conservative Sampling Interval

Consider a pair of rectified images of an arbitrarily shaped object containing a
repetitive texture. If the texture is periodic, then the task of identifying a unique
correspondence between pixels is hopeless. However, for a particular pixel, adding
a constraint that the camera separation must be small enough to guarantee no
occlusion, robustifies the correspondence detection. Formally, we can represent
this constraint for each pixel ui = (ui, vi) as a visibility preference function ρ over
the sampling position s:

ρi(s) =
{

1 if αi ≤ s ≤ βi
0 otherwise

. (5.1)

Here, [αi, βi] is the interval along s where the scene point projecting to ui is guaran-
teed not to be occluded.

5.2.2 Determining Visible Intervals

Assume that the approximate depth at ui is given di (see Figure 5.2a). Let sij denote
the distance along the baseline where the scene point projecting to ui is occluded
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by a scene point that projects to uj. Then, using basic trigonometry

sij = rij
didj

di − dj
, (5.2)

where rij is the image space distance between the pixels. All distances need
to be expressed in the same world units. rij is related to the pixel disparity by
rij = (uj − ui)/ f where ui and uj are the horizontal pixel coordinates of ui and
uj, and f is the focal length in pixels. A conservative visibility condition at ui
guarantees that at least two samples of the scene point projecting to ui are visible
(and hence can be exactly matched under the Lambertian surface assumption) if
the views are within [αi, βi], where

αi ≡ max{sij}, ∀j | sij < 0,

βi ≡ min{sij}, ∀j | sij > 0.
(5.3)

5.2.3 Depth Resolution of Correspondence Algorithms

While a small displacement of the camera along the baseline enjoys the advantage
of avoiding occlusion, it introduces the difficulty for the correspondence algorithm
to be accurate and reliable. The accuracy of the triangulation of scene points
using image features increases with displacement along the baseline [Szeliski and
Scharstein, 2003]. We use a simple measure for estimating the depth resolution,
which depends on the accuracy of the correspondence algorithm C. Say that the
scene point that projects to ui in a view project to uk after the camera is translated s
units along the baseline (see Figure 5.2b). As for visibility, we define a preference
function η for depth resolution over s:

ηi(s) =
{

1 if Acc(Cik) > ε

0 otherwise
. (5.4)

where Acc(Cik) is the accuracy of the operator for the given pixels and ε is some
chosen threshold. For the results shown in this chapter, we use the displacement
between two images ui and uk of the scene point for the accuracy function regard-
less of C, i.e., Acc(Cik) ≡ ∆u = |ui − uk|, and a minimum required displacement
for ε. See parameter selection in Section 5.5 for details.

5.2.4 Combining Visibility and Depth Resolution

Clearly depth resolution is better when we use a wide separation distance between
views. However, the larger the separation, the more likely that the scene point is
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occluded at the new location. We balance between these two factors by multiplying
the two, per pixel, which results in a density γi over s, a direct measure of view-
location preference for ui. Accumulating this preference over all pixels yields

γ(s) = ∑
ui∈I

γi(s) = ∑
ui∈I

ρi(s) ηi(s). (5.5)

5.3 Online View Sampling Algorithm

One can use the sampling model developed in the previous section to design a new
acquisition device provided a rough estimate of γ(s) is known a priori. Otherwise,
our model can guide the acquisition process that best suits the particular scene to
be scanned and the depth reconstruction method being used. This section details
our adaptive view-sampling algorithm and discusses implementation details.

5.3.1 Initial Step

We assume a depth reconstruction method that takes a set of images and produces
per-view depth maps, and K ≥ 2 images that are captured at arbitrary locations si,
1 ≥ i ≥ K. Using the given depth reconstruction method, we first compute initial
K depth maps, each of which we use to estimate local distribution γ(i)(s). With the
known initial sampling locations si, the set of local distributions γ(i)(s) is summed
up to form a single global distribution:

γ(s) =
K

∑
i

γ(i)(s + si). (5.6)

In principle, the local maxima of γ(s) can serve as the next sampling locations.
Instead of being directly used for view sampling, however, they are all put into the
queue which prioritizes the candidates for next steps.

5.3.2 Iterations

At each iteration, at most K sampling locations with the highest priority are de-
queued. They indicate the locations where the largest number of pixels fulfill both
sampling criteria, and thus where new images should be taken. Upon acquisition
of the new images, only those new ones are used to estimate γ(s). One can expect
better estimation of γ(s) when including all images, due to the improved depth
computation. However, we found this additional depth accuracy does not bring
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much advantage in practice, and our book-keeping scheme described shortly han-
dles missing or redundant part of estimated γ(s) properly. After obtaining the
new distribution covering the new sampling locations, again the local maxima
are identified and pushed into the queue. These steps are repeated until either a
termination criterion is met or the queue becomes empty.

5.3.3 Termination

At the end of each iteration, a depth map can be computed from all images cap-
tured thus far. The algorithm stops when the improvement achieved by the last
iteration becomes negligible. If the depth computation is expensive and should
be minimized, a more practical criterion is to stop when the target number of
sampling locations are achieved. After the last iteration, all the images captured so
far are used for the final depth reconstruction.

5.3.4 Priority Queue for Sampling Locations

The priority queue maintains the sampling location candidates as tuples (s, w), i.e.,
for each si, the queue also stores its associated preference, wi = γ(si). Whenever
a new tuple is being pushed, the queue first checks if the location s has been
already seen before by looking up the directory χ(s): if it is marked so, the tuple
is discarded. If at least one new tuple is added, the queue re-arranges its tuples
in the descending order of wi. Then, for each location si from the highest to the
lowest priority, the queue contracts all tuples (sj, wj) within some distance ζ from
si, forming a new tuple

(s?, w?) =

(
∑ sjwj

∑ wj
, max{wj}

)
, ∀(sj, wj)

∣∣ |sj − si| < ζ. (5.7)

When dequeued, the location s of the tuple is marked in the directory χ(s) which
records the sampling locations dequeued so far and thus prevents duplicate sam-
pling locations from being used again. In our implementation this directory is
discretized at the resolution of ζ. The dequeued sampling location s is quantized
to the nearest meaningful value if required. For instance, when applying our
algorithm to the 3D light fields that are already captured with regular sampling
we set both ζ and the quantization resolution to the sampling distance between
adjacent images.
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5.4 Experimental Results

We tested the analysis model and the online algorithm with two reconstruction
methods: our own depth reconstruction method presented in Chapter 4 and
the method of Furukawa and Ponce [2010], a state-of-the-art multi-view stereo
reconstruction method best known as PMVS. While the former directly outputs
depth maps, the latter results in point clouds, which we projected into the image
plane of the reference view to create depth maps. For the computer-generated
dataset, we rendered images on demand using Autodesk Maya, a commercial
renderer at the exact sampling locations calculated by our algorithm. The ground
truth depth was obtained by an extra depth rendering pass. Two more real-world
data sets are used, in addition to those used in Chapter 4. These new light fields
are video clips captured at the resolution of 1080 HD, while the camera moves on
a linear path at a constant speed (see Section 3.3 for more details). This provides us
with 3D light fields at a very high angular resolution, comparable to on-demand
rendering of computer-generated datasets in practice, at the cost of the reduced
spatial resolution. Since the ground truth is not available for captured light fields,
we use as the ground truth the best depth map obtained with all available input
images and the reconstruction method being used. In addition, we use the images
that are the nearest to the predicted sampling locations.

Figures 5.3 and 5.4 show the resulting depth maps over several iterations with
K = 2, using our reconstruction method in Chapter 4 and the method of Furukawa
and Ponce [2010], respectively. The depth maps are computed using increasing
number of views whose locations are incrementally determined by our adaptive
sampling algorithm. It is compared against regular sampling, where the same
number of consecutive images centered around the reference view are used. As
seen, our sampling strategy yields better depth maps for all datasets except the
Bikes dataset for which ours performs on par with regular sampling. We discuss
this later in this section.

Figure 5.5 shows the errors of the computed depth maps shown in Figures 5.3
and 5.4 against the ground truth (or the best possible depth if not available). We
used three error metrics: the normalized root-mean-squared errors (NRMSE);
the ratio of bad pixels whose estimates are different from the truth greater than
5% tolerance; and the structural dissimilarity (DSSIM) that is derived from the
structural similarity (SSIM) [Wang et al., 2004] and defined as (1− SSIM)/2. For
all metrics, the lower the better. In all plots blue curves represent our sampling
strategy, while green curves the regular sampling. In the last two rows, the ratios
between our sampling strategy and the uniform sampling are shown as red curves
for two reconstruction methods, where the values greater than one means ours
performs better and otherwise the uniform sampling works better.
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Figure 5.3: Depth maps computed after several iterations with K=2, using the reconstruc-
tion method presented in Chapter 4. For each dataset, the top row shows the resulting
depth maps using our sampling approach, whereas the bottom row shows those using
regular sampling. They are seeded with the same K=2 sampling positions. A reference
image and the best depth map using all views, or the ground true depth for the Octopus
dataset, are shown in the first column for each dataset.
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Figure 5.4: Depth maps computed after several iterations with K=2, using the method
of Furukawa and Ponce [2010]. As in Figure 5.3, the top row of each dataset shows the
resulting depth maps using our sampling approach, whereas the bottom row shows those
using regular sampling. They are seeded with the same K = 2 sampling positions. A
reference image and the best depth map are shown in the first column for each dataset.
It took longer to converge, compared to our reconstruction method shown in Figure 5.3,
we omitted a few intermediate steps in this figure. Depth maps at the same column were
computed using the same number of images.
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Figure 5.5: Quantitative comparisons between our sampling strategy (blue curves) and
regular sampling (green curves). The two strategies are compared against the ground
truth (or the best possible depth if not available) using three error metrics. We used two
reconstruction methods: our depth reconstruction method presented in Chapter 4, labeled
LFD, and the multi-view stereo reconstruction method of Furukawa and Ponce [2010],
labeled PMVS. The first row shows the normalized root-mean-squared error (NRMSE) of
the computed depth from the ground truth; the second row the ratio of bad pixels; and the
third row the structural dissimilarity (DSSIM) between the computed and the true depth.
For all metrics, the lower the better. The red curves at the bottom rows show the gain of
our sampling over regular sampling: the plots greater than one mean that ours performs
better.
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According to our analysis, the Statue dataset is captured at about the optimal
sampling rate for depth reconstruction, showing the error curve from regular
sampling closely follows the one from our sampling strategy (see Figure 5.5, the
third column), whereas the Bikes dataset shows insufficient sampling, where our
sampling strategy gracefully degenerates to regular sampling. That is, there are not
enough images in between the sampling locations, our sampling algorithm picked
the next possible outer images at each iteration. For the other two captured datasets,
we have redundant sampling; the sampling locations suggested by our sampling
algorithm skips many images at each iteration. The results also show that our
sampling algorithm works with a reconstruction method developed with different
principles. Although we derived the theory in the context of light fields, the essence
of our theory could be extended to other types of reconstruction methods such as
multi-view stereo methods.

5.5 Discussion

We proposed a theory for adaptive view sampling motivated by faithful depth
estimation from light fields, and presented an online view sampling algorithm
based on this theory. Through the experimental validation, we showed that our
algorithm converges quicker than regular sampling, and in the worst case, our
algorithm degenerates to regular sampling.

Our approach has three properties that will allow for generalization:

• It considers the statistics of the very scene being captured;

• It is not tied to a particular reconstruction algorithm, and uses the algorithm
currently used for reconstruction to gather statistics;

• More constraints (preference functions) may be included for view sampling
besides occlusion and depth resolution, i.e., more terms in Equation 5.5.

The conceptual extension of our algorithm to view sampling on a 2D plane (e.g.,
camera arrays instead of a linear stage) should be trivial. All the preference
functions will be over a 2D domain and the priority queue will need to compute
peaks and distances in 2D instead of 1D. We also believe that this will serve as
a first step towards future work on view sampling using unstructured camera
locations, i.e., view sampling in 3D.

5.5.1 Parameter Selection

All the results in this chapter were generated using the same, simplistic accuracy
function Acc(Cik) = ∆u and the same constant ε that is set to be one sensor pixel
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size. We deliberately defined them less strictly in the theory to accommodate
various types of correspondence matching algorithms. In principle, both Acc(C)
and ε must be selected using the appropriate accuracy function of the particu-
lar correspondence algorithm. Although we did not tune this parameter in our
experiments, we observed consistent results despite the very different natures
of the reconstruction methods that we tested with. The second parameter to the
algorithm is K, the number of view locations generated at each iteration. We also
kept this parameter constant at K = 2 for all experiments. We observed, however,
that the algorithm converged faster with higher K. In principle, the selection of K
depends on the distribution γ(s) itself. Selecting an optimal K at each iteration is
an open problem for future work.

Since our algorithm is online, it requires an approximate depth map to seed the
process of view sampling. Theoretically, using a constant function as the seed
depth map is sufficient, i.e., the algorithm can be seen as having a dummy iteration
at the start. In practice, we use the depth from the adjacent K images at center as
for the regular sampling.

We observed that our algorithm is not sensitive to the spatial resolutions of the
intermediate depth map. That is, we may use coarse depth maps from downsam-
pled input light fields (with ε scaled appropriately) for the estimation of the γ(s)
distribution and use the highest resolution depth maps only for the final depth
computation. This can provide significant speed-up when the depth reconstruction
algorithm turns out to be the bottleneck for performance.

5.5.2 Limitations and Future Work

In general, many reconstruction methods assume Lambertian surfaces and do
not properly deal with glossy or specular surfaces. Thus, for such methods, it
is desirable to avoid the sampling locations where significant amount of view-
dependent effects are observed. To this end, the interval analysis may incorporate
the level of inconsistency along the angular axis and guide the sampling locations
against problematic areas.

It is observed that the algorithm favors the direction where it can see new infor-
mation behind occlusions. This is because of the greedy nature of the algorithm,
and may cause it to be stuck in a local minimum. Although it can be a useful
property in some situations, it may not be desirable if a depth map at a particular
view point would be important since this drifting may cause degradation of scene
elements dominant in that specific view. In such cases, we could introduce some
randomness to the priority queue which draws some random movement towards
the reference view, avoiding too much asymmetric drifting.
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Our current algorithm is based on online computation of depth, which in some
cases, one may not assume to be viable possibly due to the time and other con-
straints. In such cases, it would be useful to have some approximate estimation of
the sampling distribution. This might be bootstrapped by other types of informa-
tion, such as monocular depth cues or annotated images.

Although we exemplified light fields with a linear camera alignment, the theory
does not assume, nor is limited to, such configuration. It would be fruitful to
extend the algorithm for 2D camera configurations and even more interesting
scenarios such as circular or spherical light fields, or large-scale aerial captures. We
believe our work will open a future avenue for such research.
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This chapter addresses three-dimensional rendering of light fields. In particular, it
focuses on stereoscopic view generation from light fields to deal with stereoscopic
displays and multi-view autostereoscopic (automultiscopic) displays. A frame-
work is presented that allows for the generation of stereoscopic image pairs with
per-pixel control over disparity, based on multi-perspective imaging from light
fields. The proposed framework is novel and useful for stereoscopic image pro-
cessing and post-production. The stereoscopic images are computed as piecewise
continuous cuts through a light field, minimizing an energy reflecting prescribed
parameters such as depth budget, maximum disparity gradient, desired stereo-
scopic baseline, and so on. We provide two formulations to solve this problem.
First we start with a discerete formulation using the color and depth information of
light fields and minimize the energy function using graph cut optimization. Then
we formulate the entire view synthesis process including the depth computation in
a single variational energy functional, which is solved using primal-dual optimiza-
tion. While the discrete formulation provides more flexible and accurate control
over disparity, the variational formulation is more efficient and scalable to higher
resolution light fields. As demonstrated in our results, this technique can be used
for efficient and flexible stereoscopic post-processing, such as reducing excessive
disparity while preserving perceived depth, or retargeting already captured scenes
to various view settings. Our method generalizes for multiple cuts, which is highly
useful for content creation for multi-view autostereoscopic displays.
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Input Images Stereoscopic Output3D Light Field Multi-perspective Cuts
s

u

v

Figure 6.1: We propose a framework for flexible stereoscopic disparity manipulation and
content post-production. Our method computes multi-perspective stereoscopic output
images from a 3D light field that satisfy arbitrary prescribed disparity constraints. We
achieve this by computing piecewise continuous cuts (shown in red) through the light field
that enable per-pixel disparity control. In this particular example we employed gradient
domain processing to emphasize the depth of the airplane while suppressing disparities in
the rest of the scene. Images © 2011 Disney Enterprises, Inc.

6.1 Introduction

Three-dimensional stereoscopic television, movies, and video games have been
gaining more and more popularity both within the entertainment industry and
among consumers. An ever increasing amount of content is being created, distri-
bution channels including live-broadcast are being developed, and stereoscopic
monitors and TV sets are being sold in all major electronic stores. With new
generations of autostereoscopic and multi-view autostereoscopic displays even
glasses-free solutions are available to the consumer.

However, the task of creating convincing yet perceptually pleasing stereoscopic
content remains difficult. This is mainly because post-processing tools for stereo are
still underdeveloped, and one often has to resort to traditional monoscopic tools
and workflows, which are generally ill-suited for stereo-specific issues [Mendiburu,
2009]. This situation creates an opportunity to rethink the whole post-processing
pipeline for stereoscopic content creation and editing. In the past the computer
graphics community has greatly contributed to the development of novel tools for
image and video processing. One particular example in the context of this work
is the recent progress on light field capture and processing, which enables post-
acquisition content modification such as depth-of-field, focus, or viewpoint changes.
A variety of prototypes for light field acquisition have been developed [Adelson
and Wang, 1992; Yang et al., 2002; Ng et al., 2005; Wilburn et al., 2005; Georgiev
et al., 2006; Veeraraghavan et al., 2007; Venkataraman et al., 2013] and we already
see plenoptic cameras emerging in market such as Lytro. However, the concept of
post-acquisition control and editing is missing in stereoscopic post-processing.

The main cue responsible for stereoscopic scene perception is binocular parallax
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6.2 Goal-Based Stereoscopic View Synthesis

(or binocular disparity) and therefore tools for its manipulation are extremely im-
portant. One of the most common methods for controlling the amount of binocular
parallax is based on setting the baseline, or the inter-axial distance, of two cameras
prior to acquisition. However, the range of admissible baselines is quite limited
since most scenes exhibit more disparity than humans can tolerate when viewing
the content on a stereoscopic display. Reducing baseline decreases the amount of
binocular disparity; but it also causes scene elements to be overly flat. The sec-
ond, more sophisticated approach to disparity control requires remapping image
disparities (or remapping the depth of scene elements), and then re-synthesizing
new images. This approach has considerable disadvantages as well; for content
captured with stereoscopic camera rigs, it typically requires accurate disparity com-
putation and hole filling of scene elements that become visible in the re-synthesized
views. For computer-generated images, changing the depth of the underlying
scene elements is generally not an option, because changing the 3D geometry com-
promises the scene composition, lighting calculations, visual effects, etc. [Neuman,
2010].

In this chapter we propose a novel concept for stereoscopic post-production to re-
solve these issues. The main contribution is a framework for creating stereoscopic
images, with accurate and flexible control over the resulting image disparities.
Our framework is based on the concept of 3D light fields, assembled from a dense
set of perspective images. While each perspective image corresponds to a planar
cut through a light field, our approach defines each stereoscopic image pair as
general cuts through this data structure, i.e., each image is assembled from poten-
tially many perspective images. We show how such multi-perspective cuts can
be employed to compute stereoscopic output images that satisfy an arbitrary set
of goal disparities. These goal disparities can be defined either automatically by
a disparity remapping operator or manually by the user for artistic control and
effects. The actual multi-perspective cuts are computed on a light field, using
energy minimization to compute each multi-perspective output image. We provide
two formulations to solve this problem. This framework is further extended to
drive multi-view autostereoscopic (automultiscopic) displays more flexibly and
efficiently by computing multiple cuts through a light field. In our results we
present a number of different operators including global linear and nonlinear oper-
ators, but also local operators based on nonlinear disparity gradient compression.
In summary, our proposed concept and formulation provides a novel, general
framework that leverages the power and flexibility of light fields for stereoscopic
content processing and optimization.
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Figure 6.2: Light field parameterization. (a) A 2D illustration of a scene and an imaging
setup to generate a light field. (b) The corresponding 2D light field or epipolar-plane image
(EPI). Each point in ray space corresponds to a ray in the light field. Scene points seen in
multiple images become EPI lines in ray space (see Figure 6.1 or 6.3). The slope of each
line is proportional to the distance of the corresponding scene point. For points at infinity
(black point) the line becomes vertical.

6.2 Goal-Based Stereoscopic View Synthesis

We are interested in generating image pairs for stereoscopic viewing, with accurate
control over the corresponding space of binocular disparities, such as range or
gradients. More specifically, the images we want to generate should satisfy the
stereo constraint [Seitz, 2001], i.e., they should feature horizontal parallax only, with-
out any vertical displacement of scene points between the images. Seitz [2001]
showed that, in order to satisfy this stereo constraint, the images have to be con-
structed from a very specific three-parameter family of light rays. This observation
is important to the design of our algorithm; instead of having to process full 4D or
higher-dimensional light fields, we can focus our discussion on image generation
from a 3D light field without loss of generality. In practice, typical examples of
setups for 3D light field acquisition are a camera mounted to a linear stage, a
linear camera array, or corresponding renderings of a virtual scene. See Figure 6.2a
for an illustration of an acquisition setup and Section 3.1.3 and Section 3.3 for a
detailed treatment of light field representations and acquisition, which we briefly
summarize in the next section.
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6.2.1 Image Synthesis from Light Fields

Let L : R3 → R3 be a 3D light field, created from a set of standard perspective RGB
images. Each light ray L(u, v, s) is parameterized by three parameters; parameter s
denotes the 1D positional degree of freedom of the ray origin, whereas parameters
(u, v) represent the ray direction. Assuming uniform sampling of the ray space with
respect to these parameters, Figure 6.2b illustrates a 2D light field corresponding
to Figure 6.2a. Figure 6.1 shows an example of an actual 3D light field in the
form of an EPI volume [Gortler et al., 1996], which can be intuitively interpreted
as a stack consisting of the 2D input images. Since the capture process naturally
results in a discrete set of rays, the parameters u, v, and s will from now on be
implicitly treated as integers. Therefore, s can be regarded as an index to one of the
input images, while (u, v) indexes a pixel in image Is, i.e., L(u, v, s) = Is(u, v). For
simplicity, our discussion will be based on this discretized view of the ray space.

A 2D view, which is not necessarily perspective, can be generated from a 3D light
field L by selecting a 2D subset of rays. As a simple example, a planar uv-slice or 2D
cut at a particular parameter position s extracts the original standard perspective
input image Is (see Figure 6.3a). Cuts with varying parameter s yield images with
varying centers of projection. For instance, a vs-cut with constant parameter u
results in a so called pushbroom panorama, which corresponds to a sensor with a
single pixel column and a linearly varying position of the camera center [Yu et al.,
2010]. A us-cut represents a single EPI, i.e., a 2D stack of the same scanline across
all images, also illustrated in Figure 6.3. However, there is no restriction to planar
cuts. In principle, any 2D subset of rays can be used to generate an image, although
a certain ray coherence is required in order to produce “meaningful” images. In
the context of stereoscopic image generation, curved, piecewise continuous cuts
result in multi-perspective views of a scene, as shown in Figure 6.3b. As shown
by Seitz [2001] and Peleg et al. [2001], multi-perspective images can be fused
stereoscopically, as long as they feature horizontal parallax only. This observation
is the justification for our algorithm that allows the generation of multi-perspective
stereoscopic image pairs with controlled disparity by computing corresponding
cuts through a light field.

In order to convert a light field cut into an actual image, one has to sample the
rays lying on the cut surface. This requires a parameterization of the possibly
discontinuous cut which, in general, is a highly difficult problem (related to the
field of surface parameterization). However, this problem is further complicated
in the context of multiple simultaneous cuts for stereoscopic image generation,
since we have to take additional constraints into account. Assume, for example,
a straight and a curved cut (as in Figure 6.3) represent a stereoscopic image pair.
When sampling the rays along both cuts, any difference in the step size along
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(a) Planar cut and the resulting
single-perspective image

(b) Nonplanar cut and the resulting
multi-perspective image

Figure 6.3: Illustration of a planar, single perspective cut and a nonplanar, multi-
perspective cut through an EPI volume. The red line in the bottom images indicates
the scanline of the EPI. For easier comparison the black line highlights the same column in
both images. Note how the images are nearly identical except for the train front.

the u-axis between the two cuts will have an impact on the horizontal parallax
between corresponding scene points in the two images and, of course, also result in
different image widths. Similarly, a differing parameterization and sampling along
the v-axis will result in vertical parallax, which is undesirable for any stereoscopic
image pair. A simple parameterization and sampling strategy, which naturally
avoids these issues and does not introduce additional distortion in the output view,
is a regular sampling of the cut surface along the u- and v-axis.

The following algorithm combines these basic ideas to compute multiple synchro-
nized cuts through a light field in order to produce multi-perspective images with
specific stereoscopic properties.

6.2.2 Stereoscopy from Light Fields

In order to introduce the terms and definitions used for our algorithm, we will
first consider the generation of a standard perspective stereoscopic image pair. As
discussed in the previous section, one can extract a perspective view from a light
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s
s′

c

Figure 6.4: A 2D EPI of a light field, showing two planar uv-cuts. The horizontal offset c
changes the convergence plane of the stereoscopic image pair. The bottom image shows
the corresponding stereoscopic image pair generated from Is and Is′ .

field L by fixing parameter s and sampling the rays on the corresponding uv-plane,
effectively selecting the input image Is. As illustrated in Figure 6.2a, different
parameters s represent input images captured at different, linearly translated
camera positions. Correspondingly, the difference ∆(s′, s) = s′ − s is proportional
to the camera baseline β between two images Is′ and Is, i.e., β = ∆(s′, s) · b, where
b is the metric distance of unit length in s, or in other words, the distance between
adjacent image capture locations. Hence, a stereoscopic image pair with baseline β

can be generated by picking a reference view Is, and selecting the second view at
s′ = s + β/b, corresponding to two parallel uv-cuts through L. The convergence c
for such a stereoscopic image pair can be modified by shifting Is′ horizontally with
respect to Is (see Figure 6.4).

In order to create a stereoscopic image pair from a 3D light field L with constraints
on the space of disparities, we define a corresponding 3D disparity volume D :
R3 → R+ that stores the scaled reciprocal of the depth, i.e., the distance measured
along the direction perpendicular to the image plane, of the scene point each ray
intersects (see Figure 6.5a). D can be interpreted as a normalized disparity, such that
the image disparity of a pixel u in Is′ to a reference image Is is defined as

Ts(u, s′) = ∆(s′, s)D(u, s′), (6.1)

where we use u as shorthand notation for the coordinate pair (u, v). While any
stereo reconstruction method can be used to construct D from the computed
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(a) Normalized disparity D

s

(b) True disparity Ts

Figure 6.5: (a) A 2D us-slice of the normalized disparity volume D. (b) A 2D us-slice of
the true image disparity volume Ts with respect to a reference view Is.

depth maps using Equation 6.1, our reconstruction method in Chapter 4 naturally
generates the normalized disparity volume D from the input light field L. For
computer-generated scenes, accurate depth can be read from the z-buffer. We call
Ts the true disparity volume for a particular view Is, as illustrated in Figure 6.5b.

Given a reference view Is and the true disparities Ts it is straightforward to for-
mulate a simple procedure that finds a second view Is′ such that Ts(∗, ∗, s′) does
not exceed a certain disparity range. However, the only means for controlling
disparity is the distance ∆(s′, s) between the planar cuts. In the following we will
describe how to compute nonplanar, multi-perspective views that satisfy more
general, content-dependent disparity constraints.

Consider Figure 6.6a, showing a normalized disparity volume D and planar cuts
for two images Is and Is′ . According to Equation 6.1 the horizontal parallax or
image space disparity d of a pixel in Is to the corresponding pixel in Is′ can be
computed as d = Ts(u′, s′) = ∆(s, s′)D(u, s). Now assume we want to create a
modified stereoscopic image pair that features a different depth impression only
for the particular scene point seen at Is(u). As argued in the previous section,
changing ∆(s, s′) globally does not allow for such a local change. An alternative
solution is to keep s and s′ fixed, and update the actual scene depth D(u, s) instead
by deforming the actual geometry of the scene. The problem with this approach is
that modifying the depth of a scene implies changes to the complete underlying
light field, since changing the depth of a scene point influences the slope of the
corresponding line in ray space (see Figure 6.2 and Figure 6.6b). An example
for the consequences is illustrated in Figure 6.6c: reducing the disparity of the
frontmost, orange region results in missing light rays in regions further in the
back of the scene (depicted in red and blue). The corresponding rays have not
been captured in the original light field. Completing those regions would require
complex resampling and hole-filling operations on the light field.

Instead of modifying the image distance ∆(s, s′) or the scene depth D, our algorithm
computes a nonplanar cut l : R2 → R through the light field, which maps rays u to
parameters s in order to meet a given set of goal disparity constraints. This idea is
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(d) Multi-perspective solution

Figure 6.6: Multi-perspective light field cuts for changing stereoscopic disparity. (a) Given
two images Is and Is′ with image disparity d at pixel u. (b) Modification of the disparity d
to d′ effectively amounts to changing the scene depth (see also Figure 6.2), and, hence, the
slope of the corresponding lines in the EPI volume. (c) Changing depth, in this example of
the orange region, results in different (dis-)occlusion patterns, with missing information
in the light field (red and blue region). (d) We propose to compute a cut l instead, whose
corresponding multi-perspective image Il effectively results in the same change of disparity
from d to d′.
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illustrated in Figure 6.6d: given the reference image Is, a second view satisfying the
disparity constraint for pixel u can be generated from a cut l that intersects the EPI
line corresponding to Is(u) at parameter position u + d′. Intuitively, the cut l picks
for each pixel Is(u) a pixel from some input image, such that the desired disparity
constraints are fulfilled. As each input image shows a different perspective of the
scene, the cut produces a multi-perspective output image Il that, together with the
reference view Is, forms a stereoscopic image pair where we effectively control the
camera baseline for each pixel individually.

We define the set of goal disparities as a 2D map G∗ : R2 → R that, for each pixel of
the output view Il, defines the desired disparity with respect to the reference view
Is as follows. Assume that the disparity of pixel u in Is to the multi-perspective
image Il should be d′, as shown in Figure 6.6d. This implies that the value of the
goal disparity map at position (u + d′, v) has to be set to G∗(u + d′, v) = d′. More
generally speaking, let ϕ : R → R be a disparity mapping function that defines
how to map the normalized disparity d to a new disparity value. In order to create
a corresponding stereoscopic image pair, the goal disparity map then is defined as

G∗(u + ϕ(D(u, v, s)), v) = ϕ(D(u, v, s)). (6.2)

G∗ can be constructed by iterating over all pixels u in the reference image Is. The
asterisk in G∗ indicates that it is defined in the output view’s space. The construction
of G∗ is neither surjective nor injective due to occlusions and disocclusions in the
scene. Intuitively, one cannot define disparity constraints for scene elements that
are not visible in Is. Hence these regions remain undefined in G∗ (see Figure 6.7).
However, in practice, these monocular regions span only a small number of pixels,
hence we can compute a plausible output view by imposing certain smoothness
criteria on l, which are described in the following section.

Now recall that the true disparity volume Ts(u, v, s′) represents the actual disparity
of a point (u, v, s′) with respect to Is; correspondingly, the difference volume
Ts(u, v, s′)− G∗(u, v) then represents the deviation of a pixel’s disparity from the
desired goal disparity. The underlying idea of our algorithm for generating the
output image Il is to find a cut l that passes close to the zero set of this difference
volume (see Figure 6.8). The following sections describe how the problem of
finding l can be formulated as an energy minimization problem.

6.2.3 Formulation as Energy Minimization

With the discretization of the light field described in Section 6.2.1, the energy
measuring the deviation of a 2D cut l can be expressed as

Ed(l) = ∑
u
|Ts(u, l(u))− G∗(u)| . (6.3)
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(a) Effects of disocclusion and undefined goal disparity
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Figure 6.7: Illustration of the effects of disocclusions and occlusions. (a) Since only depth
of scene elements visible in the reference image Is is known, the construction of G∗ by
forward mapping of disparities ϕ(D(∗, ∗, s)) (see Equation 6.2) is not surjective. This can
lead to undefined segments in G∗, illustrated in blue on the left. Intuitively, disparity
constraints cannot be defined for regions that are occluded in Is, but visible in an output
view Il . Since these regions generally span only a small number of pixels, a reasonable
choice is to impose a smoothness prior on the cut l. This ensures that the output image
shows an undistorted, standard perspective view of all undefined areas, illustrated in blue
on the right. (b) Similarly, due to visible regions in Is that will be occluded in other views,
the construction of G∗ is not injective. Differently remapped disparities of close and distant
objects compete for the same range in G∗ (overlapping orange and pink region). In this
case, we store the disparity constraints for the object closer to the camera (right).
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Figure 6.8: Goal disparity. The upper image shows a 1D slice of the 2D goal disparity
map G∗. The difference volume Ts − G∗, shown as an unsigned function in this figure,
then represents the deviation of each point in the light field from the desired disparity. Our
algorithm computes a cut l that passes close to the zero set of this volume. The resulting
image Il and Is then form a multi-perspective stereoscopic image pair with the desired
goal disparities.

While a cut computed from this data term alone closely follows the prescribed
goal disparities, it does not enforce any coherence between neighboring output
rays/pixels and therefore can lead to visual artifacts in noisy or ambiguous esti-
mates of Ts. These artifacts are particularly noticeable in highly textured regions or
at depth discontinuities.

Therefore we design an additional content-adaptive smoothness term according to
the following observations:

• In the proximity of visually salient parts of an image, such as depth discontinu-
ities and highly textured regions, we would like to enforce higher smoothness
to increase the coherence of the rays selected by l. In particular, we would like
to assign higher saliency to scene elements close to the camera and cut through
more distant regions.

• In visually less salient, homogeneous and continuous regions, smoothness
constraints can be relaxed in order to increase the flexibility of the cut to
perform multi-perspective view transitions in the light field.

These properties are formulated in the following energy for measuring the smooth-
ness of a cut l:

Es(l) = ∑
(u,u′)∈Nu

∣∣l(u)− l(u′)
∣∣ pu(∗) +

∑
(u,u′)∈Nv

∣∣l(u)− l(u′)
∣∣ pv(∗), with (6.4)

pu(∗) = min { pmax, |∂sD(∗)|+ λD(∗) + κ |∂sL(∗)| } , and
pv(∗) = min { pmax, |∂sD(∗)|+ λD(∗) + κ |∂uL(∗)| } ,
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where Nu and Nv are the sets of all neighboring pixels along the u-axis and v-axis,
respectively. (∗) stands for (u, l(u)). The term |l(u)− l(u′)| penalizes variation
of the cut l along the s-axis, i.e., view transitions. This penalty is weighted by the
content-adaptive terms pu(∗) and pv(∗), respectively.

For both axes, the weighted terms depend on the depth discontinuities ∂sD and
the absolute normalized disparity D. Intuitively, for scene elements very close to
the viewer, even view transitions to an adjacent view may introduce noticeable
disparity jumps. Increasing smoothness for nearby regions and strong depth
discontinuities effectively moves view transitions to the background. Note that
these concepts can be easily generalized to other types of image saliency, for
example to encourage view transitions in less salient regions.

These depth-based terms are sufficient for controlling smoothness of the cut. Op-
tionally, for the u-axis, we can take the change of radiance between different input
images Is into account, while for v we penalize jumps of the cut in the proximity
of vertical image edges. Finally, the maximum penalty pmax ensures that the cut
can be discontinuous, similar to the concept of robust nonlinear error functions. In
our discrete setting, the partial derivatives are computed via forward differences.
The constants in Equation 6.4 are only necessary for bringing all terms to a similar
scale, but not critical to the quality of the results. For the results in this section we
used λ = 0.5, κ = 1, and pmax = 3. The final energy is then defined as

E(l) = Ed(l) + k Es(l), (6.5)

with k = 25. One additional interpretation of the smoothness term is that an in-
creased value of k leads to “flattened” cuts, i.e., output images closer to a standard
perspective image. We believe that this is a notable property, since higher smooth-
ness does not compromise image quality, but simply falls back to the original input
images.

6.2.4 Optimization via Graph Cuts

The minimization of Equation 6.5 can be solved using graph cut optimization
[Boykov et al., 2001; Boykov and Kolmogorov, 2004]. We employ the standard
procedure for binary s-t-cuts.

• For n input images of dimension w× h we construct a 3D regular graph of size
w× h× (n + 1).

• A ray at position (u, v, s′) is associated with a directional graph edge from
node (u, v, s′) to node (u, v, s′ + 1) along the s-axis, and the edge weight is
chosen as |Ts(u, v, s′)− G∗(u, v)|.
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• Bi-directional edges between neighboring nodes along the u-axis and v-axis are
weighted with the corresponding smoothness values kpu and kpv, respectively.

• Boundary nodes with s = 0 and s = n are connected to the source and sink of
the graph, respectively, with infinite weights.

The min-cut of this graph then yields the desired cut surface l that minimizes
Equation 6.5.

We explored various conceptual modifications of this algorithm and the energies.
Most notably, we also experimented with additional penalty edges for enforcing C0

continuity [Rubinstein et al., 2008]. However, we found that piecewise continuous
cuts provide more flexibility due to the support for sudden view transitions. Other
algorithms for minimizing this energy would be applicable as well. An alternative
formulation could be based on multi-labeling via α-expansion [Boykov et al., 2001],
where each label is associated with a particular uv-slice along the s-axis of the
EPI volume. While such an approach reduces the size of the graph, it has certain
restrictions regarding the optimality of the result. In practice, however, we found
the binary s-t-cut to produce reliable results.

6.2.5 Extensions

There exist several useful extensions of our basic algorithm which we briefly
describe next.

N-View Stereo from Multiple Cuts

Instead of creating a stereoscopic pair consisting of a standard perspective image
Is and a multi-perspective image Il, the algorithm can be easily extended to create
two multi-perspective cuts. For example, two goal disparity maps G∗L and G∗R can
be defined as

G∗L(u−
1
2

ϕ(D(u, v, s)), v) = −1
2

ϕ(D(u, v, s)) and

G∗R(u +
1
2

ϕ(D(u, v, s)), v) =
1
2

ϕ(D(u, v, s)),
(6.6)

where the goal disparities are evenly distributed to both views and the reference
view is centered between the two corresponding cuts. More than two views can be
handled in a similar manner. As we discuss in Figure 6.14, this multi-cut approach
is particularly interesting for content generation for multi-view autostereoscopic
displays.
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6.2 Goal-Based Stereoscopic View Synthesis

While defining a goal disparity map for each view separately provides high flexibil-
ity, many application scenarios such as multi-view autostereoscopic displays often
require a simple linear change of disparity between views. This can be exploited for
an efficient, interpolation based algorithm to generate multiple views, given just
the reference view s and one multi-perspective cut l. Suppose l has been computed
from a mapping function ϕ(D(u, v, s)), and that the two views s and l should be
converted into n views with linearly interpolated disparities. From Equation 6.2
we can conclude that the goal disparities of view i ∈ {0, 1, . . . , n−1} are given as

G∗(u +
i

n−1
ϕ(D(u, v, s)), v) =

i
n−1

ϕ(D(u, v, s)), (6.7)

meaning that a cut li will contain the interpolated points of all EPI lines connecting
corresponding points of s and l.

Stereoscopic Video Processing

In order to process video it is generally advisable to enforce a certain continuity
between two cuts at consecutive time steps. One solution would be to enforce
temporal smoothness by adding a temporal dimension to the graph structure. Each
time step then has its own 3D subgraph, and corresponding nodes of subgraphs
from consecutive time steps are connected via additional edges. Using a multi-label
approach instead of binary labeling, the graph dimension could be reduced to 3D
again. The disadvantage of this approach is that it has to process the whole 4D
spatio-temporal light field volume at once.

Our solution uses an exponentially decaying influence of previous time steps on
the data and smoothness terms for the current time step. Let et denote the edge
weight for a given time step t according to Equations 6.3 and 6.4. During the
update of the graph structure from time t− 1 to t, we set the temporally averaged
edge weight

e′t = αet + (1− α)et−1 (6.8)

for any edge. However, the temporal evolution of a light field is quite coherent in
general. We found a weight of α = 0.9 resulting in sufficiently smooth output.

Deferred Rendering for Computer-Generated Content

Our method is particularly interesting for computer-generated content such as 3D
animation movies. Implementing multi-perspective camera models into the CG
rendering pipeline to meet the expectations of a director regarding control and
flexibility is often a difficult problem [Neuman, 2010]. Warping the 3D geome-
try instead is not an alternative, since this does not allow for arbitrary complex

85



Rendering

disparity constraints without compromising the scene composition, lighting cal-
culations, or visual effects. Our method shifts the effort from the artist towards
automatic computations: the well-established CG pipeline for modeling, shading,
and cameras remains unaltered, and stereography becomes a simple post-process.

However, given the significant rendering time, the generation of the complete
light field of a complex scene is not often feasible. To deal with this, deferred
rendering could be applied; since our algorithm works well with depth data only
(the normalized disparity volume D), it is sufficient to render only the depth
maps of the input views. This is typically several orders of magnitude faster
than rendering fully shaded color images. Even lower resolution proxy geometry
could be used instead of the highly tessellated subdivision surfaces often used in
rendering. Once the required set of input views is known from the cut l, those
images or just the required light rays can be rendered and combined. These
considerations render our method a highly practical solution.

Different Light Field Parameterizations

Section 6.2.1 made certain assumptions about the acquisition and parameterization
of a light field, and the required sampling scheme to generate an image from a given
cut l. We also assumed that the reference view is a standard perspective view, and
that correspondingly our desired output view should be as-perspective-as-possible
as well, while satisfying our prescribed goal disparity constraints. For this scenario
we argued that a regular sampling along the u- and v-dimension is the most natural
choice. In other application scenarios, however, it could be desirable to produce
other forms of stereoscopic images, such as omnistereo panoramas as discussed by
Peleg et al. [2001], or stereo pushbroom panoramas and cyclographs as discussed
by Seitz [2001]. For these types of images the light field parameterization and
image cut have to be reconsidered.

As mentioned in Section 6.2.1, a stereo pushbroom panorama simply corresponds
to a vs-cut instead of a uv-cut. This insight renders handling of stereoscopic
pushbroom images straightforward; one has to swap the dimensions u and s in
our formulation, and then apply the algorithm as is. For omnistereo panoramas
and cyclographs, the 3D light fields are constructed with a rotating camera at a
certain offset orthogonal to the rotation axis, yielding a u-v-α volume. Both above
mentioned works show that planar v-α slices can be used to produce stereoscopic
panoramas. Peleg et al. [2001] also show an algorithm for adaptively changing
the camera baseline for each image column. Our concept of multi-perspective,
piecewise smooth cuts with a global optimization scheme generalizes these ideas
to per-pixel control over the baseline (see Figure 6.9 for a comparison).
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6.2 Goal-Based Stereoscopic View Synthesis

Figure 6.9: Comparison to Peleg et al. [2001]. Since the method of Peleg et al. supports
only column-wise disparity control (top), it is not possible to achieve truly localized effects
as with our per-pixel control over the disparity space (bottom).

6.2.6 Results

In this section we present results that are generated using our algorithm, given
a prescribed set of disparity constraints. All results are presented as gray-scale,
red-cyan anaglyph images ( , red left). This not only allows for seeing the
images stereoscopically in 3D, but also to quickly assess the horizontal parallax
between images without glasses. We show results for computer-generated light
fields as well as for real-world images, some of which are taken from UCSD/MERL
Light Field Repository1. As high frame rate light field cameras are not yet available,
we captured stop motion videos to test our method on live-action footage. For
our results on computer-generated light fields, the normalized disparity volume
D has been constructed from the z-buffer of the input images. For the real-world
examples we used our depth reconstruction method presented in Chapter 4. We
first provide a set of examples demonstrating the application of different disparity
mapping operators ϕ. In our experiments, ϕ is defined on the normalized disparity,
which is converted to pixel disparities by taking the physical depth budget, screen
size and viewer position into account. For all results, we computed both output
views.

1http://graphics.ucsd.edu/datasets/lfarchive/
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(a) Stereo pair with large
baseline

(b) Stereo pair with small
baseline

(c) Nonlinear depth
enhancement of foreground

−4 0 26

(d) Disparity
histogram of (a)

−4 0 26
−4

0

10

(e) Mapping from
(a) to (b)

−4 0 26

(f) Disparity
histogram of (b)

−4 0 26
−4

0

10

(g) Mapping from
(a) to (c)

−4 0 26

(h) Disparity
histogram of (c)

Figure 6.10: Nonlinear disparity remapping. (a) shows a standard stereo pair with a large
baseline where the foreground provides a good impression of depth. The background
disparities, however, are quite large and can lead to ghosting artifacts or even the inability
to fuse, when viewed on a larger screen. (b) Decreasing the baseline reduces the problems
with respect to the background, but also considerably reduces the depth between the
foreground and the background. (c) With a nonlinear disparity mapping function we can
enhance the depth impression of the foreground, while keeping the maximum disparities
in the background bounded as in (b). Compare the disparity distribution (h) to that of the
small baseline stereo (f). (d), (f) and (h) show the disparity distributions of respective stereo
pairs, and (e) and (g) show the disparity remapping functions. Observe that the depth
between the foreground and the background in (d) is preserved in (h), while it is not in (f).
© 2011 Disney Enterprises, Inc.

Linear Remapping

The most straightforward example is a linear remapping of the disparity range,
which corresponds to changing the camera baseline between two standard per-
spective views. In this case our method simply produces the expected planar cuts
(e.g., Figure 6.10b). However, in this context a notable property of our method is
that it eliminates the quite abstract and unintuitive concept of the camera baseline.
Instead, one can directly specify the desired goal disparity range of the output
images. This is the preferred method in actual production environments [Neuman,
2010].
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(a) Stereo pair with window
violation

(b) Correction by gradient
domain compression

−20 0

(c) Disparity
histogram of (a)

0 0.01 0.02

0.01

(d) Gradient
remapping

−20 0

(e) Disparity
histogram of (b)

Figure 6.11: Gradient domain compression. (a) A typical example for a stereo pair where
the partially cropped couple features strong negative disparity, resulting in a so called
window violation [Mendiburu, 2009]. Changing the convergence would increase the back-
ground disparities, potentially leading to the same problems as in Figure 6.10a. (b) With our
method, we can resolve this stereoscopic issue by gradient domain compression of strong
negative disparities. This effectively pushes the couple closer to the screen while keeping
the background disparities unchanged. (c) and (e) show the disparity distribution of (a)
and (b), respectively. Note that in this example the empty space between the foreground
and the background in (c) is squeezed in (e). (d) shows the gradient remapping function,
which effectively compresses strong disparity gradient. © 2011 Disney Enterprises, Inc.

Nonlinear and Gradient-Based Disparity Remapping

The strengths of our method are revealed for application scenarios where nonlinear
changes of the disparity space are required. In principle, arbitrary remapping
functions ϕ can be applied to construct the desired goal disparity volume, and
even constant disparities are possible. For example, ϕ could be any of the non-
linear disparity mapping operators introduced by Lang et al. [2010] for display
adaptation, stereoscopic error correction, or artistic effects. These functions can
act globally on the complete domain as well as locally by remapping disparity
gradients. For the gradient based remapping, we compute the gradient field in
both u and v directions and process the gradients non-uniformly using the gradient
magnitude, e.g., to supress big disparity jumps. We then reconstruct the height
field by integration of the gradients using a Poisson solver [Agrawal and Raskar,
2007], and use this reconstructed height field to set a final goal disparity.

Figures 6.1, 6.10, 6.12, 6.11, and 6.14 show various examples for applications
of nonlinear disparity remapping and gradient-based disparity processing. The

89



Rendering

(a) Rhino, frame 43 (b) Rhino, frame 50 (c) Airplane, frame 100 (d) Airplane, frame 166

Figure 6.12: More examples for nonlinear disparity gradient remapping in order to reduce
the overall disparity range, while preserving the perception of depth discontinuities and
local depth variations. The first row shows the stereo pairs with two perspective images
and a fixed baseline, while the second row shows the depth remapped versions. In
particular, for the airplane scene the disparity gradient of the image’s upper half was
intensified, and the gradient of the lower half was attenuated. © 2011 Disney Enterprises,
Inc.

respectively used mapping function ϕ and the histograms of disparities before
and after applying our method are shown as well. Figure 6.10 and 6.11 show
typical issues arising in the production of stereoscopic content, and how they can
be resolved using our method. In Figure 6.1 we use gradient domain remapping
to increase the dramatic appearance of the scene by emphasizing depth gradients.
Figure 6.12 shows a similar example where we reduce the overall disparity range
while preserving the depth perception around depth discontinuities and local
depth variations.

Artistic Control

In addition to the automatic mappings described above our method allows for
concise manual control of disparities, which is an important requirement in any
stereoscopic production environment. Users can directly modify the depth map
D(∗, ∗, s) at the reference view s, e.g., using painting tools. The goal disparities are
then set using the modified depth map. This allows for interesting artistic effects
as well as fine-scale correction of the stereoscopic impression of a scene. Figure 6.9
and 6.13 show examples for manual control over disparity.

Multi-View Autostereoscopic Displays

A further interesting application domain is multi-view autostereoscopic displays.
Similarly to stereoscopic displays, these displays have a limited depth budget.
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(a) Original stereo (b) Resulting stereo output

(c) Disparity maps

−38 0 20 −38 0 20

(d) Disparity histograms

Figure 6.13: Artistic control over depth. (a) and (b) We manually masked the two toys
which are approximately at the same depth in the original stereo, and then defined different
goal disparities for those regions. The resulting stereo output of our algorithm creates
a different depth sensation for the two toys, even though they are placed at the same
distance. (c) and (d) show the actual disparity maps and disparity distributions of the two
stereoscopic image pairs. The two image pairs exhibit significantly different disparities
in the area of two toys. Also note the new peak in the disparity histogram of the output
stereo which corresponds to the toy on the right.

Thus, it is usually necessary to prefilter and remap an input light field to the
available spatio-angular display bandwidth in order to avoid inter-perspective
aliasing [Zwicker et al., 2006]. We can obtain properly remapped data to drive
a particular automultiscopic display by computing multiple cuts through a light
field. In Figure 6.14 we show an example for an 8-view autostereoscopic display
from Alioscopy.

Performance

The computationally intensive steps of our method are the graph construction and
the min-cut computation. The required time for the graph construction depends on
the size of the underlying light field, while the optimization depends additionally
on the complexity of the disparity constraints. The timings below have been
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(a) Eight views optimized for a multi-view autostereoscopic display

(b) Photographs of these views shown on a 8-view autostereoscopic display

Figure 6.14: Multiple view generation. (a) Multi-perspective 8-view stereo, optimized with
respect to the disparity range of an Alioscopy 8-view autostereoscopic display. (b) Unopti-
mized content easily leads to considerable ghosting artifacts (left column). Our method
can automatically compute n-view stereo images that are designed to meet the disparity
requirements of the output device and at the same time enhance perceived depth (right
column).

measured for our MATLAB prototype on a machine with an Intel Core i7 2.8 Ghz
CPU and 6 GB memory. For example, the complete graph construction for a
single video frame consisting of 50 images with 640×480 resolution used for
Figure 6.1 takes about 2.5 seconds. The min-cut computation with goal disparities
computed by the gradient compression takes about 30 seconds. Overall per-frame
computation times for all presented results ranged from 10 seconds to about
1.5 minutes for the more complex Airplane and Elephant data sets. In general,
the more the goal disparities differ from the standard perspective of the input
images the more processing time is required. The memory requirements of the
employed graph cut algorithm for a light field of size s× u× v are 115 · s · u · v
bytes. We reduce the memory footprint of our method via a variational formulation
in Section 6.3. We also expect significant speed and memory improvements for
more efficient graph-cut implementations.
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Discussion

Our framework is very reliable when using dense light field sampling and accurate
depth estimates. With a lower number of input images and less accurate depth map
quality the cut may become less smooth and potentially cut through foreground
regions. Fortunately, these effects can be compensated by setting λ and κ in
Equation 6.4 higher to strengthen the depth and the radiance gradient based
smoothness. By doing so, view transitions are less likely to happen inside well
textured, foreground objects. With higher smoothness the output images are
composed of standard perspective image segments which can also be interpreted
as “multi-perspective image stitching.”

Even when the scene is so complicated that it is very challenging to compute high
quality depth, the proposed algorithm is quite robust and generally produces high
quality output stereoscopic images. The rationale behind this is that for those
regions where accurate cut computation is required to deal with the high frequency
texture or the depth discontinuity, depth computation also becomes reliable for
the very same reason. On the other hand, for those regions where the depth
computation often becomes less reliable, such as texture-less regions with uniform
color, the caused inaccuracy of the cut and thereby undesirable ray selection are
not very noticeable as these regions are not visually salient.

6.3 Variational Formulation for View Synthesis

While the solution presented in the previous section provides a highly flexible
and powerful control over disparity, one downside is that the employed graph cut
optimization is memory intensive as it requires a dense regular graph structure to
be built and maintained in memory. Additionally, the depth information has to be
calculated and stored separately. These render it difficult to scale the method to
higher resolution light fields. In this section we develop an alternative formulation
based on variational optimization that avoids these problems. In the following,
we treat a light field as a continuous function and derive an energy functional
accordingly. Compared to the discrete formulation, the variational formulation
runs with much less memory within comparable time.

6.3.1 Variational Formulation

As with the discrete formulation, the new formulation takes as input a light field
and user-defined goal disparities. For a given reference view within the light field,
it computes a new view such that the disparities between the two views best match
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the prescribed goal disparities. As before, 3D light fields are assumed as input, and
the goal disparities are also a 2D map, but defined at the reference view.

Let Ω ⊂ R2 be the spatial domain of the (continuous) light field, and Γ =
[smin, smax] ⊂ R be its bounded 1D angular domain. We then define a light field
L : [Ω× Γ]→ R3, which maps a ray defined by a spatio-angular coordinate (u, s),
where u = (u, v) ∈ Ω and s ∈ Γ, to a sampled radiance represented in RGB color
space. Further let ŝ ∈ Γ denote the position of the reference image Iŝ(u) = L(u, ŝ)
for which the goal disparity map G : Ω→ R is specified.

In the first step we shift the reference image Iŝ by the goal disparity G to obtain the
goal image

I∗ŝ (u + G(u, v), v) = Iŝ(u, v). (6.9)

The goal image I∗ŝ represents what the sought second view should look like. How-
ever, as the shifting is not injective nor surjective, there are ambiguities. We deal
with the non-injectiveness that would map two pixels to the same location by
selecting the pixel with the larger disparity, i.e., the one closer to the camera. To
deal with the non-surjectiveness that leaves certain pixels without a disparity value,
we mark these undefined regions in a binary mask M : Ω → {0, 1} that is 0 in
the undefined regions and 1 elsewhere. The undefined region is the disoccluded,
monocular region which, in principle, should not be crucial to the depth percep-
tion, but may cause discomfort when conveying conflicting depth cues [Lang et al.,
2010]. Many techniques fill this region by stretching neighboring image regions.
However, this often introduces unwanted visible distortions of the image content.

Energy Functional

In our approach, we use pixels from the input light field to fill in information in
these disoccluded regions. The unknown second view will hence be defined by a
labeling function l : Ω→ Γ that determines for each pixel position in the second
view, which input view a ray, i.e., a pixel, should be taken from. To find a smooth
solution with least noticeable transitions (seams) we formulate the problem of
finding l as a continuous optimization problem consisting of a data matching and
a smoothness term

E(l) =
∫

Ω
Ed(l) + k Es(l) du, (6.10)

where k > 0 balances the two terms.

The data term Ed enforces the resulting second image to be as close as possible
to the goal image in the subset of Ω where the goal image is defined, i.e., where
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M(u) = 1. Thus the data term is defined as

Ed(l) = M(u) ‖L(u, l(u))− I∗ŝ (u)‖1 . (6.11)

The smoothness term Es penalizes the amount of view transitions in the labeling.
Importantly, it also guides the transitions to happen in less noticeable regions
to allow for a seamless stitching of contributions from different images. For
the disoccluded regions where the data term is disabled, the smoothness term
allows for filling in information in a smooth manner, resulting in a least dis-
torted completion of these missing regions. To achieve these goals, we define the
smoothness term as the anisotropic total variation regularizer [Olsson et al., 2009;
Grasmair and Lenzen, 2010]

Es(l) =
√
∇l(u)T S(u, l(u))∇l(u) . (6.12)

The anisotropy is driven by the local variation in the light field, and measured
using the structure tensor [Förstner and Gülch, 1987]

S(u, s) = Kσ ∗ (∇uL(u, s)∇uL(u, s)T), (6.13)

where Kσ denotes a Gaussian kernel of variance σ2, ∗ is the convolution opera-
tor, and ∇uL = (∂uL, ∂vL)T is the spatial gradient of the light field L. The two
orthonormal eigenvectors of S point along and across dominant spatial edges in
the light field, respectively. Hence our smoothness term aligns view transitions
with discontinuities in the light field which minimizes visible seam artifacts due to
view transitions.

Substituting the energy terms in Equation 6.10 with Equations 6.11 and 6.12 results
in the following variational minimization problem of the sought labeling l:

min
l

∫
Ω

M(u) ‖L(u, l(u))− I∗ŝ (u)‖1 + k
√
∇l(u)T S(u, l(u))∇l(u) du. (6.14)

Convex Formulation

While the regularizer of the functional Equation 6.14 is convex, the data term is
not. We reformulate Equation 6.14 as a convex functional using function lifting.
We only outline the fundamental steps of the procedure here and refer to Pock et
al. [2008] for more details.

Let us define a binary function φ : [Ω× Γ]→ {0, 1} with

φ(u, s) =
{

1 if l(u) > s
0 otherwise

, (6.15)
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which is the indicator for the s-superlevel sets of l. The feasible set of functions φ is

A′ = {φ : [Ω× Γ]→ {0, 1} | φ(u, smin) = 1, φ(u, smax) = 0}. (6.16)

Rewriting Equation 6.14 with φ will now yield a convex data term, yet the feasible
set of φ is non-convex and hence the minimization over it. To cope with this, φ is
further relaxed so that it may take continuous values in the interval [0, 1], leading
to the convex feasible set

A = {φ : [Ω× Γ]→ [0, 1] | φ(u, smin) = 1, φ(u, smax) = 0}. (6.17)

When φ is projected back to its original domain after the optimization, it is thresh-
olded by some value within the interval [0, 1]. The optimality is still guaranteed
regardless the selection of threshold [Pock et al., 2008]. The labeling function l is
recovered from φ by integrating over Γ [Chan et al., 2006]:

l(u) = smin +
∫

Γ
φ(u, s) ds. (6.18)

Rewriting Equation 6.14 using the partial derivative of the indicator function φ,
we obtain the following convex problem:

min
φ∈A

∫
Ω

∫
Γ

M(u) ‖L(u, l(u))− I∗ŝ (u)‖1 |∂sφ(u, s)|+

k
√
∇uφ(u, s)TS(u, s)∇uφ(u, s) ds du. (6.19)

6.3.2 Optimization via Primal-Dual Iterations

A straightforward way to minimize the convex energy functional of Equation 6.19
would be to solve its associated Euler-Lagrange differential equation [Pock et
al., 2008]. This appraoch is, however, complicated by the singularity of the used
norms at zero. As an alternative we rewrite the norms in terms of their Wulff
shape as the combined two norms constitute a convex, positively 1-homogeneous
function [Zach et al., 2009].

Saddle-Point Formulation

A Wulff shape is defined as

Wφ = {y ∈ Rn | 〈y, z〉 ≤ φ(z) ∀z ∈ Rn} , (6.20)
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for a convex function φ : Rn → R that is positively 1-homogeneous, i.e., φ(λz) =
λ φ(z), ∀λ > 0. It is a closed and bounded convex set containing zero, and is used
to rewrite φ as

φ(z) = max
y∈Wφ

〈z, y〉, (6.21)

where the norms can be represented in a differentiable form. The minimization
problem of Equation 6.19 can then be rewritten as

min
φ∈A

max
p∈B

E(φ, p), (6.22)

with the energy functional

E(φ, p) =
∫

Ω

∫
Γ
〈∇u,s φ(u, s), p(u, s)〉 ds du, (6.23)

where ∇u,s is now the gradient over all three dimensions of φ, and p = (pT
u, ps) =

(pu, pv, ps) is the dual variable. The feasible set of the dual p then becomes the
following Wulff shape:

B = {p : [Ω× Γ]→ R3 |
√

pT
u S(u, s)pu ≤ k, |ps| ≤ ρ(u, s)} , (6.24)

where ρ(u, s) is the data term value at (u, s) as defined in Equation 6.11. This
can be seen as a partial dualization in convex analysis, where φ is referred to
as the primal variable and p the dual. Because we will maximize in the dual p
and minimize in our original primal φ, the problem Equation 6.22 is called the
saddle-point formulation.

Primal-Dual Iterations

To solve Equation 6.22, we alternate between taking gradient steps in the primal
and dual [Handa et al., 2011]. To minimize the primal, we define the gradient as

φn − φn+1

σp
= ∇φE(φ, p), (6.25)

and to maximize the dual, we define the gradient as

pn+1 − pn

σp
= ∇pE(φ, p). (6.26)

By calculating the derivative of Equation 6.22 with respect to the primal and the
dual we derive the update steps

Primal: φn+1 = PA(φn + σp div pn) (6.27)

Dual: pn+1 = PB(pn + σp∇φn+1) (6.28)
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Figure 6.15: Disparity modification using user scribbles. This task demonstrates a possible
use case, where sparse brush strokes are drawn by the user, (a), and then propagated to
form a dense goal disparity map (b), from which the resulting stereo is generated. (c) and
(d) show the reference view and the computed new view, respectively. (e) shows the
resulting anaglyph stereo image. Note that the scribbles are not necessarily physically
meaningful and are rather intended to test the flexibility and robustness of our method.

where PA projects φ back into its domain A by truncating it to [0, 1] and setting
φ(u, smin) = 1 and φ(u, smax) = 0. PB is the Euclidean projector of the set B:

PB(pn+1) = arg min
y∈B

‖pn+1 − y‖. (6.29)

To compute the updates numerically, we discretize Ω and Γ so they represent pixel
coordinates and the image index in the light field, respectively. The gradients are
approximated using forward differences, but we use backward differences for the
divergence to ensure convergence.

6.3.3 Experimental Results

In this section we evaluate the results from the variational formulation both quali-
tatively and quantitatively, also with the comparisons to the discrete formulation
introduced in Section 6.2. We begin with the demonstration of two use cases: dis-
parity modification using sparse user scribbles, and nonlinear disparity remapping.
We then assess the results quantitatively, and finally analyze the performance. For
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Figure 6.16: Nonlinear disparity remapping. The actual scene depth of the reference view (a)
is nonlinearly remapped to create the goal disparity map (b). For the Bikes dataset, the
excessive disparity on the ground was compressed for a more comfortable stereoscopic
viewing experience. For the Couch and Mansion datasets, the gradient of the disparity is
modified such that large disparity gradients are removed, to better distribute the disparity
budget and to obtain more local details. (c)–(e) show the reference image, the computed
new view, and the resulting anaglyph stereo image, respectively.

all experiments, we used a fixed set of parameters, σp = 1/
√

3, k = 10, and σ = 2,
and the primal-dual steps were iterated 10,000 times. All anaglyph images shown
can be viewed in 3D using red-cyan anaglyph glasses as before.

Qualitative Evaluation

Our first use case based on user scribbles demonstrates a pipeline for the stereo edit-
ing and the 2D-to-3D conversion (see Figure 6.15). A sparse disparity annotation
is provided by the user by drawing several brush strokes on top of the reference
image, where the grayscale intensity of strokes encodes the amount of disparity.
This sparse input is then propagated to form the dense goal disparity map using
a method like StereoBrush [Wang et al., 2011]. Note that these scribbles need not
necessarily be physically correct: our method finds the labeling that is closest to
the specified disparity while producing the least noticeable seams, which leads
to convincing stereo images. For instance, in the scribbles for the Couch dataset
shown in Figure 6.15, the hippopotamus is pushed farther than all other stuffed
animals, while it is the closest in reality.

Figure 6.16 shows the second use case, where the actual scene depth is nonlinearly
remapped to convey modified depth perception. We used the scene depth computed
using our reconstruction method in Chapter 4 for the Bikes, Couch, and Mansion
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Figure 6.17: Side-by-side comparisons between ordinary stereo and our results. (a) shows an
ordinary stereo consisting of two perspective images chosen from the input light field.
(b) and (c) show our results using user scribbles and nonlinear disparity remapping,
respectively.

datasets. For the Bikes dataset shown in the first row, the depth of the ground is
compressed to give more disparity budget to the bikes at farther distance. For the
Couch and Mansion datasets, the disparity gradient is obtained from the disparity
map, and the high gradient is truncated to remove empty space and emphasize
local details. The goal disparity map is then reconstructed from the modified
gradient using a Poisson solver [Agrawal and Raskar, 2007].

Figure 6.17 presents the side-by-side comparisons of the “ordinary” stereo consist-
ing of two perspective images, and our results using user scribbles and nonlinear
remapping.

Quantitative Evaluation

To assess our results quantitatively we conducted two experiments where the
expected results are known a priori. First, we use a single constant disparity value
for all pixels as the goal disparity. Thus our formulation should result in the
same image that is only translated by the amount of the disparity value, by best
combining the pixels from the different views. Second, we use a linearly scaled
disparity map of the reference view as the goal disparity. Since this linear scaling
does not involve any local disparity modification, our method should choose the
same, single input image entirely.

Figure 6.18 shows the results of constant disparity, where the goal disparity is set to
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Figure 6.18: Constant disparity. (a) and (b) show the reference image and the computed
new view given a fixed value of 20 pixels as the goal disparity. (c) shows the error of the
computed image against the ground truth, for which we use the reference image translated
by 20 pixels. The darker the pixel in the error image, the smaller the error. See Table 6.1
for corresponding RMSE measures. (d) shows the anaglyph stereo image, while (e) shows
the resulting labeling. The resulting stereo should ideally look flat, but floating on the
screen. The labeling images look like depth maps of the scenes. In fact, the rendering and
the depth reconstruction problems are closely related; see Section 6.3.4.

20 pixels for all datasets. The third column shows the absolute difference between
the image computed by our method and the reference image translated by the
amount of disparity. The resulting anaglyph stereo images which are shown in the
next column should look flat, but floating on the screen. The last column shows the
resulting labeling, where each step in the grayscale denotes an image index. The
labeling resembles the scene depth, and in fact, the stereoscopic rendering problem
we are addressing and the dense depth estimation problem are tightly related. We
discuss this in Section 6.3.4.

The results of a linearly scaled disparity are shown in Figure 6.19. We scaled the
given depth map at the reference view by a factor of 10, hence each resulting view
should equal to its tenth next view. As for the constant case, we show the reference
image, the computed new view, and the difference between the computed image
and the corresponding input image. The labeling shown in the last column should
look close to flat for this experiment.

Table 6.1 lists the root-mean-squared errors (RMSE) of the computed views for the
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Figure 6.19: Linear disparity scaling. (a) and (b) show the reference image and the computed
new view, for which the depth at the reference view was linearly scaled by a factor of 10
and used as the goal disparity map. (c) shows the error of the computed image against the
ground truth, i.e., the 10th next image to the reference in the input light field. The darker
the pixel in the error image, the smaller the error. See Table 6.1 for corresponding RMSE
measures. (d) shows the anaglyph stereo image, and (e) shows the resulting labeling. The
labeling should ideally look flat in this task.

two tasks against the ground truth, at two different resolutions: 1280×853 (1k) and
1920×1280 (2k). For both tasks of the Bikes and Couch datasets, the RMSE was all
below 0.04. The error was higher for the Mansion dataset for both tasks, primarily
due to the complex and thin structure of the tree and fence, which was about 0.07.
Since the Elephant dataset is only available at 1k resolution we performed the
constant disparity task at 1k resolution, which showed the RMSE of 0.05.

Goal disparity
RMSE from the ground truth

Elephant Bikes Couch Mansion

1k resolution
Constant 0.0499 0.0396 0.0235 0.0704
Linear –∗ 0.0315 0.0072 0.0774

2k resolution
Constant –∗ 0.0392 0.0252 0.0735
Linear –∗ 0.0288 0.0065 0.0693

Table 6.1: Errors of the computed views against the ground truth. (∗Dataset not available)
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Figure 6.20: Comparison to the discrete formulation. We compare the constant disparity task
(see Figure 6.18) against our discrete graph-cut formulation in Section 6.2. The labeling of
the discrete formulation clearly shows grid bias, i.e., the transitions are mostly axis-aligned
or diagonal (bottom (d)). This results in higher errors (bottom (b)).

Comparisons and Performance

A characteristic problem of the discrete formulations is that the optimization
depends on the discretization, which is known as the grid bias. Figure 6.20 shows a
side-by-side comparison of the constant disparity task between the results from the
discrete and variational formulations. As seen in the labeling image, the discrete
solver yields the labeling that is mostly aligned along the two image axes, and also
exhibits a higher error in the final rendering.

We implemented the primal-dual iterations on a GPU using NVidia CUDA. The
maximal GPU memory that the implementation requires at a time was measured
for several different resolutions, both spatially and angularly. We show the mem-
ory footprint in Figure 6.21, also with the comparison to the discrete formulation
of Section 6.2. The variational formulation uses less than 10 % of the memory com-
pared to the discrete formulation. Table 6.2 summarizes the memory consumption
of two formulations. We were not able to measure the memory footprint of the
discrete formulation on 2k resolution datasets because the test system became
unresponsive due to the excessive page swapping.

The running time varies depending on both the type of tasks and the light field
resolution. Measured on an Intel Core i7 processor with 16 GB of RAM and an
NVidia GTX 560 graphics card, the running time of the tasks for fifty 1k images
varied between 10 and 12 minutes and for thirty 2k images between 13 and 15
minutes. Table 6.3 shows the complete running time of the variational formulation
for all four tasks at two different resolutions.
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Figure 6.21: Memory usage. This graph shows the amount of memory that the two formu-
lations of our method require for the input with different resolutions. Compared to the
discrete formulation, the variational formulation is more memory efficient.

6.3.4 Relation to Depth Computation

The labeling results of the constant disparity task in Figure 6.18 resemble the actual
scene depth. When a constant disparity value g is used as the goal disparity, i.e.,
G(u) = g, ∀u ∈ Ω, the mapping between the reference image Iŝ and the goal image
I∗ŝ in Equation 6.9 becomes bijective, with M(u) = 1 everywhere except for the
g-pixel-wide vertical strip at the left image border. The data term (Equation 6.11)
can thus be rewritten as

Ed(l) = ‖L(u, v, l(u, v))− L(u− g, v, ŝ)‖1 , (6.30)

for a pixel u = (u, v) ∈ Ω : u > g.

Minimizing this energy for l together with the smoothness term amounts to corre-
spondence matching, i.e., finding the ray (u, v, l(u, v)) whose radiance best matches
to that of (u− g, v, ŝ) for each pixel (u, v). The disparity is computed as

d =
g

l(u, v)− ŝ
(6.31)

using simple triangulation. Since both g and ŝ are constant, the labeling l encodes
the disparity map.

In fact, the data term (Equation 6.11) implicitly implements dense disparity esti-
mation, which can be shown more clearly using the linear scaling task. With the
(scaled) actual disparity as the goal disparity one obtains a flat labeling as shown
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Resolution
(w×h×#images)

#pixels
(Mpix)

Memory use in Mb
Ratio

Variational Discrete

640×427×30 8.2 186.9 1,761.0 9.4%
640×427×50 13.7 310.0 2,983.4 9.2%

1k resolution
1280×853×30 32.8 664.3 7,047.3 9.4%
1280×853×50 54.6 1,101.7 11,941.3 9.2%

2k resolution
1920×1280×30 73.7 1,495.3 –∗ –
1920×1280×50 122.9 2,479.7 –∗ –

Table 6.2: Memory footprint of the variational formulation in comparison to the discrete
formulation of Section 6.2. (∗Test failed)

in Figure 6.19. Let us assume that the goal disparity G gives us an injective map-
ping from the reference image Iŝ to the goal image I∗ŝ in Equation 6.9. Substituting
this mapping into the data term in Equation 6.11 yields

Ed(l) = M(u, v) ‖ L(u, v, l(u, v))− L(u− G(u, v), v, ŝ) ‖1 . (6.32)

In our original problem, we fix the goal disparity G and seek the image index l for
each pixel (u, v) ∈ Ω. If, instead, we fix the labeling l to be a constant s′ over Ω

(i.e., flat labeling), and optimize the functional for G over all pixels (u, v) ∈ Ω, the
result will be the disparity map defined between the two images at the reference
image ŝ and the fixed other view s′. In this case the smoothness should accordingly
be redefined in terms of G, instead of l.

6.4 Discussion

We have presented a general, multi-perspective framework for computing stereo-
scopic images from a light field, which satisfy a prescribed set of per-pixel goal
disparity constraints. The core idea is to compute piecewise continuous cuts
through the light field that minimize an energy derived from the goal disparities.
We have demonstrated that our method is an effective and practical solution to
key issues arising in today’s stereoscopic content generation and post-production,
and we believe that it will be an even more important tool for upcoming plenoptic
cameras.

The presented framework provides a multitude of future research opportunities.
For example, the current energy formulation strives at finding a cut that follows
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Goal disparity
Computation time in seconds

Elephant Bikes Couch Mansion

1k resolution
Constant §946 †513 660 614
Linear –∗ †518 667 623
Scribbles 636 †514 661 616
Remapping –∗ †516 669 628

2k resolution
Constant –∗ 838 863 803
Linear –∗ 842 860 814
Scribbles –∗ 840 858 799
Remapping –∗ 837 860 805

Table 6.3: Running time of the variational formulation. We used 50 1k images or 30 2k
images for the measurements. (∗Dataset not available; §70 images used; †40 images used)

the goal disparity constraints as closely as possible without introducing visual
artifacts. However, it could be valuable to extend this formulation with more
sophisticated insights about stereoscopic perception, visual saliency, or temporal
coherence. Moreover, our image generation selects pixels from the original input
views and does not explicitly handle potential resampling issues. In this context,
gradient-based image reconstruction, gradient-domain cuts, sub-pixel resolution
techniques, and more sophisticated methods for up-sampling of light fields would
be interesting to investigate. Finally, our solution to multiple cut generation defines
goal disparities with respect to the reference view. To define disparity constraints
for regions occluded in the reference view, this formulation could be extended to
pairwise constraints between neighboring views.

On a more general level we would like to further investigate how our method re-
lates to previous works such as Peleg et al. [2001] or Lang et al. [2010]. For instance,
the stereoscopic image warping by Lang et al. [2010] could in principle be explained
as planar cuts with a deformed light field or an adaptive uv-parameterization. We
believe that a formulation of these techniques within our framework would lead
to further interesting insights on stereoscopic imaging.
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7
Conclusion

We presented a complete light field processing pipeline, from acquisition and
geometry extraction to multiscopic rendering. Our algorithms are deliberately
designed with the current advances of imaging hardware in mind, and work
particularly well for light fields of high spatio-angular resolution.

7.1 Recapitulation

We began by presenting our acquisition setup that used a motorized linear stage
driving the camera at sampling locations with accurate spacing. The sequence of
images captured along the linear camera path forms a 3D light field, which is easy
to capture and allows for efficient processing, while providing enough information
for our key applications, namely, 3D geometry reconstruction and rendering. We
also used unstructured light fields captured by a hand-held camera, for which
required preprocessing steps were explained.

We pointed out the advantage of high angular resolution, which makes correspon-
dence matching significantly more robust and precise, while matching over larger
patches is avoided. Based on this, we described a depth computation algorithm
which is tailored towards light fields of high resolution both spatially and angularly.
Due to its small memory footprint and highly localized computation, our algorithm
can be efficiently implemented on the GPU. We avoid costly global optimizations
by resorting to the novel hierarchical scheme that we call fine-to-coarse refinement.
The quality of our reconstructions is supported by extensive evaluations. We
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presented a few applications including segmentation and image-based rendering
as well as 3D reconstruction.

We then focused on the analysis of the density of a light field required for high
quality 3D reconstruction. We developed a sampling analysis model targeted at
geometry reconstruction from light fields, which provided an answer to the ques-
tion of finding best sampling locations. This is achieved by analyzing the visibility
of scene points and the quality of correspondence matching, and estimating the
distribution of reliable depth estimates over sampling locations.

Having a dense light field and the accurate depth for each ray allows for a new
paradigm for 3D rendering with great controllability over perceived depth, which
is well suited for stereoscopic post-processing. We developed a method which
directly renders a pair of stereoscopic images from a light field and allows us to
specify the desired disparity on a per-pixel basis. Given this desired disparity map,
it calculates non-planar 2D cuts within the volume of the light field, which balance
between the fidelity and smoothness. The images are sampled from the cut surfaces
and essentially possess multiple perspectives. We presented two formulations
based on energy minimization to solve for these cuts. By computing more than
two cuts, the framework is easily extended to multi-view displays.

7.2 Limitations and Future Work

Our algorithms open up several opportunities for improvements and future re-
search.

7.2.1 Geometry Reconstruction

One of the limitations of our reconstruction method is that currently it does not
provide an explicit treatment for dynamic scenes. Simply reconstructing the scene
frame by frame may lead to an unsatisfactory result perhaps due to temporal flick-
ering, and also means losing chances to use additional correspondence information
over time. A significant advantage would be gained if the current reconstruction
method could be extended to the temporal domain, e.g., by implementing corre-
spondence matching and regularization over time, while remaining still efficient.

As shown in Figure 4.14, our depth reconstruction algorithm has difficulties when
dealing with noisy, low (especially, angular) resolution input. Although not tar-
geted at such input, it would be more desirable that the algorithm fails more
gracefully. While the noisy input is not as substantial a problem as before thanks to
the progress of sensor technologies, it is still expensive to build an array including
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dozens of cameras. Thus, a higher priority could be put on the adaptability to
lower angular resolution input.

Since our depth values are discrete, reconstructed depth maps are essentially com-
posed of many fronto-parallel surfaces, which could be noticeable when viewed
in greater details. Either a filter to reduce the discreteness or a scheme to get
continuous depth values would be promising. In general, a filtering mechanism
with a more principled approach than our current bilateral median filter would
also be a plus.

Lastly, our method does not handle the surfaces with varying directional re-
flectance, such as specular objects. A number of methods have been proposed to
remove specular components before estimating the depth using only the albedo,
such as Criminisi et al. [2005], while others attempt to jointly estimate both the
geometry and the reflectance, such as Goldman et al. [2010]. We believe the high
angular resolution will also support greatly the identification of specularity or
the joint estimation of the reflectance function (BRDF) and the geometry of the
surface. Another solution could be to avoid highly specular regions in the angular
domain for depth estimation, which could be implemented as a component of the
preference function used in our analysis model.

7.2.2 Sampling Analysis

While our reconstruction method can be extended for 4D and unstructured light
fields, our analysis model cannot yet. Having our analysis applicable to other
types of light field could be among the most fruitful extensions to our sampling
analysis model.

We used the same, empirically chosen fixed value for the accuracy function Acc(C)
in the preference function for depth resolvability (Equation 5.4). In principle, this
should be estimated for each correspondence matching algorithm. It would also be
valuable to investigate various sources of information that can be used to augment
and estimate the preference function γ(s) in Equation 5.5, such as view-dependent
effects, illumination changes, monocular depth cues, or semantic information like
annotations.

Ultimately, an interactive system with live feedback to scan a scene would be of
great use. The system monitors the sampling rate required for the 3D reconstruction
and guides the user to scan under-sampled regions of the light field, similar to
what Davis et al. [2012] did for rendering.
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7.2.3 Rendering

Although 1D angular variation of a light field is enough to create horizontal
parallax required for most 3D displays, 2D variation (as in 4D light fields) could
provide more flexibility and expressiveness. An example is finite depth of field.
Currently, our method generates pinhole images without any defocus blur (unless
the input already had it). Finite depth of field is an important photographic
technique for artistic expressions, and natural and well-shaped defocus blur (often
called Bokeh) would require an integration of rays over a 2D region of a light field.

Another possible improvement would be to handle sparse light fields. The resolu-
tion of the modifiable disparity of a pixel depends on the minimum disparity that
is captured in the light field, i.e., the disparity of the pixel between two adjacent
views in the light field. A disparity finer than this may not be achieved, simply
because the ray coming from the scene point with the wanted disparity does not
exist in the light field that we take rays from. Thus, the adjustment is possible
only up to an integer multiple of this minimum disparity, and cannot be done for a
fraction of it. A solution could be implemented via a type of interpolation over the
angular dimension, relaxing the range of the labeling function l(u) from an integer
to a real number.

While our variational formulation remedies extensive memory requirements of
the graph cut optimization for high resolution input, it is still time expensive.
A truly useful tool would provide an interactive feedback to changing goals,
parameters, etc. Although the variational formulation is already one step closer to
such favorable properties since it works iteratively and intermediate steps can be
displayed for visual feedback, it still is far from an interactive rate. An approximate
formulation or faster solver would be much fruitful in this regard.
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William T. Freeman. Phase-based video motion processing. ACM Transactions
on Graphics, 32(4):80:1–80:10, 2013.

[Wang et al., 2004] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Si-
moncelli. Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4):600–612, 2004.

[Wang et al., 2011] Oliver Wang, Manuel Lang, M. Frei, Alexander Hornung,
Aljoscha Smolic, and Markus Gross. StereoBrush: Interactive 2D to 3D conver-
sion using discontinuous warps. In Proceedings of Eurographics Symposium on
Sketch-Based Interfaces and Modeling, pages 47–54, 2011.

[Wanner and Goldluecke, 2012a] Sven Wanner and Bastian Goldluecke. Globally
consistent depth labeling of 4D light fields. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, pages 41–48, 2012.

[Wanner and Goldluecke, 2012b] Sven Wanner and Bastian Goldluecke. Spatial
and angular variational super-resolution of 4D light fields. In Proceedings of
European Conference on Computer Vision, pages 608–621, 2012.

[Wanner et al., 2011] Sven Wanner, Janis Fehr, and Bernd Jähne. Generating EPI
representations of 4D light fields with a single lens focused plenoptic camera.
In Proceedings of International Symposium on Advances in Visual Computing, pages
90–101, 2011.

[Ward et al., 2011] Ben Ward, Sing Bing Kang, and Eric P. Bennett. Depth director:
A system for adding depth to movies. IEEE Computer Graphics and Applications,
31(1):36–48, 2011.

[Wetzstein et al., 2011] Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich,
and Ramesh Raskar. Layered 3D: Tomographic image synthesis for attenuation-
based light field and high dynamic range displays. ACM Transactions on Graphics,
30(4):95:1–95:12, 2011.

122



References

[Wetzstein et al., 2012] Gordon Wetzstein, Douglas Lanman, Matthew Hirsch, and
Ramesh Raskar. Tensor displays: Compressive light field synthesis using mul-
tilayer displays with directional backlighting. ACM Transactions on Graphics,
31(4):80:1–80:11, 2012.

[Wetzstein et al., 2013] Gordon Wetzstein, Ivo Ihrke, and Wolfgang Heidrich. On
plenoptic multiplexing and reconstruction. International Journal of Computer
Vision, 101(2):384–400, 2013.

[Wilburn et al., 2005] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Tal-
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