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Fig. 1. We present a spectral reproduction technique using a 3D printer. Our workflow targets accurate reproduction of paintings and provides faithful color
reproductions under varying light sources. Above, we show three printed replicas of oil paintings with different image statistics, generated by our method,
next to the original. On the right, we show cropped regions (three water lilies) from big water lily replica with the original under varying lighting sources.
Paintings ©Azadeh Asadi.

We propose a workflow for spectral reproduction of paintings, which cap-
tures a painting’s spectral color, invariant to illumination, and reproduces
it using multi-material 3D printing. We take advantage of the current 3D
printers’ capabilities of combining highly concentrated inks with a large
number of layers, to expand the spectral gamut of a set of inks. We use
a data-driven method to both predict the spectrum of a printed ink stack
and optimize for the stack layout that best matches a target spectrum. This
bidirectional mapping is modeled using a pair of neural networks, which
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are optimized through a problem-specific multi-objective loss function. Our
loss function helps find the best possible ink layout resulting in the balance
between spectral reproduction and colorimetric accuracy under a multi-
tude of illuminants. In addition, we introduce a novel spectral vector error
diffusion algorithm based on combining color contoning and halftoning,
which simultaneously solves the layout discretization and color quantiza-
tion problems, accurately and efficiently. Our workflow outperforms the
state-of-the-art models for spectral prediction and layout optimization. We
demonstrate reproduction of a number of real paintings and historically im-
portant pigments using our prototype implementation that uses 10 custom
inks with varying spectra and a resin-based 3D printer.
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1 INTRODUCTION

Fine art is a crucial element of human culture, but our reliance
on museums to exhibit original paintings and sculpture inherently
limits access and leaves those precious originals vulnerable to de-
terioration and damage. The availability of high-quality facsimiles
has the potential to not only broaden exposure but also leave the
originals unharmed, in such scenarios as restoration practice, con-
servatory studies and education in museums [Elkhuizen et al. 2014].
Paintings are brilliant examples of fine art artifacts and natural first
candidates for an appearance reproduction effort. The advance
of both 3D printing and 3D scanning technology has brought an
increasing interest in high-quality painting reproduction to both
academia and industry. A number of commercial Companies have
established relationships with art distributors and museums to pro-
vide painting reproductions and are preparing for potential mass
production of artwork.

Traditionally, the color reproduction of paintings is carried out
using 2D printers. However, they have severe shortcomings for
high-fidelity color reproduction as a consequence of two interre-
lated problems. First, their color gamut is limited because of their
fixed set of inks, which usually includes only cyan, magenta, yellow,
and black (CMYK). Although the limited gamut can be overcome
with a larger number and a wider variety of inks, only a limited
amount of ink can be deposited within a given region. Exceeding
the so-called total ink limit results in deteriorated image quality,
ink blotting, or mechanical malfunction of the printer [Babaei and
Hersch 2016]. Second, 2D printers predominantly use colorimetric
color reproduction, in which the color matching is carried out un-
der a reference illuminant and assumes a set of standard observers.
This can lead to metamerism, a well-known problem in color repro-
duction wherein a good reproduction is obtained under one light
source, but not under another [Wyszecki and Stiles 1982].

In this work, we focus on an accurate reproduction of spectral
color with 3D printing. The recent breakthrough in high-resolution,
multi-material 3D printing carries the potential for groundbreaking
advances in fine art reproduction. While 3D printers are powerful
devices for fabricating objects with custom and complex geome-
try, they can also create multi-material composites that result in
new appearance properties. Among them, the spectral color is of-
ten considered as most important appearance attribute for most
forms of paintings. The spectral reflectance of a surface encodes
the complete information about its color. Therefore, the spectral
color reproduction is invariant to the color of the light source under
which the reproduction is observed.

Good spectral reproduction requires a large spectral gamut. We,
therefore, equip our 3D printer with 10 inks and take advantage of
its ability to combine highly concentrated inks with a large number
of thin layers, inspired by the recently proposed color contoning
technique [Babaei et al. 2017]. In doing so, we expand the gamut re-
alized by our set of inks significantly. The use of high-concentration
inks in contoning, however, comes at the cost of color quantization
artifacts. Therefore, we introduce a novel spectral vector error dif-
fusion halftoning [Kawaguchi et al. 1999] that uses the ink stacks
of all possible layer combinations as halftone primaries with an

unprecedented efficiency. This turns the spectral vector error diffu-
sion of potentially billions of primaries into a viable approach, with
significantly alleviated artifacts (due to an insufficient number of
primaries). Furthermore, the halftoning resolve the problems asso-
ciated with the discrete nature of ink layers, making even a simple
layer rounding reliable in practice.

Accurate modeling of the complex light transport across ink lay-
ers, in the presence of printing inaccuracies, is a challenging task if
pursued using physical modeling methods. We instead take a data-
driven approach, modeling the bidirectional mapping between the
spectral reflectance and the ink stack layout using artificial neural
networks, which are learned from the actual printed ink stacks. We
produce superior performance in both reproduction quality and
run-time, compared to previous physically-based or data-driven ap-
proaches. We validate and evaluate our approach using historically
important pigments in painting and a number of real paintings.

Our main contributions are:
• A complete physical reproduction framework, comprising
both acquisition and fabrication, tailored for the re-creation
of paintings;

• A data-driven spectral color prediction model based on neu-
ral networks that outperforms existing methods for both pre-
dicting the spectrum of a stack of ink layers and finding an
optimal ink stack for a target spectrum;

• A highly efficient spectral vector error diffusion method
that combines ideas from contoning (combining thin layers
of inks) and halftoning (employing spatial modulation) to
achieve smooth yet accurate color reproduction;

• A dataset, which we will make it publicly available, of 20,878
contone ink stack spectra and layouts, spectrally captured oil
paintings, together with their optimized layouts using our
ink library, and photographs of our printed reproductions
under multiple illuminations.

2 PREVIOUS WORK
Our work builds on the rich history of research on color reproduc-
tion while embracing new printing technologies and techniques.
Below we briefly review the work most relevant to ours.

Custom-Ink Color Printing. The 2D printing literature is abun-
dant with custom-ink printing (sometimes known as n-ink print-
ing), in which the printer employs inks different from the traditional
CMYK, mostly to expand the gamut of the printer. There are multi-
ple challenges in custom-ink 2D printing, however, including color
prediction of halftones, color separation, increased halftoning com-
plexity, and the total ink limit [Babaei and Hersch 2016]. Stollnitz
et al. [1998] propose a color reproduction workflow using custom
inks that addresses these challenges. In addition, their framework
is capable of choosing the best inks for reproducing a certain image.
Ostromoukhov [1993] introduces a heptatone (7-ink) printing sys-
tem that includes cyan, yellow, black, red, green, blue, and purple.
Rossier [2013] expands the color gamut significantly by combin-
ing daylight fluorescent inks with the CMYK palette. Custom-ink
printing may also be used for reducing the visibility of halftones or
ink consumption [Son et al. 2011]. Today there are consumer-grade
desktop 2D printers available that use 10 inks or more.
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Color 3D Printing. While the use of multiple, custom inks is preva-
lent in 2D printing, 3D printing has recently begun to accommodate
color printing. Although the effort to introduce multiple colors in
3D printing has been started with the fused deposition modeling
(FDM) technology [Reiner et al. 2014; Hergel and Lefebvre 2014],
the best quality for fine art reproduction is currently achieved by
resin-based inkjet 3D printers. Brunton et al. [2015] introduced an
error diffusion algorithm for the surfaces of 3D printed geometry.
In order to eliminate the halftoning artifacts, Babaei et al. [2017]
proposed a contoning scheme in which different inks are layered to
form the print; our printing workflow builds on this idea. Recently,
Elek et al. [2017] proposed a color reproduction workflow that pre-
serves the texture by simulating the crosstalk between neighboring
voxels using Monte Carlo path tracing. It is also possible to incorpo-
rate translucency in color printing pipelines, owing to clear resins,
and thereby creating spatially-varying translucency and color us-
ing a 3D printer [Brunton et al. 2018]. Yet another approach to
decorating a surface is to transfer a previously printed texture to
the 3D object, using methods such as hydrographic printing [Zhang
et al. 2015; Panozzo et al. 2015] and thermoforming [Schüller et al.
2016; Zhang et al. 2016]. All these methods, however, focus on col-
orimetric reproduction using CMYK inks. Compared to them, our
work aims at spectral reproduction and uses a significantly larger
number of inks to achieve a larger color gamut.

Spectral Printing. Spectral printing has been an active research
area in 2D printing. Most of these works, however, focus on spectral
modeling of 2D printers, tested on in-gamut colors, and not a com-
plete workflow for generating printouts. The prediction models are
often based on the Yule-Nielsen spectral Neugebauer model [Taplin
and Berns 2001], or its cellular version [Chen et al. 2004]. Berns et al.
[2008] designed a spectral acquisition and modeling system, specif-
ically for works of art. The most promising approaches to spectral
reproduction are based on higher-dimensional interim connection
spaces [Derhak and Rosen 2006; Tsutsumi et al. 2008]. However, as
pointed out by Morovič et al. [2012], the major limit on the quality
of spectral reproduction is the spectral gamut of a 2D printer, which
is significantly smaller than the naturally occurring spectral gamut.
It is noteworthy that spectral gamut mapping [Rosen and Derhak
2006; Urban and Berns 2011] can improve the quality of spectral
reproduction when working with the limited spectral gamut of 2D
printers. With the new flexibility offered by 3D printing, especially
our freedom to choose different inks and increase their thickness,
and our focus on painting reproduction, we significantly expand the
printer gamut and for the first time, to the best of our knowledge,
target full spectral reproduction.

Spectral Vector Error Diffusion. Spectral vector error diffusion
(sVED) [Kawaguchi et al. 1999] is an extension of classical RGB or
CMY color vector error diffusion [Klassen et al. 1994]: instead of
performing a classical error diffusion algorithm on different layers
of inks, the spectrum at every pixel is compared against the spectra
of available primary inks and the spectral error is diffused to the
pixel’s neighborhood, wavelength by wavelength. sVED was intro-
duced as a promising spectral reproduction technique that encap-
sulates color separation and halftoning in a single step. It was soon
realized, however, that it suffers from low reproduction accuracy.

Moreover, due to the often-large spectrally diffused error, it tends
to change the texture of images [Gerhardt and Hardeberg 2007].
As hinted in Norberg and Nyström [2013], increasing the number
of primaries resolves these issues. This, however, renders the algo-
rithm very inefficient. In our work, we introduce a highly efficient
variant of sVED (§ 5.4) that uses almost one billion primaries made
of contone stacks.

Painting Reproduction. Our hardware is very similar to the 2.5D
printing introduced recently by Océ. This technology can be used
in a straightforward manner for reproduction of oil paintings. In
the study of Elkhuizen et al. [2014], experts are asked about the
quality of such reproductions in a side-by-side comparison with
the originals. According to this evaluation, while the recreation of
geometry brings the reproduction to life, the color reproduction
quality is low, the visibility of halftones is objectionable, the repro-
duced gloss is too uniform, and the translucency is missing. This
system has also been used to control the gloss of a 2.5D print, in
the context of fine art reproduction [Elkhuizen et al. 2015; Baar
et al. 2015, 2016]. Recently, Elkhuizen et al. [2017] devised a sys-
tem capable of measuring and printing the color, gloss and relief
of paintings. Given the sensitivity of fine art reproduction to fine
color differences, our work concentrates on high-quality spectral
color reproduction; we leave the integration of color with other ap-
pearance attributes (gloss, relief and translucency) to future work.
Regarding the color prediction of 2.5D prints, the work by Phan Van
Song et al. [2016b; 2016a] has shown promising results. They rely
on a four-flux estimation of the radiative transport equation [Rozé
et al. 2001] in order to predict the spectral reflectance and transmit-
tance of a multi-layer print, and the model is further extended to
account for surface roughness [Phan Van Song et al. 2017]. In this
work, we opt for a neural network to perform spectral reflectance
prediction. As we show in § 5.2, our model outperforms the four-
flux model, while not requiring explicit knowledge of the physical
properties of materials.

Neural-Network–based ColorManagement. Neural networks have
a long history of modeling non-linear ink-mixing behavior and
learning the mapping between device control values and device-
independent responses. Kang et al. [1992] apply a cascade correla-
tion network [Fahlman and Lebiere 1990] to characterize 2D printer
ink intensity (CMYK) and the output color in CIELAB space. Colori-
metric accuracy is later improved by using multi-layer perceptrons,
also known as fully-connected feedforward networks [Marcu and
Iwata 1993; Abet and Marcu 1994; Drakopoulos and Subbarayan
2002]. Tominaga [1996; 1998] applies an encoder-decoder model
to learn the same mapping bidirectionally within a single network.
Xu et al. [2007] introduce a neural-network–based physical model
that learns the mapping from inks’ physical attributes to the output
color. Littlewood et al. [2002] use neural networks for a color pre-
diction model and formulate a Pareto-optimal problem to optimize
the ink intensities jointly for colorimetric accuracy and additional
user-defined objectives (i.e., usage of inks). Our proposed network
builds on these models and extends them to work with spectral, not
necessarily in-gamut input through a multi-objective loss function.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 271. Publication date: November 2018.



271:4 • Shi, L. et al.

Backing Plate 

LED Panel LED Panel

Multi-spectral 
Imaging System

Sample

Fig. 2. Left: A photograph of one of our printed sample patches. Each color
square is 1mm× 1mm. Right: Our spectral acquisition setup.

3 OVERVIEW
We introduce a workflow for painting reproduction with unprece-
dented spectral accuracy, using multi-layer composition of different
inks implemented via 3D printing. Given the difficulty of high-
fidelity physically-based modeling of the spectral properties of ink
stacks as well as the 3D printing process, we are motivated to ad-
dress the problem using a data-driven approach. To this end, we
design a spectral acquisition setup for accurate high-dynamic-range
scanning of fine art paintings, as well as a printing setup with a
selection of inks used for reproduction (§ 4). Equipped with the
experimental setup, we develop our data-driven approach for mod-
eling the spectral behavior of the ink stacks as realized by the 3D
printing process (§ 5). We design a bidirectional prediction model
between ink stack layouts and their corresponding spectra, and
exploit our ink stack dataset to learn both directions of the model
to enable faithful spectral reproduction. Our novel spectral vector
error diffusion complements the “vertical” multi-layer ink stacks by
“horizontally” modulating them with billions of possible primaries
obtained through ink stacks. This combined approach of conton-
ing and halftoning leads to high-quality reproduction of paintings,
which we validate with an extensive evaluation and a variety of
results (§ 6).

4 HARDWARE SETUP
In this section, we describe in detail our hardware setups for the
spectral acquisition of original paintings and the printing process
to realize the reproductions.

4.1 Spectral Acquisition
We use a spectral imaging setup as shown in Figure 2 to capture
both calibration samples and paintings to reproduce. At top, the
Nuance FX multispectral imaging system is coupled with a Coastal
Optical 60mm 1:4 UV-VIS-IR APO macro lens for multispectral im-
age capture. Within the camera, a tunable liquid crystal filter can be
dynamically adjusted to transmit one narrow range of wavelengths
at a time, while the sensor captures a 1392 × 1040-pixel monochro-
matic image of that spectral band. We perform high-dynamic-
range (HDR) multi-spectral capture [Gkioulekas et al. 2013] within
the spectral range of 420–720 nm, at 10 nm steps, yielding a 31-
dimensional spectrum per pixel. Note that an alternative to the
tuned LCD filter would be to use advanced hyperspectral recovery

Color Ink product %

Transparent White Penncolor 1
Cyan RJA 1
Magenta RJA 1
Green Lansco 3136 1
Blue Keytstone 3R 0.5
Orange BASF D2905 1
Yellow BASF D1155 1
Red Lansco 1722 1
Violet Lansco 1233 0.15
Black RJA 0.4
Opaque White Penncolor 5

re
�e

ct
an

ce
 fa

ct
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Fig. 3. Our ink library. Left: The pigments and concentrations used in our
inks, arranged in the order from top layer to bottom. Right: The spectra of
saturated color of our inks printed with 30 layers. The color of each line
corresponds to the color of an ink. The higher white line represents the
Transparent White and the lower represents the Opaque White.

algorithms that can reconstruct the spectra using wide-band RGB
channels [Baek et al. 2017; Choi et al. 2017].
At the bottom of the setup, we illuminate the sample with two

12-watt ROSCO Daylight (5800K) 12× 12 inch (30× 30 cm) LED
LitePads at 45 degrees to horizontal, centered symmetrically around
the multi-spectral camera. The light emitted by each panel is dif-
fused by a ROSCO #3029 diffusing sheet to maximize the lighting
uniformity over the camera’s field of view. A black acrylic slab
under the camera serves as a backing board to minimize reflection
and indirect illumination. The entire setup is fully sealed in an
enclosure to eliminate environmental illumination.

We correct radial distortion by photographing checkerboards and
solving for radial distortion parameters using the MATLAB Cam-
era Calibration Toolbox [Bouguet 2008]. We image X-Rite white
balance reference and color-checkers to calibrate and compensate
the light fall-off (vignetting), lighting non-uniformity, and spatial
non-uniformity of pixel gain [Berns et al. 2015]. We normalize the
spectrum of the illumination by dividing every multi-spectral mea-
surement by the multi-spectral measurement of a calibrated X-Rite
white reference target and multiplying by the reference’s spectrum.

4.2 Printing and Inks
We use MultiFab [Sitthi-Amorn et al. 2015], a laboratory-scale,
multi-material inkjet 3D printer with a photopolymer printing pro-
cess similar to commercial printers developed by Stratasys [2016]
and 3D Systems [2013]. Our printer provides greater flexibility
on the selection of printing materials. Its spatial resolution (xy-
resolution) and vertical resolution (z-resolution) are 35µm and
11.25µm respectively. Our printer has five channels, enabling us
to print with up to 15 inks using three passes of the printer. Our
inks comprise a UV curable clear photopolymer carrier mixed with
commercially available color pigments. We prepare the inks by first
mixing the carrier and pigment and then milling the inks using a
bead mill.
We have developed a set of 11 inks, including 9 color inks, a

low-concentration white ink, and a high-concentration white ink
(Figure 3). The color inks include the process cyan, magenta, yellow,
and black (CMYK) inks. Following the n-ink 2D printers, we also
add red, green, blue, orange, and violet inks to our printer’s palette.
We emphasize that, though the orange at our disposal shares a
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similar response with the red, it is more reflective in long wave-
lengths and has a narrower (~30–40 nm) absorption band at short
wavelengths. Given the importance and dominant use of orange
pigment in art history and its reputation as difficult to be repro-
duced [Ostromoukhov 1993], we decided to include it. Inspired by
the veiling technique used by painters, we add a low-concentration
white ink, which we call transparent white, on top of the ink stack.
The transparent white “veils” the highly saturated color inks be-
neath it and enables low-saturation colors. The high-concentration
white ink, which we call opaque white, is the background of our
prints and plays the same role as the paper in 2D printing. The
transparent and opaque white use different concentrations of the
same pigment.
The color ink concentrations are optimized for saturation, and

are bounded by the hardware constraints of the printing process. In
principle, we desire highly saturated colors with minimal ink-stack
thickness. We start by finding, for each individual ink, the maxi-
mum concentration that the printer can properly print. Exceeding
these concentrations, causes unstable jetting, printhead clogging
and incomplete UV curing. Then, we experimentally determine the
maximum number of layers required to obtain saturated colors at
their highest concentration. This number depends on the inks and
for a majority of the more transparent inks is around 30 layers. We
adjust the concentration of the remaining inks such that they all
saturate at 30 layers. For example, for some inks, such as violet
and black, the color of the resulting stack saturates more quickly.
Therefore, we decrease the concentration such that they saturate
at 30 layers.
We opt for the highest concentration because when ink concen-

tration increases, the number of layers required to obtain saturated
colors decreases. A lower number of layers is preferred because the
mechanical and optical dot gain, and therefore blurring, increase
with the number of layers [Babaei et al. 2017]. On the other hand,
highly concentrated inks cause pronounced quantization artifacts.
We partially address this challenge by incorporating veiling top
layers using the transparent white, and therefore the concentration
of that ink is tuned to allow the colors beneath to remain visible,
although it is handled in a more principled way by spectral vec-
tor error diffusion (§ 5.4). Finally, we set the concentration of the
opaque white to be as high as possible. This prevents subsurface
scattering and results in a brighter white substrate.

5 MODELING SPECTRAL REPRODUCTION

In this section, we describe our approach to computing a layout
of inks that faithfully reproduces a given spectral reflectance. The
bidirectional relation between the spectral reflectance and the ink-
stack layout is modeled using a pair of neural networks, one for each
direction, which are learned from a dataset consisting of printed
contone-stack layouts. The spatial modulation is implemented us-
ing a spectral vector error diffusion, which also serves a means
of layout discretization. We first introduce our contoning dataset
(§ 5.1), which we use to learn our neural-network–based forward
model (§ 5.2), capable of predicting the spectrum of a stack of inks.
The forward model, in turn, is used to train our backward model

(§ 5.3) that predicts an optimal ink-stack layout for a given spec-
trum. Finally, we describe our spectral vector error diffusion (§ 5.4),
which is followed by practical considerations and details (§ 5.5).

5.1 Ink-Stack Dataset
We prepare a dataset of contone ink-stacks to train our model.
Throughout this work, the order of inks in each stack is fixed: a
section of 30 layers consisting of any inks, arranged from the most
transparent to the least transparent starting from the top (in the
order shown in the table of Figure 3), followed by additional 20
opaque white layers at the bottom. Although we fix the order of
inks in the ink stacks, the number of layers and that of inks lead to
about 0.8 billion possible layer layouts. To efficiently sample from
all layer-layouts to build our training dataset, we introduce the fol-
lowing heuristic sampling rules to maximize the coverage of the
spectral gamut while keeping the number of samples manageable.
In the following, the “color” inks include the transparent white as
well, i.e., denote the first ten inks in the table of Figure 3, while still
excluding the opaque white ink.

• Due to the smooth change of spectral properties of tradi-
tional inks, combinations of a large number of different inks
does not result in large spectral variety [Rosen et al. 2004].
We thus limit the maximum number of different color inks
in a stack to 5.

• We limit the number of color ink layers depending on the
number of different inks used in the stack. Specifically, when
using 3, 4, or 5 color inks, we set the maximum number of
color layers to 10, 15, or 20, respectively. The remaining lay-
ers are complemented with additional opaque white layers
at the bottom.

• If an ink stack contains 2 or 3 “dark” colors, we further limit
the number of color layers to 8 or 4, respectively. Dark colors
are the colors that have high absorption and/or scattering,
which in our case are blue, violet, and black inks.

• For any layer-layout consisting of more than 2 color inks, we
enforce the layer increment step of an ink to be 2.

We obtain 20,878 valid layer layouts following these rules. Each
ink stack occupies a 1mm× 1mm square in the calibration print.
We aggregate 13× 16 ink stacks into one calibration patch, result-
ing in the total of 101 patches (Figure 2, left). Within each patch,
the neighboring ink stacks are separated by a 0.3mm wall made of
transparent material to prevent pixel cross-talk. We favor transpar-
ent wall over black pigment wall for both better curability and free
of color contamination, with the black backing further minimizes
reflection, resulting negligible sub-surface scattering. To ensure
measurement accuracy, the spectral reflectance of each ink stack is
calculated by averaging the measurement over the 0.5mm× 0.5mm
central region of each square.
Based on the maximum operation area of our printer, we print

4× 4 patches at each printing iteration. Printing proceeds in 3
passes, and is done upside down—i.e., the topmost layers are printed
first, in order to achieve a diffuse surface finish. In the first pass,
the top white layers and the transparent wall are printed and cured.
In the next two passes, the first 5 color layers and the next 5 color
layers are sequentially printed. Completion of all three passes takes
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Fig. 4. Illustration of our network structure. F denotes our spectral predic-
tion model (§ 5.2), which is used to estimate the spectrum of the predicted
layout by our layout prediction model B (§ 5.3) and provides the means to
measure the quality of it. Q represents our soft quantization layer (§ 5.4).
ψ denotes the spectrum and ξ the layer-layout vector. Both F and B are
implemented as fully-connected feed-forward neural networks.

approximately 3.5 hours. The HDR multi-spectral acquisition takes
5 minutes to complete measurement for one calibration patch.

5.2 Spectral Prediction Model
Spectral reflectance is represented as a 31-dimensional real vector,
each element denoting the reflectance at a discretized wavelength.
A layout is represented as a 11-dimensional non-negative integer
vector, encoding the numbers of layers used for each ink. We learn
the spectral prediction function F : Z11+ → R31+ , which maps a lay-
out ξ to its spectral reflectanceψ, from our ink-stack dataset (§ 5.1).
Given the low dimensionality of our problem, we model the func-
tion using a straightforward fully-connected feed-forward neural
network (also known as a multi-layer perceptron) [Cybenko 1989].
Our model includes 4 hidden layers, each with 300 neurons (hidden
units), forming a network that is wider than it is deep. Both the
hidden layers and the final output layer use the rectified linear unit
(ReLU) as a nonlinear activation function.

5.2.1 Spectral Loss. We optimize the network for the minimal
spectral error, which is defined as a Euclidean distance between the
prediction and the measurement (scaled by the square root of the
number of wavelength bands, in accordance with the practice in
colorimetry literature [Imai et al. 2002]):

Espec(ξ ,ψ∗) = 1
√
31

 F(ξ ) −ψ∗ 
2 . (1)

In our implementation, we normalized the input ink layout vector
by the total number of layers (i.e., 30) such that each layout sums
to one.

5.3 Layout Prediction Model
Ultimately, we are interested in the inverse function of F, through
which we retrieve the optimal layout for a given spectral reflectance.
Given that F is a differentiable function that maps layouts to spec-
tra, a straightforward approach for the inverse problem would be
fixing F’s parameters and running gradient descent on layouts by
minimizing the spectral error. However, the distribution of spectra
over layouts will likely be highly non-uniform and multi-modal.
Further, as the layout is inherently discrete, its relationship with
the spectrum forms a non-convex space. In practice, we find that

running gradient descent directly on a randomly initialized layout
usually leads to a local minimum and results in a poor prediction.
To pick a good initial guess, reducing the risk of being trapped

in a local minimum, we could train a separate network that would
learn the inverse mapping of F and provide a reasonable initial lay-
out estimate from a target spectrum, from which we could initiate
the gradient descent through F. However, it is difficult to measure
how good one predicted layout is compared to another, since the
L2 difference between layouts does not translate directly to the
spectral difference, in particular when different layouts could lead
to an identical spectrum. A better alternative is to construct an
encoder-decoder model that uses F to “decode” the predicted layout
to the spectrum and evaluate the error with respect to the target
input spectrum; i.e., to use the forward network F (decoder) to set
up the loss and train the reverse mapping (encoder) through back-
propagation directly [Tominaga 1996] (Figure 4).
We define a layout prediction function B : R31+ → Z11+ that pre-

dicts an optimal layout given a spectrum and is implemented by
another fully-connected neural network. B consists of 8 hidden
layers, deeper than F, as it attempts to learn a more complicated
distribution. Each hidden layer consists of 160 neurons with the
ReLU activation function. As for F, the layout vector is normal-
ized. A softmax layer is applied to the output layer to guarantee the
validity of the layout estimate—nonnegative and summing to one.

5.3.1 Perceptual Color Loss. We first experimented with train-
ing Bwith the spectral loss (1) only. However, we observed that the
reproduced spectral reflectance (from the predicted layout) of an
out-of-gamut target spectrum varied noticeably across trained mod-
els, although all shared a similar L2 error. Since we do not explicitly
perform spectral gamut mapping nor apply any gamut constraints,
the trained model was allowed to freely select any in-gamut spec-
trum minimizing the L2 error. We, however, wish the network to
predict the one among all solutions that also minimizes the percep-
tual color difference under a variety of standard illuminants and
common light sources [Morovič et al. 2012]. To implement this, we
define a perceptual color loss over chosen illuminants:

ELAB(ξ ,ψ∗) =
∑
i

∆E∗ab
(
LABIi (F(ξ )), LABIi (ψ

∗)
)
, (2)

where LABIi (·) represents a series of transformations from a spec-
trum to CIEXYZ coordinates under the illuminant Ii with the CIE
1931 2° standard observer, and further to CIELAB color. Each Ii de-
notes the spectrum of a particular illuminant, and for ∆E∗ab we use
the CIE 1976 color difference (∆E76) in CIELAB space [Wyszecki
and Stiles 1982]. For this perceptual loss, we used 8 different light
sources: halogen, incandescent, fluorescent (2700K), Philips Hue
LED (5000 K), ROSCODaylight LED (5800 K) as well as the CIE stan-
dard illuminants D65, D50 and A. The ∆E76 is chosen for simplicity;
∆E94, also differentiable, could as well be an accurate perceptual
loss metric [Kauvar et al. 2015]. Although more accurate, ∆E00 is
not differentiable.
We observe more stable and consistent training and preferred

results with the addition of the perceptual loss (2). We emphasize
that, for in-gamut input spectra, adding the perceptual loss will not
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misguide the network to learn metameric pairs since only the de-
sired spectra drive both the spectral loss and perceptual loss to zero.
However, training with only the perceptual loss also yields subop-
timal results, since the mapping from a low dimensional CIELAB
space to a high dimensional spectral space is multi-modal. With-
out the measurement of spectral fidelity and under a set of limited
illuminants only, the network can easily converge to a metameric
spectrum that gives an equivalently low perceptual difference.

5.3.2 Layer Thickness Loss. In addition to minimizing the per-
ceptual difference, we also minimize the number of color layers
(color inks plus transparent white) in a layout estimate (exclud-
ing the twenty or more opaque bottom white layers). Babaei et
al. [2017] show that fewer color layers result in smaller minimum
feature size and reduced optical and physical dot gain in color con-
toning. In both 2D- and contoning-based colorimetric reproduction,
the mapping from a CIELAB color to CMYK ink intensity is multi-
modal, which is a result of the trade-off between the black ink (K)
and three chromatic inks (CMY). Our ink set also shares this prob-
lem, and the layout with the thickest black layer often results in
the minimal total layer thickness (i.e., the number of color layers).
In addition, given the significantly increased number of primaries,
a target spectrum may also be reproduced by combination of dif-
ferent inks. Therefore, to encourage the use of a minimal number
of color inks, we define the layer thickness loss:

Ethick(ξ ) =
10∑
i=1

|ξi | = ∥ξ ∥1 − |ξ11 | , (3)

where ξ11 is the number of opaque white ink layers in the predicted
layout.
The backward function B is trained to minimize the following

loss over our training dataset:

E = Espec + αELAB + γEthick , (4)

with α = 10−3 and γ = 10−3.

5.4 Spectral Vector Error Diffusion
When using the backward model in order to print an ink layout best
reproducing a given spectrum, we witness two problems which, at
first glance, seem independent. First, a denormalized layout pre-
diction of B has continuous values and thus has to be discretized
to integer layers for actual printing. Second, because of the high
concentration of our inks, a mere contone-based model would suf-
fer from color quantization [Babaei et al. 2017]. Although the use
of transparent white mitigates this problem, quantization artifacts
are still visible at regions with smooth color gradients. This is in
essence a halftoning problem: we have a spatially-varying continu-
ous input (from B) that needs to be represented with a discrete ink
layout at each location. Halftoning techniques simulate continu-
ous tone images through spatial modulation of a limited number of
primaries [Baqai et al. 2005].

5.4.1 Layer Layout Discretization. A straightforward approach
would be to round the continuous output to the nearest integer. Al-
ternatively, we can enumerate all possible combinations of round-
ing up and down for the prediction on the thickness of each ink,

which would amount to 211 possibilities, and search for the best
combination, in terms of spectral accuracy, in a brute-force manner.
Since the complexity of enumeration grows exponentially, it

would be preferable if the network could directly generate integer-
valued layouts. However, rounding is not differentiable, and thus
cannot be directly used during training. To address that, we apply
a soft quantization layer to encourage the network to predict close-
to-integer layouts, mitigating the influence of a posterior rounding
operation on the prediction. Our soft quantization layer is placed
between the spectrum prediction network F and the layout predic-
tion network B, such that the loss is calculated on (soft) rounded
layout predictions. The soft quantization layer is constructed as a
sum of cascaded soft unit-step functions:

Q(ξi ) =
1
Ns

Ns∑
k=1

s(Ns · ξi − (k − 1)) , (5)

where the number of steps equals to the number layers Ns = 30,
and the unit-step function s(·) could be any sigmoid function that
has a steep transition around a half and has vanishing gradients
outside the unit interval. We use a shifted logistic function:

s(ξ ) = σ (κ · (ξ − 0.5)) , (6)

where σ (x) = (1 + exp−x )−1 and κ controls the steepness of the
transition, which we set κ = 15 for training our network.

5.4.2 Error Diffusion. Since in contoning, the only way of mod-
ulating color is to add or remove a layer, when highly-concentrated
inks are used, the color space is not covered as densely as required,
especially at low-saturation areas of the gamut. Our solution to the
color quantization problem is to perform an error diffusionwith con-
tone stacks as primaries. This bears resemblance to spectral vector
error diffusion (sVED) algorithms. However, our proposed method
is significantly more efficient. Unlike sVED algorithms that for each
pixel look for the nearest neighbor among all primaries, which in
our case spans 0.8 billion 31-dimensional points, we simply round
the continuous layout predicted by B and feed the rounded layout
to F. The resulting spectrum is subtracted from the target spectrum
to obtain the spectral error vector. The spectral error is then car-
ried over to the neighborhood pixels, wavelength by wavelength,
according to the weights specified by the Floyd-Steinberg [1976]
error diffusion kernel. The subsequent prediction for the neighbor-
hood pixels then takes into account the carried-over spectral error.
To further improve the computational efficiency, we parallelized
the error diffusion following the optimal scheduling proposed by
Metaxas [1998].
The advantage of this approach is twofold. First, the discretiza-

tion of the continuous layout from the backward model can be a
simple rounding, which is orders of magnitude faster than a search
among the huge space of possible ink stacks. More importantly,
the color quantization artifacts are removed through spatial mixing
of a large number of contone-stack primaries. Unlike with RGB
or CMYK dithering, the extremely large pool of primaries makes
halftoning artifacts virtually invisible, since for any input spectrum
there exists a very similar “primary.”
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Table 1. The accuracy of different spectral reflectance prediction models, in
terms of the spectral error Espec (Eq. 1) and the CIEDE2000 (∆E00) [Luo et al.
2001] under three illuminants. We report the mean, standard deviation,
median, and maximum. The lowest errors are denoted in boldface.

Espec ∆E00 (D65) ∆E00 (TL84) ∆E00 (A)

Mean SD Mean SD Mean SD Mean SDModels

Median Max Median Max Median Max Median Max

6.91 2.82 9.08 5.67 9.13 5.53 9.11 5.20Contoning
5.48 61.73 8.56 41.49 8.56 41.73 8.65 40.77
4.90 2.82 9.89 5.67 9.02 5.53 8.26 5.201C-KM
4.22 25.73 9.12 43.37 8.14 34.37 7.31 35.33
3.83 3.09 6.64 4.03 6.13 3.96 5.72 3.932C-KM
2.99 34.29 5.85 39.79 5.24 40.10 4.80 40.80
1.99 1.60 3.57 2.84 3.70 2.85 3.54 2.704-Flux
1.60 27.40 2.92 30.45 3.03 30.87 2.93 27.46
1.44 1.06 2.50 1.58 2.38 1.58 2.20 1.69Ours 1.16 10.95 2.19 11.79 1.97 11.36 1.72 12.24

5.5 Training Protocol
We randomly split (and fixed) our spectral ink-stack dataset into a
training set of 18,878 samples and a test set of 2,000 samples. We
verified that the number of layers for each color ink in the test set
follows the distribution in the entire dataset.
We train our spectral prediction network F using the spectral

loss (1) only. After the training of F is finished, we train the lay-
out prediction network B using the combined loss (4), with the
weights of the trained F fixed. During the reproduction, a target
multi-spectral image is fed to B to yield an optimal layout predic-
tion, which subsequently is quantized by the spectral error diffusion.
The resulting (denormalized) layout map consists of 11-dimensional
vectors, each of which dictates how many layers of each ink have
to be deposited in order.

Both networks are trained using Adam [Kingma and Ba 2014], a
stochastic optimization algorithm. We use an initial learning rate
of 10−3 for F and 10−4 for B, with β1 = 0.9 and β2 = 0.999 for both
models. Training samples are drawn randomly from the training
dataset. Both models are trained for 500,000 iterations with batch
size of 64. A learning rate decay of 0.1 is employed every 50,000
iterations. Weights are regularized by penalizing their L2 norm
weighted by 10−5.

6 RESULTS AND EVALUATIONS
We evaluate the performance of our method both quantitatively
and qualitatively. In addition to individual spectra that have been
historically considered important to reproduce, we validate our full
reproduction pipeline with a number of real paintings, which are
intentionally painted to maximize the diversity in color, and include
challenging textures and smooth gradients.

6.1 Model Evaluation
In this section, we evaluate our spectral and layout prediction mod-
els, and spectral vector error diffusion. We also provide the repro-
duction quality of our model tested on historically important colors.

6.1.1 Spectral Reflectance Prediction Model. We compare our
spectral reflectance prediction model with several physically-based
and data-driven models: the one-constant Kubelka–Munk [Kubelka
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Fig. 5. (a) Comparison of test spectra from our contoning ink stack dataset
predicted by our spectral prediction model F and by the 4-flux method. (b)
Projection of predicted spectra onto CIELAB space (under D65) with the
dot volume proportional to the spectral error Espec.

and Munk 1931] and two-constant Kubelka–Munk models [David-
son and Hemmendinger 1966] (1C-KM and 2C-KM, respectively);
the four-flux model [Rozé et al. 2001]; and the color contoning
model [Babaei et al. 2017]. We follow different strategies for build-
ing these models. For 1C-KM model, where the model parameters
(absorption to scattering ratio at each wavelength) are straight-
forward to compute, we use measurements. For more advanced
models, i.e., 2C-KM and four-flux, since measuring their parame-
ters is prone to error, we fit their parameters using our training set
and evaluate the model accuracy on the test set. The fitting proce-
dure ensures the maximum capacity of these models as it does not
rely on physical measurements. For training data-driven models
(all except 1C-KM), including ours, we use the training samples of
our dataset (§ 5.1).

In Table 1, we show the spectral and colorimetric accuracies of
all models. We report the statistics of the spectral error and ∆E00
under three illuminants, D65, TL84, and A. Under all metrics, our
model achieves a significantly lower prediction error, and is on av-
erage close to the measurement noise (1%), which was measured
through repeated scanning. In Figure 5(a), we show the quality of
spectral prediction with a number of randomly-drawn test sam-
ples of varying spectra, where our prediction closely follows the
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Table 2. The accuracy of our layer prediction model trained with different
objectives, measured in the spectrum error Espec (Eq. 1) and the CIEDE2000
∆E00 under three illuminants. We report the mean and standard deviation.
The lowest errors are shown boldface and the second lowest underlined.

Espec ∆E00 (D65) ∆E00 (TL84) ∆E00 (A) thicknessLosses
Mean SD Mean SD Mean SD Mean SD Mean SD

(a) Espec
– 0.81 0.49 1.71 1.28 1.84 1.54 1.52 1.53 16.20 3.32
rounded 2.28 2.39 3.75 2.41 3.64 2.59 3.17 2.39 15.73 3.36

(b) Espec + ELAB
– 0.81 0.50 1.20 0.93 1.37 1.17 1.17 1.18 16.57 3.16
rounded 2.32 2.31 3.44 2.32 3.25 2.24 2.94 2.10 16.13 3.28

(c) Espec + ELAB + Ethick
– 0.82 0.49 1.34 0.91 1.50 1.15 1.31 1.20 14.43 3.17
rounded 2.52 2.38 3.71 2.38 3.57 2.34 3.13 2.07 14.03 3.26

(d) Espec + ELAB + Ethick w/ soft quantization layer
– 1.20 0.71 2.02 1.27 2.16 1.44 1.82 1.36 14.72 3.20
rounded 1.60 1.09 2.70 1.62 2.65 1.61 2.31 1.53 14.80 3.23

measured spectra. In Figure 5(b), we plot the predicted test set spec-
tra (2000 samples) in CIELAB space with dot volume proportional
to the spectral error. In the supplementary material, we provide
additional visualization of equivalent 2D plots with 9 different lu-
minance bins. The standard deviation of mean spectral error at
each quadrants is 0.10%, showing no obvious bias towards towards
a particular tone. The samples at high luminance region are more
sparsely populated, likely due to the use of high concentration inks.
Using more layers with lower concentration shall provide denser
coverage at the cost of more severe blurriness.
The merit of physically-based models is that they rely on only

a limited physical measurements. Therefore, they are scalable to a
large number of inks and do not require a large dataset and lengthy
training process required by data-driven models. While they usu-
ally work well within a limited operational range, these models
have difficulties to incorporate the added complexity of the print-
ing process. The contoning model, which is also a data-driven
method, assumes only absorbing materials and is unable to predict
the spectral properties of our complex stack that includes different
inks with a wide range of absorption and scattering.

6.1.2 Layer Prediction Model. In order to evaluate our layout
predictionmodel, we compare the performance of themodel trained
with varying losses (Table 2). We report the errors using the same
metrics as in the spectral prediction model, measured from the
undiscretized network output and the discretized output, which
has been rounded to the nearest integer.

With a negligible difference on the achieved spectral error, adding
perceptual loss and layer thickness loss results in roughly 30% re-
duction on the perceptual difference, and one layer reduction on the
total color layers. However, we choose to apply small weights to
the perceptual loss and layer thickness loss, since a high perceptual
loss weight results in a metameric reproduction. A high weight for
layer-thickness loss induces high quantization errors. Depending
on the application and number of inks, weights for perceptual loss
and ink thickness loss may be further tuned.

The layer prediction model could be directly trained without the
pre-trained spectral prediction model as a loss, where the loss itself

would also be learned through, e.g., a conditional generative adver-
sarial network [Isola et al. 2017]. We experimented with a model
consisting of our B as a generator and a fully-connected feedfor-
ward network with a 2-way softmax at the end, resembling our F
but performing binary classifiation, as a discriminator, trained with
our loss terms. We found, however, that a such-trained model was
prone to overfitting with poor generalization.

6.1.3 Spectral Vector Error Diffusion. We evaluate the perfor-
mance of our proposed soft quantization layer and sVED. Figure 7
presents the simulated reproduction of a painting under D65 illu-
minant using varying configurations. Our soft quantization layer
helps reduce the errors introduced by rounding (e vs. f). While
the local (per-pixel) brute-force enumeration (d) helps alleviate arti-
facts, the use of our spectral error diffusion greatly improves overall
reproduction quality (c). Combined with the brute-force search (b),
the sVED shows the best results, with less noticeable graininess,
which can be best seen in the electronic version of the paper when
zoomed in. Yet the sVED on both the brute-force enumeration (b)
and nearest-integer rounding (c) exhibit comparable quality, but
with rounding exhibiting better run-time performance (see § 6.3).
We note that, at high luminance and region with smooth gradient
(last row), the halftone pattern becomes more visible, likely due to
the relatively sparse coverage over the particular gamut area and
the high color contrast.

The effectiveness of the soft quantization layer is validated quan-
titatively in Table 2. The reproduction error of soft-quantized re-
sults before rounding (d; first row) is slightly higher than that of
the results without the soft quantization layer (a–c; first rows each).
However, while the error increases sharply after rounding with-
out the soft quantization layer (a–c; second rows), there is a much
smaller increase for the soft-quantized results (d; second row).

6.1.4 Color Gamut Evaluation. We compute the color gamut
volume of our proposed 10-ink setup in CIELAB color space un-
der D65 illumination. We densely sample 16.8 million layouts, in-
cluding all possible layouts for stacks with up to 5 inks as well as
layouts for stacks with more than 5 inks at a minimal increment
step of 2. The layouts are fed to the our spectral prediction model
F to obtain the resulting spectra. We reconstruct the non-convex
gamut surface of our CIELAB point cloud using the ball-pivoting
algorithm [Bernardini et al. 1999]. We then compute the volume
enclosed by this surface, which for our 10-ink setup is 79% of the
sRGB gamut volume. This may be compared to 42% for a standard
CMYK 2D printer based on halftoning, 45% for a typical CMYK con-
toning system, and 65% for a fluorescent-ink printer (CMYK plus
two fluorescent inks). We observe that our gamut is significantly
larger than the fluorescent-ink gamut, the state-of-the-art method
for wide-gamut printing [Rossier 2013]. In Figure 6, we visualize
the color gamut comparisons over several iso-L∗ slices in CIELAB.
As shown in the figure, our 10-ink setup provides additional gamut
coverage over color contoning most prominently at green, red, or-
ange and pink tone regions, particularly when the luminance is
high. To account for the sRGB gamut, further incorporation of blue
and purple tone primaries would be necessary.
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Fig. 6. Comparison of our 10-ink gamut with two other printing methods and sRGB (under D65). The figure shows a∗b∗ slices at different L∗ values.

6.1.5 Reproducing Historical Pigments. We evaluate the ability
of our proposed model to reproduce real pigments that have been
widely used for artwork. We use the FORS spectral database, which
contains 54 pigments of historical interest [Cosentino 2014]. This
dataset contains the spectra of the pigments in pure powder form,
as well as mixed with different binders (6 sets in total). Among
these, we reproduce the measured spectra of pigments mixed with
gum arabic, which gives the most saturated colors.

In Figure 8, we compare the spectra and the resulting color un-
der the D65 illuminant predicted by color contoning [Babaei et al.
2017] and our model (with rounding enumeration), to the exhaus-
tive search over 16.8 millions of densely sampled spectra which we
used to compute the contone color gamut (§ 6.1.4). The color con-
toning achieves Espec = 4.02% and ∆E00(D65) = 5.64 on average,
while our network achieves Espec = 2.60% and ∆E00(D65) = 4.77,
compared to Espec = 2.31% and ∆E00(D65) = 2.39 of the exhaustive
search. The spectral error and LAB error of individual pigments
are reported in the supplementary material Table 1. For most in-
gamut spectra, our network prediction yields results very close to
(or indeed identical to) exhaustive search over 16.8 million samples.

We identify 12 challenging (out-of-gamut) spectra that are not
well reproduced by our ink set (Espec > 5% or ∆E00(D65) > 7 when
predicted by our model). For example, the cobalt blue (row 4 at col-
umn 8 in Figure 8; R4C8 hereafter) and smalt (R5C4) share a steep
tail after 700 nm, and similarly, the cobalt violet (R5C8) possesses a
steep head before 450 nm, all of which cannot be reproduced by our
violet without causing a fat tail from 630-700 nm or a fat head from
450-500 nm. The fat head also appears in the carmine lake (R2C3),
whose ramp starts from 600 nm and is 50 nm behind the spectra of
our red, orange andmagenta. The cadmium yellow (R3C7) starts the
ramp at 450 nm, which is 30 nm earlier than our saturated yellow in
and causing a lifted yellow spectra (with white layers) to match the
curve. The downhill of lithopone (R6C9), which starts at 630 nm,
also cannot be reproduced, given that none of our inks’ spectra has
a descending trend after 600 nm. Overall, our current ink set has
difficulties in reproducing yellow- and gray-tone pigments. Ulti-
mately, we believe a further expanded and more carefully selected
ink set is necessary to reproduce all pigments’ spectra well.

6.2 Painting Reproduction Evaluation

We scanned small oil paintings with varying scales, color and tex-
ture characteristics, using the same spectral acquisition setup we

used for measuring our dataset. During capture, the distance be-
tween the camera and painting is adjusted to match the measure-
ment resolution to the printer’s spatial resolution (35µm). For
paintings larger than the camera’s field of view, we scan them
part-by-part and stitch the measurements into a single spectral im-
age [Brown and Lowe 2007].

We captured the photographs of all results reported in the paper
using a Canon 5DMark-III DSLR camera with a Canon 100mm f/2.8
macro lens. The photos of the paintings and their reproductions
were taken simultaneously in a single shot under the same light
source, then cropped appropriately. We used a fluorescent light
and a halogen light to represent cold and warm color temperatures.
Additionally, we used a Philips Hue light, which includes different
colors of LEDs inside to simulate different lighting.
We include the high-resolution images of both simulations and

physical printings in our paper, and refer the readers to the elec-
tronic version of it, where more details of our reproduction can be
seen and examined when zoomed in.

In Figure 9, we show the side-by-side comparisons of the selected
paintings patches and our printed reproductions under different
physical light sources. The physical dimension of each painting
patch is 3.2cm× 2.4cm. Our results faithfully reproduce a variety
of color used in real paintings under a wide range of color. In par-
ticular, the paintings exhibits different characteristics: the “water
lily” is characterized by its desaturated colors and smooth gradients,
while the others use more saturated colors.

We compare our reproduction with the color contoning
method [Babaei et al. 2017] in Figure 10, using simulation. Our
sVED based on 10-ink stacks outperforms the CMYK contoning
method with more faithful reproduction of various colors. This
is expected as our gamut volume is significantly larger than the
color contoning gamut. In contoning, the ink concentrations are
kept low to prevent color quantization. Our use of more saturated
inks help achieve a larger gamut at the cost of more prominent
color quantization, which is handled by our spectral vector error
diffusion method (the halftoning pattern can be examined in the
electronic version when zoomed in).
In Figure 11 we show the printed reproductions of two paint-

ings generated using our 10-ink pipeline, and the same pipeline
but with our CMYK inks only. Thanks to our sVED method, which
allows for high-concentration inks, we can achieve a significantly
large color gamut even with CMYK. However, although our highly-
concentrated CMYK inks yield a large gamut close to a fluorescent-
ink printer (65% of sRGB), the 10-ink method shows consistently
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(f )  R (w/o SR)    (e) R(d) BF(b) SVED+BF(a) GT (c) SVED+R

Fig. 7. Comparisons of different quantizationmethods. (a) ground truth; (b)
spectral vector error diffusionwith brute-force enumeration; (c) spectral vec-
tor error diffusion with nearest-integer rounding; (d) per-pixel brute-force
enumeration; (e) per-pixel nearest-integer rounding; (f) per-pixel nearest-
integer rounding without using our soft quantization layer. The results in
(b–e) were created using the network with the soft quantization layer. Each
row at bottom corresponds to a rectangular region in the painting at top.
Paintings ©Azadeh Asadi.

better reproduction quality under different lights. This justifies the
use of a larger number of inks for high-fidelity spectral reproduc-
tion. For a quantitative evaluation, we also show the spectra of some
sampled points from the original painting, the reproduction by our
10-ink method, and the reproduction by our CMYK inks, along
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Fig. 8. Comparison of historical pigment spectra reproduced by the pro-
posed nerual network and the nearest neighbour search. The white dots
mark the challenging spectra that are difficult for our ink set.

with spectral and colorimetric errors. In general, the CMYK set,
even though at high concentration, is not able to reproduce some of
spectra faithfully (on average Espec = 6.22% and ∆00 = 7.97). Our
10-ink printer, on the other hand, gives excellent spectral match
between the paintings and prints (on average Espec = 2.78% and
∆00 = 3.80). Note the spectral difference in the inset of Figure 11,
where the 10-ink set consistently gives less spectral error. Con-
cerning colorimetric reproduction, the 10-ink set outperforms or
does equally well compared to the CMYK. There are a few excep-
tions, especially out-of-gamut spectra, such as spectrum number
3 in the second painting, a brilliant red color. Although the color
reproduction accuracy of the CMYK set is relatively good, it has
unacceptable spectral accuracy, indicating the risk of a metameric
reproduction. On the other hand, the 10-ink reproduction has much
better spectral reproduction accuracy, while the colorimetric error
is high, typical for out-of-gamut colors.

The reproduced paintings have to undergo a series of color trans-
formations (e.g., by the camera, publishing software, and the printer
or display) to be presented in this paper, whether it is printed or
viewed electronically. Thus, the difference between our reproduc-
tions and those by other methods may have been washed out or
become subtle. To further provide evidence of the significant differ-
ences between them when seen in person, we carried out a small
perceptual study, in which we compared our 10-ink with our CMYK
prints. We asked participants to evaluate the color fidelity of the
two candidate methods as compared to the original, under three dif-
ferent lighting conditions (fluorescent at 3500 K, LED at 5800 K, and
cloudy daylight). We asked participants to evaluate printed patches
on a scale between −3, indicating a strong preference against ours,
and +3, for ours, with 0 being indifferent. Based on a study in-
volving 8 participants, the mean preference score was +1.69 with
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Fig. 9. Reproduced paintings using our method. We show 4x2 sets of our printed reproductions. For each set, we show our printed reproduction with CMYK
inks (top row), the original painting (middle row), and our printed reproductions with 10 inks (bottom row). Each painting is lit by four different light sources
(halogen (2750K), Phillips Hue LED (Warm), fluorescent (5000K), and Phillips Hue LED (Cool)), which are shown so ordered. The spectrum of each light is
illustrated in the supplementary material Figure A.1. Paintings ©Azadeh Asadi.
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(a) Ours (b) Original (c) Contoning

Fig. 10. Simulated comparisons under D65 illumination of our method to
the CMYK contoning. Our reproduction (a) of three paintings are com-
pared against the original painting (b) and the CMYK contining method
(c) of Babaei et al. [2017]. Our method provides consistently more faithful
reproductions to the original. Paintings ©Azadeh Asadi.

standard deviation of 1.14, which shows a consistent and statisti-
cally significant (p < 0.001) preference for our reproduction.

6.3 Run-time Performance
Our model is implemented using TensorFlow [Abadi et al. 2016],
and trained and tested on an NVIDIA Titan X (Pascal) GPU. It takes
about 15 minutes to train the spectral prediction network F and
about 45 minutes for the layout generation network B. Note that
these are one-time computations and once the model is built, it
can be used for different input paintings. To predict the layout
of a painting consisting of one million spectral pixels, it takes on
average 0.3 seconds.
Our spectral vector error diffusion is implemented in Python

(with NumPy) and TensorFlow. We follow the optimal scheduling
pattern proposed by Metaxas [1998] to batch the evaluations of un-
correlated pixels at each time step, which significantly reduces the
number of network inference calls. During error propagation, a
damping factor between 1 and 0.6 (for highly saturated paintings)
is applied to the error diffusion kernel to prevent the algorithm
from diverging. Error diffusion on a painting of one million spec-
tral pixels takes on average 23 seconds using simple rounding and
590 seconds using brute-force rounding enumeration.
For physical spectral prediction models, although the forward

model can be very efficient, the backward model needs a model
inversion with iterative optimization algorithms, which renders
the print-data generation into a slow process. We tested the color
contoning run-time performance using our training dataset. The
forward model takes more than 40 hours in MATLAB on a Mac-
Book Pro with a 2.8 GHz i7 processor and 16 GB of RAM. This is
because the model inverts a large weight matrix (n ×n , n being the
number of training data samples) for predicting every layout. We
did not test the contoning backward model, as a nearest neighbor
search among 0.8 billion points in a 31-dimensional spectral space
is intractable.

6.4 Limitations and Future Work
Our experiment with the historical pigments revealed that our ink
library is suboptimal, unable to faithfully reproduce certain spec-
tral curve shapes, such as cobalt blue. An exciting extension of our
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Fig. 11. Comparisons of the printed results and measured spectral re-
flectance between our CMYK reproduction, 10-ink reproduction and the
original painting. In the lily example (top), the reconstruction of green and
purple hues are extensively examined, which are known to be difficult for
CMYK. In the bottom example, we examine a wide varity of both satu-
rated and desaturated colors. In both results, 10 inks result consistently
ourperforms the CMYK both perceptually and in terms of spectral RMSE.
Paintings ©Azadeh Asadi.

system is to further expand the ink library. With an extended ink
library, an efficient painting-specific ink selection algorithm would
be required to allocate inks from the library to the limited number
of printer channels.

A data-drivenmodel fitswell with our current problem size. How-
ever, for maximum scalability, striving for more advanced physical
prediction models is an important research direction for the future.
For this, one can take inspiration from physically-based models
for rendering of layered materials [Jakob et al. 2014]. Another ap-
pealing direction is to construct a physically-aware neural network
that, instead of working with ink labels, is built on proper spectral
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measurements. By learning from the physics of the problem, we
expect the resulting network to be generalizable to arbitrary inks
not present in the training set. However, we expect a significant
larger training set to be necessary given the increase in the number
of degrees of freedom.

Compared to the previous contoning method [Babaei et al. 2017],
the dot gain in our approach is significantly lower due to the thin
(high-concentration) ink stacks. Consequently, the blur is much
less significant without any preprocessing [Babaei et al. 2017] or
optimizing the material arrangement for the least crosstalk [Elek
et al. 2017]. Having said that, we believe that improving the blur
problem through careful tuning of material thickness and concen-
tration, optimizing halftoning and contoning parameters, and find-
ing optimal material arrangements [Elek et al. 2017] is necessary
for high-quality reproduction.
Finally, a painting reproduction without considering the rich

spatially-varying gloss and translucency found in many paintings
as well as the 3D trail of the brush-stroke is far from complete. In-
corporating gloss and microgeometry will also improve the spectral
reproduction by recognizing the unavoidable highlights measured
during the capture, and compensating for them by surface reflection
(and not by diffuse color). Although there have been recent efforts
in combined fabrication of these appearance attributes Elkhuizen
et al. [2017], there is still a long way to go for archival-quality fab-
ricated fine art.

7 CONCLUSIONS

We propose a complete pipeline capable of reproducing spectral re-
flectance using a 3D printer. To this end, we present a data-driven
approach for predicting the optimal stack of different inks. Our
framework provides accurate and efficient forward and backward
predictions. Our proposed spectral model outperforms state-of-the-
art physical and data-driven prediction models, mostly by large
margins. We demonstrate the effectiveness of our workflow by re-
producing a number of challenging oil paintings, painted by our
artist collaborator [Asadi 2017]. We further propose a novel spectral
vector error diffusion that combines both halftoning and contoning
techniques in a complementary manner to leverage the potential of
both methods. Our sVED algorithm uses error diffusion on a very
large number of potential contone stacks, very efficiently, thereby
resolving both layout discretization and color quantization prob-
lems. Our framework takes the first step in the exciting direction of
fine art reproduction, and we hope it triggers more works, leading
to the exploitation of rapid advances in fabrication technologies
and computational techniques to protect our cultural heritage.
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