
Supplemental Material for
Depth from Gradients in Dense Light Fields

for Object Reconstruction

Kaan Yücer1,2 Changil Kim1 Alexander Sorkine-Hornung2 Olga Sorkine-Hornung1

1ETH Zurich 2Disney Research

1. Depth from gradient
In Section 3.1 of the paper, we discussed how depth can be

computed using light field gradients. Here, we will describe
the gradient computation on the light field patch s

i,j

(p,q)
in more detail. Given a 2⇥5 patch, our aim is to compute the
trajectory direction around p, which is perpendicular to the
gradient direction around the same pixel. Since the patch size
is 2⇥ 5, the gradient computation is not well-defined, and
using forward differences will lead to a 0.5 pixel shift of the
computed values. However, this problem can easily be solved
by employing a 5 ⇥ 5 patch, interpolated from s

i,j

(p,q):
The first and the last rows of the new patch s

⇤
i,j

(p,q) are
taken from the original patch, whereas the central 3 patches
are interpolated linearly.

s

⇤
i,j

(p,q) =

0

BBBB@

a
3/4a+ 1/4b
1/2a+ 1/2b
1/4a+ 3/4b

b

1

CCCCA
(1)

where a and b are the two rows of s
i,j

(p,q). Given this new
patch, we apply a Sobel filter on s

⇤
i,j

(p,q) and compute the
gradients r

x

s

⇤
i,j

(p,q) and r
y

s

⇤
i,j

(p,q). The linear interpo-
lation between a and b keeps the relationship between the
pixels in the x dimension the same, which is reflected in the
computed gradients:

r
x

s

i,j

(p,q) = r
x

s

⇤
i,j

(p,q). (2)

In the y dimension, we stretch the original patch by a factor
of 4, such that the distance betwwen p and q increases from
a single pixel to 4 pixels. This means that the gradients are
also related by the same factor:

r
y

s

i,j

(p,q) = 4 ·r
y

s

⇤
i,j

(p,q). (3)

Note that we do not explicitly compute s⇤
i,j

(p,q) or its gradi-
ents, but pre-compute the factors for computing the gradients
of s

i,j

(p,q) directly.

Figure 1: Given the light field patch s

i,j

(p,q), and the
gradients r

x

s

i,j

(p,q) in green and r
y

s

i,j

(p,q) in blue,
the gradient direction ✓

i,j

(p,q) and the trajectory direction
�

i,j

(p,q) can be computed using simple trigonometry. The
gradient and trajectory directions are shown in cyan and
yellow, respectively.

Given the two gradients, the gradient direction in the light
field patch s

i,j

(p,q) is computed as:

✓

i,j

(p,q) = tan�1(r
y

s

i,j

(p,q)/r
x

s

i,j

(p,q)). (4)

Since the direction of the trajectory � is perpendicuar to
the gradient direction ✓ (change in color is minimal in the
trajectory direction), we can compute it as:

�

i,j

(p,q) = tan�1(�r
x

s

i,j

(p,q)/r
y

s

i,j

(p,q)). (5)

See Figure 1 for a visualization of the gradient and trajectory
directions.

Now that we know the gradient and trajectory directions,
we can compute where p maps to in the second row of
s

i,j

(p,q). Between the two rows, the motion along the y

direction equals 1. Given that the light field patch is centered
around p and q, meaning that they have x coordinates 0,
the motion along the x direction should equal ps

j

, i.e. the
x coordinate of the point, where p maps to in the second
row of the patch. The trajectory direction �

i,j

(p,q) should
remain the same, meaning:

�

i,j

(p,q) = tan�1(1/ps
j

). (6)

We can compute p

s

j

simply by:

p

s

j

= 1/ tan(�
i,j

(p,q)). (7)

1



Tr
un

ks
Th

in
 P

la
nt

OursACTS

Figure 2: Comparison of our technique to the ACTS soft-
ware [2], with close-ups on the reconstructed meshes. See
Section 2 for a detailed discussion.

2. Comparison to ACTS
Here, we elaborate more on the comparison to the ACTS

software [2], this time meshing the point clouds of ACTS.
Since this software produces per-view depth maps without
normal information, we first compute per-view normals us-
ing PCA over small patches centered at every pixel of the
depth maps. We then merge the depth maps into a global
point cloud, use a bounding box to filter only the foregroud
points, and mesh them using Poisson surface reconstruc-
tion [1], see Figure 2.

Our reconstruction results are more faithful to the object,
and can generate more details, especially in the THIN PLANT
dataset, where most of the leaves are either removed or
merged in the reconstructions of ACTS. Since the point
clouds of ACTS can be noisy (see paper, Figure 6), the
surface reconstruction step cannot generate the fine details.
As for the TRUNKS dataset, ACTS combined with Poisson
reconstruction generates similar results to ours. However,
it also merges two tree trunks, and generates extra floating
regions, due to the consistent noise in the point clouds (see
paper, Figure 6).

References
[1] M. Kazhdan and H. Hoppe. Screened poisson surface recon-

struction. ACM Trans. Graph., 32(3), 2013. 2
[2] G. Zhang, J. Jia, T. Wong, and H. Bao. Consistent depth maps

recovery from a video sequence. PAMI, 31(6), 2009. 2


