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Abstract

We address the problem of stereoscopic content generation
from light fields using multi-perspective imaging. Our pro-
posed method takes as input a light field and a target dispar-
ity map, and synthesizes a stereoscopic image pair by select-
ing light rays that fulfill the given target disparity constraints.
We formulate this as a variational convex optimization prob-
lem. Compared to previous work, our method makes use of
multi-view input to composite the new view with occlusions
and disocclusions properly handled, does not require any
correspondence information such as scene depth, is free from
undesirable artifacts such as grid bias or image distortion,
and is more efficiently solvable. In particular, our method is
about ten times more memory efficient than the previous art,
and is capable of processing higher resolution input. This is
essential to make the proposed method practically applica-
ble to realistic scenarios where HD content is standard. We
demonstrate the effectiveness of our method experimentally.

1. Introduction
Stereoscopic 3D content creation and manipulation have re-
ceived much attention in the computer vision and graphics
research communities as well as the entertainment industry,
which motivated the development of various novel acquisi-
tion, processing, and display technologies. Still, stereopsis
is a complex function of parallax, inter-axial distance, screen
size, viewing distance and more [26], rendering it difficult
to create content that provides a comfortable viewing expe-
rience while suitable for different viewing preferences and
conditions. Changing the inter-axial or the convergence mod-
ifies the depth perception globally and hence provides only
limited control over the disparity distribution, often resulting
in over-flattening with most local details vanished. These
challenges inspired a considerable body of work on local
stereoscopic content editing [2, 5–8, 13, 16, 22, 27]; see [19]
for a more complete review.

A number of methods among them take a monoscopic
view and create the second view given desired depth crite-
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Figure 1. Our methods takes a light field and target disparity con-
straints the user wants to achieve, and synthesizes the stereo pair
which best fulfills the desired constraints. It allows the user to
modify the depth perception in a more expressive and robust way.
This example shows a use case based on scribbles, where the rela-
tive depths of the hippo and the bear are reversed; compare to the
ordinary stereo pair formed of two views from the input light field.

ria [2, 5, 27], usually in the form of a target disparity map
or other forms of annotation, while other methods warp a
given second view to meet the criteria [4, 6, 16]. Most of
these techniques employ image inpainting or image warp-
ing to realize the intended binocular parallax and fill in the
previously unseen, but now disoccluded monocular regions.
However, this essentially hallucinates potentially incorrect
image content. Furthermore, in most cases it is not clear how
to extend these methods to utilize more than two views to
improve results even in cases where more image information
is available. For these reasons, these approaches are subject
to limitations with respect to the fidelity and the amount
of disparity change that are achievable, and often exhibit
noticeable image deformation as the target disparity diverges
from the original disparity.

A different class of methods is based on the observation
that depending on the desired disparity constraints, the result-
ing second image is effectively a multi-perspective image,
i.e., it purposely deviates from a standard perspective image
in order to optimize the stereo impression for given con-
straints [13, 22]. The methods of this sort use light fields
that already retain multiple perspectives, and thus have more
degrees of freedom to choose the most appropriate image
content to composite the resulting stereo image pairs. While
they provide finer local control over the resulting stereo and
do not suffer from image distortions, they are more memory
intensive than those using fewer views. Further, most dis-



parity editing methods require correspondence information
between input images (e.g., scene depth), and the computa-
tional burden to find correspondences becomes significant
with an increasing number of input views.

In this paper, we propose a novel method to generate
stereoscopic content from light fields, which avoids the prob-
lems mentioned above. Given any view of the input light
field, our method synthesizes a second view that adheres
to desired target disparity constraints (see Figure 1). The
method allows us to describe the target disparity on a per-
pixel basis, and it chooses the correct light rays according to
the target disparity, instead of deforming the input images.
We formulate this as a variational optimization problem and
solve it via primal-dual iterations.

Our method has the following beneficial properties com-
pared to the previous work: 1) it takes multiple input views
to handle occlusions and disocclusions properly and thus
avoid image distortion, 2) although it supports per-pixel
disparity control, it does not require dense correspondence
information such as per-view scene depth. 3) it runs under
significantly less memory overhead than the previous state
of the art, and is thus applicable to high resolution input,
and 4) additionally it inherits the advantage of the iterative
continuous solver, such as interactive update and no grid
bias.

2. Related Work
We briefly review the existing techniques about stereoscopic
content editing roughly in the order of increasing expressive-
ness. We refer the reader to Masia et al.’s survey [19] for an
overview of a broader range of related techniques.

Our method is also inspired by multi-perspective imaging
and light field rendering [17]. Most importantly, Seitz [25]
analyzes the space of all possible stereo image types and
shows that the stereoscopic depth perception using multi-
perspective images is feasible.

Stereoscopic Camera Control. The most basic means of
disparity modification is to change the inter-axial distance,
the distance between the two cameras’ optical centers, and
the convergence, the amount of rotation against each other
around their vertical axes [16]. In recent work, the control
of these rig parameters is almost fully automated according
to the content of the scene about to be captured or rendered.
Heinzle et al.’s computational stereo camera [12] analyzes
the scene it is capturing in real-time and adjusts those param-
eters as well as others, so that the captured scene remains in
the comfort zone. Oskam et al. [21] implements a similar
idea in the context of real-time rendering such that the virtual
scene is rendered in a fail-safe manner. Koppal et al. [15]
explored the space of stereo parameters extensively in their
production pipeline. Albeit the strong modification capabil-
ity and intuitiveness of these parameters, their expressive

power is notably limited in that their change introduces a
global effect on the perception of the entire scene geometry,
not the local control over disparity that we are interested in,
and that, more significantly, they cannot be modified once
captured.

Stereoscopic Rendering. Besides capturing the content
stereoscopically, many techniques that create stereoscopic
rendering from the original 2D content have been developed.
For CG content, the scene depth is usually given, and thus
used to synthesize two or more views for the target display.
Bowles et al. [2] proposed a fast image warping technique us-
ing fixed point iteration that is ideally targeted for real-time
applications such as video games. Being part of the render-
ing pipeline, it has access to almost the complete information
about the scene including the geometry, and the information
additionally required can be rendered on demand. Along a
similar line is Didyk et al.’s method [5], where the method
takes a single image and a depth buffer, and generates two
views for the left and right eye using image-space adaptive
grid warping at an interactive rate. Masia et al. [18] extend
it to generate multiple output views to feed autostereoscopic
displays. They also present a perceptually based dispar-
ity remapping that can compensate for the limited disparity
bandwidth of such displays. Both methods uses the same ren-
dering technique, which handles disocclusions by stretching
grid quads and may lead to visual artifacts. While usually
available in the animation pipeline for those method, dense
depth is not generally given in real-world content. Wang et
al. [27] propose an interactive user interface for the creation
and manipulation of stereo content, based on sparse user
scribbles to annotate the scene depth, which are propagated
to fill the entire image space at an interactive rate. How-
ever, in their method the resulting images are essentially
warped versions of the original image, and thus often in-
clude noticeable distortions around the occlusion boundaries
in particular.

Local Disparity Editing. For finer control of stereo depth
perception of the existing 3D content, the usual strategy
is to locally manipulate the disparities of matching image
features between the two views. Lang et al.’s method [16]
computes sparse correspondences between given two im-
ages and warps the images using a variational framework
such that the correspondences will have modified parallax
in the deformed image pair. To describe the desired artistic
manipulation, they formally define a collection of dispar-
ity remapping operations, including nonlinear remapping,
which enable sophisticated control over the design of dispar-
ity modification. Chang et al. [4] allow the user to interact
the similar editing process of their method. They use the
image warping technique based on 2D mesh deformation
to render the output stereo. Focusing on perceptual issues,
Didyk et al. [6–8] propose remapping operators and their



implementations that minimize the discomfort perceived by
the human visual system. The modified disparity is rendered
back to stereo views using the technique based on image
decomposition. As for the single view methods, all of these
methods use image based techniques to realize modified
disparity constraints, which makes them vulnerable to the
undesirable extreme deformation or stretching of image con-
tent in the course of disparity modification. This limitation
could be alleviated by using more input views, but it is not
clear how to incorporate such additional information into
these methods.

Multi-perspective Approaches. While all above methods
take only one of two views, Peleg et al.’s method [22] takes
a video cube that captures a 360◦ panorama, and constructs
two views that form a stereoscopic panorama with the dispar-
ity locally manipulated. Since their method extracts and com-
posites image columns from the video cube, however, only
per-column disparity control is possible. To cope with this
limitation, Kim et al. [13] proposed a method that realizes
per-pixel disparity control using a light field, but their dense
graph-cut formulation poses significant overhead on the com-
putation, in particular memory consumption, preventing it
from wider adoption. While Richardt et al.’s Megastereo [24]
provides a remedy for the panoramic stereo so that the tech-
nique can be applied to HD content, no equivalent for the
light field stereo exists so far.

3. Formulation
Our method takes as input a light field and user-defined
target disparity criteria. For a given reference view within
the light field, our method computes a new view such that
the disparity between the views matches best the prescribed
target disparity. For our problem, a light field with horizontal
angular variation suffices as only the horizontal parallax
matters in stereopsis. Such light fields can be easily captured
with a 1D camera array or a linear camera gantry. The target
disparity is in the form of a 2D map defined at the reference
view. We demonstrate a few ways to obtain it in Section 5.

Let Ω ⊂ R2 be the spatial domain of the (continuous)
light field, and Γ = [smin, smax] ⊂ R be its bounded 1D
angular domain. We then define a light field L : [Ω× Γ]→
R3, which maps a ray defined by a spatio-angular coordinate
(x, s), where x = (u, v) ∈ Ω and s ∈ Γ, to a sampled
radiance represented in RGB color space. Further let ŝ ∈ Γ
denote the position of the reference image Iŝ(x) = L(x, ŝ)
for which the target disparity map G : Ω→ R is specified.

In the first step we shift the reference image Iŝ by the
target disparity G to obtain a target image

I∗ŝ (u+G(u, v), v) = Iŝ(u, v) . (1)

This target image represents what the sought second view
should look like. However, as the shifting is not injective

nor surjective, there are ambiguities. We deal with the non-
injectiveness that would map two pixels to the same location
by selecting the pixel with the highest disparity, i.e. the one
closest to the camera. To deal with the non-surjectiveness
that leaves certain pixels without a disparity value, we mark
these undefined regions in a binary mask M : Ω → {0, 1}
that is 0 in the undefined regions and 1 elsewhere. The un-
defined region is the disoccluded, monocular region which,
in principle, should not be crucial to the depth perception,
but may cause discomfort when conveying conflicting depth
cues [16]. Thus, many techniques fill this region by stretch-
ing neighboring image regions. However, this often intro-
duces unwanted visible distortions of the image content.

Our Approach. We propose a different approach where
we use pixels from the input light field to fill in information
in the disoccluded regions. The unknown second view will
hence be defined by a labeling function l : Ω → Γ that
determines for each pixel in the second view from which
input view it should be taken from. To find a smooth solution
with a least noticeable transitions (seams) we formulate the
problem of finding l as a continuous optimization problem
consisting of a data matching and a smoothness term

E(l) =

∫
Ω

Edata(l) + k Esmooth(l) dx , (2)

where k > 0 balances the two terms.
The data term Edata enforces the resulting second image

to be as close as possible to the target image in the subset of
Ω where the target image is defined, i.e. where M(x) = 1.
Thus the data term is defined as

Edata(l) = M(x) ‖L(x, l(x))− I∗ŝ (x)‖1 . (3)

The smoothness term Esmooth penalizes the amount of
view transitions in the labeling. Importantly, it also guides
the transitions to happen in less noticeable regions to allow
for a seamless stitching of contributions from different im-
ages. For the disoccluded regions where the data term is
disabled, the smoothness term allows to fill in information
in a smooth manner, resulting in a least distorted comple-
tion of these missing regions. To achieve these goals, we
define the smoothness term as the anisotropic total variation
regularizer [10, 20]

Esmooth(l) =
√
∇l(x)> S(x, l(x))∇l(x) . (4)

The anisotropy is driven by the local variation in the light
field, and measured using the structure tensor [9]

S(x, s) = Kσ ∗ (∇xL(x, s)∇xL(x, s)>) , (5)

where Kσ denotes a Gaussian kernel of variance σ2, ∗ is
the convolution operator, and ∇xL = (∂uL, ∂vL)> is the



spatial gradient of the light field L. The two orthonormal
eigenvectors of S point along and across dominant spatial
edges in the light field. Hence our smoothness term aligns
view transitions with discontinuities in the light field which
minimizes visible seam artifacts due to view transitions.

Plugging above definitions into (2) we end up with the
following variational problem to find the sought labeling l:

min
l

∫
Ω

M(x) ‖L(x, l(x))− I∗ŝ (x)‖1 +

k
√
∇l(x)> S(x, l(x))∇l(x) dx . (6)

Convex Formulation. While the regularizer of the func-
tional (6) is convex, the data term is not. We reformulate (6)
as a convex functional using function lifting. We only outline
the fundamental steps of the procedure here and refer to [23]
for more details.

Let us define a binary function φ : [Ω×Γ]→ {0, 1} with

φ(x, s) =

{
1 if l(x) > s
0 otherwise , (7)

which is the indicator for the s-superlevel sets of l. The
feasible set of functions φ is {φ : [Ω × Γ] → {0, 1} |
φ(x, smin) = 1, φ(x, smax) = 0}. Rewriting (6) with φ
will now yield a convex data term, yet the feasible set of φ
is non-convex, and hence the minimization over it. To cope
with this, φ is further relaxed so that it may take continuous
values in the interval [0, 1], leading to the convex feasible set

D = {φ : [Ω× Γ]→ [0, 1] |
φ(x, smin) = 1, φ(x, smax) = 0} . (8)

When φ is projected back to its original domain after the
optimization, it is thresholded by some value within the
interval [0, 1]. The optimality is still guaranteed regardless
the selection of threshold [23]. The labeling function l is
recovered from φ by integrating over Γ [3]:

l(x) = smin +

∫
Γ

φ(x, s) ds . (9)

Rewriting (6) using the partial derivative of the indicator
function φ, we obtain the following convex problem:

min
φ∈D

∫
Ω

∫
Γ

M(x) ‖L(x, l(x))− I∗ŝ (x)‖1 |∂sφ(x, s)|+

k
√
∇xφ(x, s)>S(x, s)∇xφ(x, s) dsdx . (10)

4. Optimization
A straightforward way to minimize the convex energy func-
tional (10) would be to solve its associated Euler-Lagrange
differential equation [23]. This appraoch is, however, com-
plicated by the singularity of the used norms at zero. As an
alternative we rewrite the norms in terms of their Wulff shape
as the combined two norms constitute a convex, positively
1-homogeneous function [28].

Saddle-Point Formulation. A Wulff shape is defined as

Wφ = {y ∈ Rn | 〈y, z〉 ≤ φ(z) ∀z ∈ Rn} , (11)

for a convex function φ : Rn → R that is positively 1-
homogeneous, i.e. φ(λz) = λφ(z), ∀λ > 0. It is a closed
and bounded convex set containing zero, and is used to
rewrite φ as

φ(z) = max
y∈Wφ

〈z,y〉 , (12)

where the norms can be represented in a differentiable form.
The minimization problem (10) can then be rewritten as

min
φ∈D

max
p∈C

E(φ,p) , (13)

with the energy functional

E(φ,p) =

∫
Ω

∫
Γ

〈∇x,s φ(x, s), p(x, s)〉 dsdx , (14)

where ∇x,s is now the gradient over all three dimensions of
φ and p = (px, ps)

> is the dual variable. The feasible set of
the dual p then becomes the following Wulff shape:

C = {p : [Ω× Γ]→ R3 |√
p>x S(x, s) px ≤ k, |ps| ≤ ρ(x, s)} , (15)

where ρ(x, s) is the data term value at (x, s). This can be
seen as a partial dualization in convex analysis, where φ is
referred to as the primal variable and p the dual. Because
we will maximize in the dual p and minimize in our orig-
inal primal φ, the problem (13) is called the saddle-point
formulation.

Primal-Dual Iterations. To solve (13), we alternate be-
tween taking gradient steps in the primal and dual [11]. To
minimize the primal, we define the gradient as

φn − φn+1

σp
= ∇φE(φ,p) , (16)

and to maximize the dual, we define the gradient as

pn+1 − pn

σp
= ∇pE(φ,p) . (17)

By calculating the derivative of (13) with respect to the
primal and the dual we derive the update steps

Primal: φn+1 = PD(φn + σp divpn) , (18)

Dual: pn+1 = PC(pn + σp∇φn+1) , (19)

where PD projects φ back into its domain D by truncating
it to [0, 1] and setting φ(x, smin) = 1 and φ(x, smax) = 0.
PC is the Euclidean projector of the set C given by [23]

PC(pn+1) = arg min
y∈C

‖pn+1 − y‖ . (20)
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(a) User scribbles (b) Propagated disparity (c) Reference image (d) Computed new view (e) Resulting stereo

Figure 2. Disparity modification using user scribbles. This task demonstrates a possible use case, where sparse brush strokes are drawn by
the user and then propagated to form a dense target disparity map. The resulting stereo is generated according to the propagated disparity
map. (a) shows the input scribbles and (b) the resulting target disparity map. (c) and (d), respectively, show the reference view and the
computed new view. (e) shows the resulting anaglyph stereo image. Note that the scribbles are not necessarily physically meaningful and are
rather intended to test the flexibility and robustness of our method. See the supplementary material for more results.

To compute the updates numerically, we discretize Ω and Γ
so they represent pixel coordinates and the image index in
the light field, respectively. The gradients are approximated
using forward differences, but we use backward differences
for the divergence to ensure convergence.

5. Experimental Results
In this section we evaluate our method both qualitatively
and quantitatively. We begin with the demonstration of two
different use cases: disparity modification using sparse user
scribbles, and nonlinear disparity remapping. We then assess
our method quantitatively, and finally analyze its perfor-
mance. The datasets used are taken from two public light
field repositories accompanied with [14, 29], and resized to
a small set of representative resolutions. For all experiments,
we used a fixed set of parameters, σp = 1/

√
3, k = 10, and

σ = 2, and the primal-dual steps were iterated 10,000 times.
Due to the limited space, we present only a selected subset
of our results in the paper, which are also compressed for
smaller file size. For the complete set of higher resolution re-
sults, refer to the accompanied supplementary material. All
anaglyph images shown can be viewed in 3D using red-cyan
anaglyph glasses.

Qualitative Evaluation. Our first use case based on user
scribbles demonstrates a pipeline for the stereo editing and
the 2D-to-3D conversion (see Figure 2). A sparse disparity
annotation is provided by the user by drawing several brush
strokes on top of the reference image, where the grayscale
intensity of strokes encodes the amount of disparity. This
sparse input is then propagated to form the dense target dis-

parity map using a standard technique, e.g., StereoBrush [27].
Note that these scribbles do not necessarily need to be phys-
ically correct: our method finds the labeling that is closest
to the specified disparity while producing the least notice-
able seams, which leads to convincing stereo images. For
instance, in the scribbles for the Couch dataset, the hippo
is pushed back further than all other stuffed animals, while
it is the closest in real depth; compare against the ordinary,
perspective stereo shown in Figure 1.

Figure 4 shows the second use case, where the actual
scene depth is nonlinearly remapped to convey a different
depth perception. We used the scene depth for the Bikes,
Couch, and Mansion datasets that is available in the same
light field repository. Since depth is not available for the
Elephant dataset, we do not show the corresponding results
in the paper. For the Bikes dataset shown in the first row,
the depth of the ground is compressed to give more disparity
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(a) Ordinary stereo (b) User scribbles (c) Nonlinear remapping

Figure 3. Side-by-side comparisons between ordinary stereo and
our results. (a) the ordinary stereo consisting of two perspective
images chosen from the input light field. (b–c) our results using the
user scribbles and the nonlinear disparity remapping, respectively.
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Figure 4. Nonlinear disparity remapping. The actual scene depth of the reference view is nonlinearly remapped to create the target disparity
map. (a) shows the original disparity map, whereas (b) depicts the remapped disparity map. For the Bikes dataset, the excessive disparity on
the ground was compressed for a more comfortable stereoscopic viewing experience. For the Couch dataset, the gradient of the disparity
is modified such that large disparity gradients are removed, to better distribute disparity and to obtain more local details. (c–e) show the
reference image, the computed new view, and the resulting anaglyph stereo rendering, respectively.

budget to the bikes at farther distance. For the Couch and
Mansion datasets, the disparity gradient is obtained from the
disparity map, and high gradient magnitude are truncated to
remove empty space and give more local detail. The target
disparity map is then reconstructed from the modified gradi-
ents using a Poisson solver [1]. Note that such remappings
are not realizable by changing the inter-axial distance and/or
the convergence.

Figure 1 and 3 present the side-by-side comparisons of
the “ordinary” stereo consisting of two perspective images,
and our results using user scribbles and nonlinear remapping.

Quantitative Evaluation. To assess our results quantita-
tively we conducted two experiments where the desired re-
sult is known a priori. First, we use a single constant dis-
parity for all pixels as the target disparity. Thus our method
should result in the same image that is only translated by the
amount of the disparity value, by best combining the pixels
from the different views. Second, we use a linearly scaled
disparity map of the reference view as the target disparity.
Since this linear scaling does not involve any local disparity
modification, our method should choose the same, single
input image entirely.

Figure 5 shows the results of constant disparity, where the
target disparity is set to 20 pixels for all datasets. The third
column shows the absolute difference between the image
computed by our method and the reference image translated
by the amount of disparity. The resulting anaglyph stereo
images which are shown in the next column should look
flat, but floating on the screen. The last column shows the
resulting labeling, where each step in the grayscale denotes
an image index. The labeling resembles the scene depth, and
in fact, the stereoscopic rendering problem we are addressing
and the dense depth estimation problem are tightly related.
See the supplementary material for the detail.

The results of a linearly scaled disparity are shown in Fig-

ure 8. We scaled the given depth map at the reference view
by a factor of 10, hence each resulting view should equal to
its tenth next view. As for the constant case, we show the
reference image, the computed new view, and the difference
between the computed image and the corresponding input
image. The labeling shown in the last column should look
close to flat for this experiment.

We measured the root-mean-squared errors (RMSE) of
the computed views from the ground truth for all data
sets at two different resolutions: 1280×853 (1k) and 1920
×1280 (2k). For both tasks of the Bikes and Couch datasets,
the RMSE was all below 0.04. The error was higher for the
Mansion dataset for both tasks, primarily due to the complex
and thin structure of the tree and fence, which was about 0.07.
Since the Elephant dataset is only available at 1k resolution
and no depth was available, we performed the constant dis-
parity task at 1k resolution, which showed the RMSE of 0.05.
See the supplementary material for the complete results.

Comparisons and Performance. We show the advantage
of our method against the current state of the art [13], which
solves a similar problem using a discrete graph-cut formula-
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(a) Computed view (b) Error (c) Stereo (d) Labeling

Figure 6. Comparison to the discrete formulation. We compare
the constant disparity task (see Figure 5) against the start of the
art method which uses a discrete graph-cut formulation [13]. The
labeling of the discrete formulation clearly shows grid bias, i.e., the
transitions are mostly axis-aligned or diagonal (bottom (d)). This
results in a higher error (bottom (b)).
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(a) Reference image (b) Computed new view (c) Error (d) Anaglyph stereo (e) Labeling

Figure 5. Constant disparity. (a) and (b) show the reference image and the computed new view given the fixed value of 20 pixels as the target
disparity. (c) shows the error of the computed image against the ground truth, for which we use the reference image translated by 20 pixels
(the darker the pixel, the smaller error). (d) shows the anaglyph stereo image, while (e) shows the resulting labeling, where each step in the
grayscale denotes an image index. The resulting stereo should ideally look flat, but floating on the screen.
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Figure 7. Memory us-
age. This graph shows
the amount of memory
our method requires for
the input with differ-
ent resolutions. Com-
pared to the state of the
art [13], our method is
more memory efficient.
We were not able to run
the discrete formulation
for 2k resolutions.

tion. A characteristic problem of the discrete formulations is
that the optimization depends on the discretization, which
is known as the grid bias. Figure 6 shows a side-by-side
comparison of the constant disparity task, where we applied
the discrete formulation to reproduce the same task. As seen
in the labeling image, the discrete solver yields the labeling
that is mostly aligned along the two image axes, and also
exhibits a higher error in the final rendering.

We implemented the primal-dual iterations on GPU us-
ing NVidia CUDA. The maximal GPU memory that the
implementation requires at a time was measured for several
different resolutions, both spatially and angularly. We show
the memory footprint in Figure 7, also with the comparison
to the state of the art method [13]. Our method uses less
than 10% of the memory compared to theirs. The running
time varies depending on both the type of tasks and the light
field resolution. Measured on an Intel i7 processor with
16 GB of RAM and an NVidia GTX 560 graphics card, the
running time of the tasks for 50 1k images varied between
10 and 12 minutes and for 30 2k images between 13 and 15
minutes. We refer the reader to the supplementary material
for the complete analysis of our method’s performance for
all results we report in the paper.

6. Conclusion

We presented a method to create stereoscopic 3D content
from light fields. Having a light field as input, our method
can handle occlusions and disocclusions more properly with-
out deforming the input image. At the same time, the method
is more memory efficient, enabling the high resolution input
to be processed. Unlike similar methods, ours does not re-
quire dense depth information as input, which often turns out
challenging to be computed. We formulated this problem as
a variational optimization problem, which allows us to avoid
the undesired artifact of the discrete formulation such as grid
bias or excessive memory consumption.

Fast feedback is essential to an interactive editing. The
current running time of our method indicates that follow-
up work would be expected to speed up the method. A
promising property of our method in this regard is that our
solver runs iteratively, and each intermediate solution can be
visualized simultaneously to provide the user with the visual
feedback or inspection, which we believe is a fruitful avenue
for the future work.
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