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ABSTRACT
Geometric information such as depth obtained from light fields
finds more applications recently. Where and how to sample
images to populate a light field is an important problem to
maximize the usability of information gathered for depth re-
construction. We propose a simple analysis model for view
sampling and an adaptive, online sampling algorithm tailored
to light field depth reconstruction. Our model is based on the
trade-off between visibility and depth resolvability for varying
sampling locations, and seeks the optimal locations that best
balance the two conflicting criteria.

1. INTRODUCTION

The attempts to recover the geometric information such as
depth of the scene captured in the light field is gaining more
attention. Not only does it play an important role for ren-
dering the light field [1, 2], super-resolving it [3, 4], or find-
ing the focus plane for the post-capture refocus [5, 6], but
it also finds its way in the 3D reconstruction and the shape
acquisition [7, 8, 9]. Understanding the underlying sampling
properties is important to maximize the gain from the effort
of acquiring the light field. However, the sampling proper-
ties of the light field have been mostly studied in the context
of reconstructing the plenoptic function and rendering it by
re-sampling process [10, 11, 12]. These are a classical sam-
pling reconstruction problem where radiance is measured at a
number of locations in the multi-dimensional domain and the
plenoptic function is reconstructed from the sampled values. If
each ray r is seen as a point in 5D space D ≡ S2 × R3, then
light field reconstruction amounts to reconstructing the height
field `(r) over this 5D domain.

The problem of depth reconstruction, however, relies on
the ill-posed step of finding correspondences within this set
of light rays. The caliber of depth reconstruction depends
crucially on the accuracy of this step, which in turn largely
relies on where the rays are sampled—we formulate this as
a view sampling problem. Although a closely related topic
of view selection/planning has been studied in the computer
vision and robotics communities, often they are tightly cou-
pled to a specific reconstruction scheme and do not generalize
well to others [13, 14] or do not necessarily focus on the
specific nature of the currently popular light field acquisition
setups [15, 16, 17]. We try to bridge the gap between the light

field sampling analysis that has been done regarding rendering
and the view sampling that lacks the consideration of the light
field. We propose a sampling analysis that is tailored to this
particular domain.

We exploit two basic observations: (1) a large displacement
of the camera between view samples potentially confuses al-
gorithms that find correspondences since it is possible that
locations previously visible are now occluded by other objects
in the scene; (2) however, if successive views are “too close”
to each other, so that features move by very tiny amounts over
image space then it becomes increasingly challenging for cor-
respondence algorithms to resolve the displacement [18]. The
right choice of displacement depends on many factors such as
the resolution of the image, size of the camera sensor, distance
to the scene, the nature and scale of the scene, etc.

Our contributions: Based on these two observations we
develop a simple but general sampling analysis model and
an online sampling algorithm based on it to estimate “good”
placement of the camera. For the derivation, we assume that
the sampling locations are restricted to a line, i.e.,D ≡ S2×R,
and that the analysis is seeded with an inaccurate depth map
(obtained using any reconstruction method). Given this, we
analyze simple statistics of the scene by trading-off problems
due to occlusion with those due to depth resolvability.

Our model considers the very scene being captured and
the correspondence algorithm used for reconstruction to gather
statistics. Our sampling algorithm uses the model to identify
a small set of sampling locations, and successively amasses
statistics of the scene, which in turn helps make better view
placement in an iterative manner.

1.1. Related work

With alias-free rendering as their goal a substantial body of
literature studied sample optimization strategies for light fields.
Isaksen et al. [19] and Gortler et al. [1] address how to resam-
ple rays from already captured light fields for quality rendering.
Chai et al. [20] are one of the first who discussed the optimal
sampling rate when provided with constant, approximate, or
accurate depth. Durand et al. [21] explore more general phys-
ical phenomena regarding light transport and analyze them
using Fourier theory.

On the other hand, several previous works in robotics, laser
scanning, image-based rendering, and stereo reconstruction



have pointed out the benefits of planning or selecting a next
best view for improved localization, inspection, and reconstruc-
tion quality [22, 23, 24, 25, 16]. These methods achieve consid-
erably improved results by targeting their selection strategies
to the specific underlying algorithm. However, they often do
not generalize well to other methods and do not always provide
an extendable theoretic framework [13, 14, 15, 17].

2. OUR SAMPLING ANALYSIS MODEL

The problem of depth reconstruction relies on determining
potential intersections of rays. For this, we define an opera-
tor C : D × D → {0, 1} that, given two rays r1, r2 ∈ D,
returns 1 if and only if the two rays originate from the same
3D point. The process of evaluating this operator is known
as correspondence matching and the implementation of C has
been a long-standing open problem in computer vision. Any
algorithm that attempts to be clever with view placement for
depth reconstruction must account, in some way, for C.

Conservative sampling interval: Consider a pair of rec-
tified images of an arbitrarily shaped object containing a repet-
itive texture. If the texture is periodic, then the task of iden-
tifying a unique correspondence between pixels is hopeless.
However, for a particular pixel, adding a constraint that the
camera separation must be small enough to guarantee no oc-
clusion, robustifies the correspondence detection. Formally,
we can represent this constraint for each pixel pi as a visibility
preference function ρ over the sampling position s:

ρi(s) =

{
1 if αi ≤ s ≤ βi
0 otherwise . (1)

Here, [αi, βi] is the interval along s where the scene point
projecting to pi is guaranteed not to be occluded.

Determining visble intervals: Assume that the approx-
imate depth at pi is given di. Let sij denote the distance
along the baseline where the scene point projecting to pi is
occluded by a scene point that projects to pj . Then, using
basic trigonometry

sij = rij
didj
di − dj

, (2)

where rij is the image space distance between the pixels
(see Figure 1(a)). All distances need to be expressed in the
same world units. rij is related to the pixel disparity by rij =
(uj − ui)/f where ui and uj are the pixel coordinates of pi

and pj , and f is the focal length in pixels. A conservative
visibility condition at pi guarantees that at least two samples
of the scene point projecting to pi are visible (and hence can
be exactly matched under the Lambertian surface assumption)
if the views are within [αi, βi], where

αi ≡ max{sij}, ∀j | sij < 0,

βi ≡ min{sij}, ∀j | sij > 0.
(3)
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Fig. 1. Determining sampling intervals. (a) ρi(s) represents
an interval of s where the pixel pi is visible and thus matching
is feasible. (b) ηi(s) represents an interval where the depth
is resolvable for pi up to accuracy function Acc(Cik). The
two intervals are each summed over all pixels to form the
distributions ρ(s) of non-occluded pixels and η(s) of the pixels
with resolvable depth, respectively, over s.

Depth resolution of the correspondence algorithm:
While a small displacement of the camera along the baseline
enjoys the advantage of avoiding occlusion, it introduces the
difficulty for the correspondence algorithm to be accurate and
reliable. The accuracy of the triangulation of scene points
using image features increases with displacement along the
baseline [18]. We use a simple measure for estimating the
depth resolution, which depends on the accuracy of the corre-
spondence algorithm C. Say that the scene point that projects
to pi in a view project to pk after the camera is translated s
units along the baseline (see Figure 1(b)). As for visibility, we
define a preference function η for depth resolution over s:

ηi(s) =

{
1 if Acc(Cik) > ε
0 otherwise . (4)

where Acc(Cik) is the accuracy of the operator for the given
pixels and ε is an arbitrarily chosen threshold. In this paper, we
use a constant value ∆p = Acc(Cik). See parameter selection
in Section 5 for details.

Combining visibility and depth resolution: Clearly
depth resolution is better when we use a wide separation
distance between views. However, the larger the separation,
the more likely that the scene point is occluded at the new
location. We perform the trade-off between these two factors
by multiplying the two, per pixel, which results in a density
γi over s, a direct measure of view-location preference for pi.
Accumulating this preference over all pixels yields

γ(s) =
∑
pi∈I

γi(s) =
∑
pi∈I

ρi(s) ηi(s). (5)
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Fig. 2. Resulting depth maps computed after several iterations with k = 2. Our sampling strategy (top row) is compared against
the regular sampling (bottom row). The error plots (last column; the lower the better) show the faster convergence of ours towards
lower errors.

3. ONLINE VIEW SAMPLING ALGORITHM

One can use the sampling model developed in the previous
section to design a new acquisition device provided a rough
distribution γ(s) is known a priori. Otherwise, our model can
guide the acquisition process that best suits the particular scene
scanned and the depth reconstruction method used. This sec-
tion details our adaptive view-sampling algorithm and dis-
cusses implementation details.

Initial step: We assume a depth reconstruction method
that takes a set of images and produces per-view depth maps,
and k ≥ 2 images that are captured at arbitrary locations
s1, . . . , sk. Using the given depth reconstruction method, we
first compute initial k depth maps, which we use to estimate
γ(s). With the known initial sampling locations si, a set of
each estimated local distribution γi(s) is summed up to form
a single global distribution:

γ(s) =

k∑
i

γi(s+ si). (6)

In principle, the local maxima of γ(s) can serve as the next
sampling locations. Instead of being directly used for view
sampling, however, they are all put into the queue which prior-
itizes the candidates for next steps.

Iterations: At each iteration, at most k sampling locations
with the highest priority are dequeued. They indicate the loca-
tions where the largest number of pixels fulfill both sampling
criteria, and thus where new images should be taken. Upon
acquisition of the new images, only those new ones are used
to estimate γ(s). One can expect better estimation of γ(s),
when including all images, due to the improved depth compu-
tation. However, we found this additional depth accuracy does
not bring much advantage in practice, and our book-keeping
scheme described shortly handles missing or redundant part of
estimated γ(s) properly. After obtaining the new distribution
covering the new sampling locations, again the local maxima
are identified and pushed into the queue. These steps are re-
peated until either a termination criterion is met or the queue
becomes empty.

Termination: At each end of iteration, a depth map is
computed from all images captured thus far. The algorithm

stops when the improvement achieved by the last iteration
becomes negligible. If the depth computation is expensive and
should be minimized, a more practical criterion is to stop when
the target number of sampling locations are achieved. After
the last iteration, all the images captured so far are used for the
final depth reconstruction.

Priority queue for sampling locations: The priority
queue maintains the sampling location candidates as tuples
(s, w), i.e., for an si, the queue also stores its associated
frequency in the distribution, wi = γ(si). Whenever a new
tuple is being pushed, the queue first checks if the location
s has been already seen before by looking up the directory
χ(s): if it is marked so, the tuple is discarded. If at least one
new tuple is added, the queue re-arranges its tuples in the
descending order of wi. Then, for each location si from the
highest to the lowest priority, the queue contracts all tuples
(sj , wj) within some distance ζ from si, forming a new tuple

(s?, w?) =
(∑ sjwj∑

wj
, max{wj}

)
, ∀(sj , wj)

∣∣ |sj−si| < ζ.

(7)
When dequeued, the location s of the tuple is marked in

the directory χ(s) which records the sampling locations de-
queued so far and thus prevents duplicate sampling locations
from being used again. In our implementation this directory
is discretized at the resolution of ζ. The dequeued sampling
location s is quantized to the nearest meaningful value if re-
quired. For the captured test datasets we set both ζ and the
quantization resolution to the step between adjacent images.

4. EXPERIMENTAL RESULTS

We tested our analysis and the online algorithm with the light
field depth reconstruction method of Kim et al. [8]. For the
computer-generated dataset, we rendered images on demand at
the exact sampling locations calculated by our algorithm. The
ground truth depth was obtained by an extra depth rendering
pass. Two real-world datasets are captured using a consumer
digital camera. We captured video clips while the camera
moves on a linear path at a constant speed.

Figure 2 shows the resulting depth maps of one of the two
real-world datasets over 4 iterations with k = 2. The depth



Fig. 3. Quantitative comparisons between
our sampling strategy (blue curves) and the
regular sampling (green curves) using real-
world (left) and synthetic (right) datasets.
Two strategies are compared against the
ground truth or the best possible depth using
three error metrics. 0 3 6 9

0

0.5

1

 

 

NRMSE (Ours)
NRMSE (Reg.)
Ratio of bad pix. (Ours)
Ratio of bad pix. (Reg.)
DSSIM (Ours)
DSSIM (Reg.)

Center view

Best depth

Center view

Ground truth
0 3 6 9

0

0.5

1

 

 

NRMSE (Ours)
NRMSE (Reg.)
Ratio of bad pix. (Ours)
Ratio of bad pix. (Reg.)
DSSIM (Ours)
DSSIM (Reg.)

Iterations

Er
ro

r

Iterations

Er
ro

r

maps are computed using increasing number of views whose
locations are incrementally determined by our adaptive sam-
pling algorithm. It is compared against the regular sampling,
where the same number of consecutive images centered around
the reference view. The two plots show the relative error with
respect to the best depth map we obtained using the dataset.

Figure 3 shows the errors of the computed depth map
against the ground truth (or the best possible) depth map. As in
Figure 2 we computed depth maps using our sampling strategy
and the regular sampling with the same number of images at
each iteration. We used three error metrics: the normalized
root-mean-squared errors (NRMSE); the ratio of bad pixels
whose estimates are different from the truth greater than 5%
tolerance; and the structural dissimilarity (DSSIM) that is
derived from the structural similarity (SSIM) [26] and defined
as (1− SSIM)/2. For all metrics, the lower the better.

5. DISCUSSIONS AND CONCLUSION

Our approach has three properties that will allow for general-
ization: (1) it considers the statistics of the very scene being
captured; (2) it is targeted for the particular depth reconstruc-
tion algorithm being used; (3) more constraints (preference
functions) may be included for view sampling, besides occlu-
sion and depth resolution (more terms in equation (5)).

Parameter selection: All the results in this paper were
generated using the same constant ∆p that is set to be one
sensor pixel size in world units. We included the parameter in
the theory to accommodate various types of correspondence
matching algorithms. In principle, ∆p must be selected using
the appropriate accuracy function Acc(Cik) in (4) of the par-
ticular correspondence algorithm. The second parameter to
the algorithm is k, the number of view locations generated at
each iteration. We also kept this parameter constant at k = 2
for all experiments. We observed, however, that the algorithm
converged faster with higher k. In principle, the selection of k
depends on the distribution γ(s) itself. Selecting an optimal k
at each iteration is an open problem for future work.

Seeding: Since our algorithm is online, it requires an ap-
proximate depth map to seed the process of view sampling.
Theoretically, using a constant function as the seed depth map
is sufficient. i.e the algorithm can be seen as having a dummy
iteration at the start. In practice, we use the depth from the
adjacent k images at center as for the uniform sampling.

Interactive online acquisition: We observed that our al-
gorithm is not sensitive to the spatial resolutions of the in-
termediate depth. That is, we may use downsampled coarse
depth maps (with ∆p scaled appropriately) for the estimation
of the γ(s) distribution and use the highest resolution depth
maps only for the final depth computation. This can provide
significant speed-up when the depth reconstruction algorithm
turns out to be the bottleneck for performance.

Limitations and future work: In general, many recon-
struction methods assume Lambertian surfaces and do not
properly deal with glossy or specular surfaces. Thus, for such
methods, it is desirable to avoid the sampling locations where
significant amount of view-dependent effects are observed.
To this end, the interval analysis may incorporate the level of
inconsistency along the angular axis and guide the sampling
locations against problematic areas. Our current algorithm is
based on known depth, which in some cases, one may not as-
sume to be viable possibly due to the time and other constraints.
In such cases, it would be useful to have some approximate
estimation of the sampling distribution. This might be boot-
strapped by other types of information, such as monocular
depth cues or annotated images. Although we exemplified
light fields with a linear camera alignment, the theory does not
assume, nor is limited to, such configuration. It would be fruit-
ful to extend the algorithm for 2D camera configurations and
even more interesting scenarios such as circular or spherical
light fields, or large-scale aerial captures.
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