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Figure 1: Our method reconstructs accurate depth from light fields of complex scenes. The images on the left show a 2D slice of a 3D input
light field, a so called epipolar-plane image (EPI), and two out of one hundred 21 megapixel images that were used to construct the light field.
Our method computes 3D depth information for all visible scene points, illustrated by the depth EPI on the right. From this representation,
individual depth maps or segmentation masks for any of the input views can be extracted as well as other representations like 3D point clouds.
The horizontal red lines connect corresponding scanlines in the images with their respective position in the EPI.

Abstract

This paper describes a method for scene reconstruction of complex,
detailed environments from 3D light fields. Densely sampled light
fields in the order of 109 light rays allow us to capture the real
world in unparalleled detail, but efficiently processing this amount
of data to generate an equally detailed reconstruction represents a
significant challenge to existing algorithms. We propose an algorithm
that leverages coherence in massive light fields by breaking with
a number of established practices in image-based reconstruction.
Our algorithm first computes reliable depth estimates specifically
around object boundaries instead of interior regions, by operating on
individual light rays instead of image patches. More homogeneous
interior regions are then processed in a fine-to-coarse procedure
rather than the standard coarse-to-fine approaches. At no point in
our method is any form of global optimization performed. This
allows our algorithm to retain precise object contours while still
ensuring smooth reconstructions in less detailed areas. While the
core reconstruction method handles general unstructured input, we
also introduce a sparse representation and a propagation scheme
for reliable depth estimates which make our algorithm particularly
effective for 3D input, enabling fast and memory efficient processing
of “Gigaray light fields” on a standard GPU. We show dense 3D
reconstructions of highly detailed scenes, enabling applications such
as automatic segmentation and image-based rendering, and provide
an extensive evaluation and comparison to existing image-based
reconstruction techniques.
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1 Introduction

Scene reconstruction in the form of depth maps, 3D point clouds or
meshes has become increasingly important for digitizing, visualizing,
and archiving the real world, in the movie and game industry as well
as in architecture, archaeology, arts, and many other areas. For
example, in movie production considerable efforts are invested to
create accurate models of the movie sets for post-production tasks
such as segmentation, or integrating computer-generated and real-
world content. Often, 3D models are obtained using laser scanning.
However, because the sets are generally highly detailed, meticulously
designed, and cluttered environments, a single laser scan suffers from
a considerable amount of missing data at occlusions [Yu et al. 2001].
It is not uncommon that the manual clean-up of hundreds of merged
laser scans by artists takes several days before the model can be used
in production.

Compared to laser scanning, an attractive property of passive, image-
based stereo techniques is their ability to create a 3D representation
solely from photographs and to easily capture the scene from differ-
ent viewing positions to alleviate occlusion issues. Unfortunately,
despite decades of continuous research efforts, the majority of stereo
algorithms seem not well suited for today’s challenging applications,
e.g., in movie production [Sylwan 2010], to efficiently cope with
higher and higher resolution images1 while at the same time produc-
ing sufficiently accurate and reliable reconstructions. For specific
objects like human faces stereo-based techniques have matured and
achieve very high reconstruction quality (e.g., [Beeler et al. 2010]),

1Digital cinema and broadcasting are in the process of transitioning from
2k to 4k resolution (∼2 megapixels to ∼9 megapixels)
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but more general environments such as the detailed outdoor scene
shown in Figure 1 remain challenging for any existing scanning
approach.

In this paper we follow a different strategy and revisit the concept
of 3D light fields, i.e., a dense set of photographs captured along a
linear path. In contrast to sparser and less structured input images,
a perfectly regular, densely sampled 3D light field exhibits a very
specific internal structure: every captured scene point corresponds
to a linear trace in a so called epipolar-plane image (EPI), where the
slope of the trace reflects the scene point’s distance to the cameras
(see Figure 1). The basic insight to leverage these structures for
scene reconstruction was proposed as early as 1987 [Bolles et al.
1987], and has been revisited repeatedly since then (see, e.g., [Cri-
minisi et al. 2005]). However, these methods do not achieve the
reconstruction quality of today’s highly optimized two or multi-view
stereo reconstruction techniques.

With today’s camera hardware it has become possible to capture
truly dense 3D light fields. For example, for the results shown in Fig-
ure 1 we captured one hundred 21 megapixel (MP) images with
a standard DSLR camera, effectively resulting in a two “Gigaray”
light field. While such data can capture an unparalleled amount of
detail of a scene, it also poses a new challenge. Over many years the
basic building blocks in stereo reconstruction such as patch-based
correlation, edge detection and feature matching have been tailored
towards optimal performance at about 1–2 MP resolution. In addi-
tion, most algorithms involve some form of global optimization in
order to obtain sufficiently smooth results. As a consequence, it is
often challenging to scale such approaches to significantly higher
image resolution.

In this paper we propose an algorithm that specifically leverages the
properties of densely sampled, high resolution 3D light fields for
reconstruction of static scenes. Unlike approaches based on patch-
correlation our algorithm operates at the single pixel level, resulting
in precise contours at depth discontinuities. Smooth, homogeneous
image regions are handled by a hierarchical approach. However,
instead of a standard coarse-to-fine estimation, we reverse this pro-
cess and propose a fine-to-coarse algorithm that reconstructs reliable
depth estimates at the highest resolution level first, and then proceeds
to lower resolutions, avoiding the need for any kind of explicit global
regularization. At any time the algorithm operates only on a small
set of adjacent EPIs, enabling efficient GPU implementation even
on light fields in the order of 109 rays. We further increase efficiency
by propagating reliable depth estimates throughout the whole light
field using a novel sparse data structure, such that the algorithm ef-
fectively computes depth maps for all input images concurrently. We
demonstrate dense reconstructions of challenging, highly detailed
scenes and compare to a variety of related stereo-based approaches.
We also present direct applications to segmentation and novel-view
synthesis, discuss practical issues when capturing high resolution
3D light fields, and discuss how our reconstruction algorithm gener-
alizes to 4D light fields and unstructured input.

2 Related Work

Light field capture, representation, and depth estimation are closely
connected and related to areas such as (multi-view) stereo. In this
section we give an overview of the most related previous work.

Light field acquisition and representation. Light fields can be
captured in various ways. Most setups rely on a controlled acquisi-
tion, e.g., using camera gantries [Levoy and Hanrahan 1996], camera
arrays [Wilburn et al. 2005], lenslet arrays [Ng et al. 2005], or coded
aperture techniques [Veeraraghavan et al. 2007] but unstructured ac-
quisition like hand-held capture have also been considered [Gortler
et al. 1996; Davis et al. 2012].

A significant challenge is that the captured set of images is very
data-intensive and also redundant. Thus, already the seminal papers
discussed compact representations and compression schemes. Levoy
and Hanrahan [1996] propose several representations for 4D light
fields and apply a lossy vector quantization followed by entropy
coding. Gortler et al. [1996] applied standard image compression
like JPEG to some of the views, and also point out the importance
of depth information for more accurate view prediction and ren-
dering. Isaksen et al. [2000] describe how an approximate depth
proxy may compensate sparse angular sampling, with a focus on
rendering photographic effects like varying depth-of-field. Simi-
larly, Wanner et al. [2011] use a rough depth map to render light
fields from a lenslet array camera. Chai et al. [2000] investigated
the plenoptic sampling problem to determine the minimal number
of views needed to perfectly reconstruct a light field. Solutions for
efficient capture and rendering of unstructured light fields have been
presented in [Zhu et al. 1999; Buehler et al. 2001; Rav-Acha et al.
2004; Davis et al. 2012]. Criminisi et al. [2005] investigated the
segmentation of epipolar-plane images (EPIs) in 3D light fields into
tubes representing layers of different objects. Storing colors and
depth for each tube then gives a more compact representation of
the light field. They also propose a method for detecting and re-
moving specular highlights, but no solution for compactly storing
this view-dependent information. Surface light fields [Wood et al.
2000; Chen et al. 2002] are an attractive solution to capture view-
dependent effects, but they require accurate 3D geometry obtained
by active scanning techniques. One component of our contribution is
a sparse light field representation (Section 3) that differs from those
previous approaches, fully reproduces the input light field including
view dependent surface reflectance, and tightly integrates with our
algorithm for depth estimation.

Depth reconstruction from light fields. One of the first ap-
proaches to extract depth from a dense sequence of images is the
seminal work of Bolles et al. [1987]. To our knowledge their tech-
nique is the first attempt to utilize the specific linear structures
emerging in a densely sampled 3D light field for depth computa-
tion. However, the employed basic line fitting is not robust enough
for a dense reconstruction of real world scenarios with occlusions,
varying illumination, etc. and the reconstructions shown are sparse
and noisy. The majority of methods adopt techniques from classi-
cal stereo reconstruction, i.e., matching corresponding pixels in all
images of the light field using essentially robust patch-based block
matching [Zhang and Chen 2004; Vaish et al. 2006; Bishop et al.
2009; Georgiev and Lumsdaine 2010]. Along similar lines, Fitzgib-
bon et al. [2005] and Basha et al. [2012] describe robust clustering
techniques to identify matching pixels. Ziegler et al. [2007] pro-
pose to analyze the Fourier spectra of EPIs sheared according to a
hypothesized depth. As we demonstrate in our comparisons, such
approaches often do not scale well to high resolution light fields in
terms of reconstruction quality and computational efficiency.

In order to achieve higher overall coherence, various methods es-
timate depth as the minimizer of a global energy functional where
smoothness assumptions can be enforced; see for example [Adelson
and Wang 1992; Stich et al. 2006; Liang et al. 2008; Bishop and
Favaro 2010]. Notably, the recent energy-based approach of Wanner
and Goldluecke [2012] gives high quality depth maps from 4D light
fields. But as for any global optimization method this comes at a very
high computational cost. For example, the authors of the latter work
report 10 minutes per single view depth map at 1 MP resolution.
The direct application of such approaches to higher spatio-angular
resolutions seems impractical. A second difficulty with approaches
based on global optimization is to tune the underlying smoothness
assumptions to preserve precise depth discontinuities at object con-
tours, which are of highest importance in practice [Sylwan 2010].
Fine details are often lost due to the involved coarse-to-fine multi-



scale algorithms. Our fine-to-coarse approach is particularly suited
for such applications as it reconstructs precise depth estimates at
the single pixel level, without the need for explicit global regular-
ization. Along similar lines one can extract depth from a light field
using depth-from-focus techniques. However, those methods face
challenges similar to standard stereo approaches such as inaccu-
racies at silhouettes, but also have limitations due to the aperture
size [Schechner and Kiryati 2000].

To illustrate the novel challenges arising from high resolution,
densely captured light fields, we compare our results to some of
currently best performing two and multi-view stereo algorithms
(for an overview please refer to the evaluations of Scharstein et
al. [2002] and Seitz et al. [2006]). Despite considerable progress in
this area [Kolmogorov and Zabih 2001; Hirschmüller 2005; Rhe-
mann et al. 2011] with only two input views available one has to rely
on some form of global smoothness. To alleviate over-smoothing of
discontinuities, one can operate on larger image segments [Zitnick
et al. 2004; Zitnick and Kang 2007], but this may lead to over-
segmentation artifacts in the depth maps at textured image regions.
Also, with only a few views available, explicit detection and han-
dling of occlusions is often required [Humayun et al. 2011; Ayvaci
et al. 2012], which further increases the computational load. An
alternative is to only match a few reliable pixels [Čech and Šára
2007], and to densify the result later by spreading the sparse esti-
mates [Sun et al. 2011]. However, existing approaches for sparse
sample propagation generally require a global energy minimization
[Geiger et al. 2010], or are prone to artifacts as shown in [Szeliski
and Scharstein 2002]. Multi-view stereo techniques consider a larger
number of images, spanning from tens [Seitz and Dyer 1999; Kang
and Szeliski 2004; Zitnick et al. 2004; Vu et al. 2009; Beeler et al.
2010; Furukawa and Ponce 2010] to several thousands [Snavely
et al. 2008; Furukawa et al. 2010] to compute a more complete
scene representation rather than single depth maps. However, these
methods often provide either accurate but still sparse, or dense but
comparably smooth geometry and often do not scale well to very
high resolution images. The coverage of the reconstructed scene
with our method is higher than that of two-view stereo techniques,
but lower than full 3D models generated with multi-view stereo.
However, in contrast to the previously discussed techniques our al-
gorithm produces a dense scene reconstruction with precise contours
that is readily available for various applications such as novel view
synthesis, depth-based segmentation, and other image-based appli-
cations. Some methods [Goldlücke and Magnor 2003; Bleyer et al.
2011] jointly estimate depth and segmentation, but these again rely
on costly global optimization.

3 Sparse Representation

Light fields are typically constructed from a large set of images of
a scene, captured at different viewing positions. A suitable repre-
sentation of such data depends on a plethora of factors, including
for example structured vs. unstructured capture of light fields, the
targeted processing algorithms and applications, or just the sheer
amount of data. Accordingly various representations have been pro-
posed in the past [Levoy and Hanrahan 1996; Gortler et al. 1996;
Isaksen et al. 2000; Buehler et al. 2001; Davis et al. 2012]. Our main
focus in this paper is on 3D light fields of very high spatio-angular
resolution, i.e., light fields constructed from hundreds of high res-
olution 2D images with their respective optical centers distributed
along a 1D line. We introduce a novel compact representation that
enables efficient parallel processing without the need to keep the full
input light field in memory, and that can be efficiently constructed
during our depth estimation described in Section 4.

A 3D light field with radiance values captured in RGB color space
can be denoted as a map L : R3 → R3. The radiance r ∈ R3 of
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Figure 2: Illustration of our sparse representation, using a cropped
section from the EPI in Figure 1. The red line marks the central input
view. (a) Concerning completeness, consider the region shaded in
green on the right. It is occluded by the white structure and thus
propagating color values from the central view only would not re-
construct the highlighted region. View-dependent variation, e.g., due
to reflections in the building windows, is highlighted in the blue
framed region. We increased color contrast in the inset for improved
visibility of the color changes. Again, a reconstruction solely from
the central view would not capture these effects. (b) 3D visualization
of EPI Ê reconstructed from our sparse representation Γ. (c) Visual-
ization of the difference between the input EPI and our reconstructed
EPI Ê.

a light ray is given as r = L(u, v, s), where s describes the 1D
ray origin and (u, v) represent the 2D ray direction. In terms of the
above mentioned capture setup, s can be interpreted as the different
camera positions distributed along a 1D line, and (u, v) are the
pixel coordinates in a corresponding image Is(u, v). For a concise
exposition in the paper we assume regular, uniform sampling of
u, v, and s, i.e., the optical centers are uniformly spaced and all
captured images are rectified, so that the epipolar lines of a scene
point coincide with the same horizontal scanline in all images. We
provide details how to practically achieve this in Section 5.1.

While for given s a u-v-slice of this light field corresponds to input
image Is, a u-s-slice for a fixed v coordinate corresponds to a so
called epipolar-plane image, or EPI [Bolles et al. 1987], which
intuitively is simply a stack of the same row v taken from all input
images. The left half of Figure 1 shows two out of 100 input images
and an exemplary EPI. The horizontal red lines visualize both the
respective s-parameters of the two input images in the EPI as well
as the v-parameter in the input images from which the EPI has been
constructed. Similar to above we denote an EPI as Ev : R2 → R3,
with radiance r = Ev(u, s) of a ray at position (u, s). In analogy
to image-pixels, we will use the term EPI-pixel (u, s) instead of
the term ray at (u, s) for disambiguation. Most of our following
discussion considers individual EPIs with parameter v fixed as our
algorithm operates mostly on individual EPIs. Hence we will omit
the subscript v for notational simplicity.

When the ray space of L is sampled densely enough, each scene
point appears as a line segment in such an EPI with the slope of
the line segment depending on the scene point’s depth. Correspond-
ingly, the EPIs of 3D light fields exhibit high coherence and contain



very redundant information that can be utilized for a more efficient
representation. Rather than storing the full EPI, we can in principle
reconstruct it by knowing the parameters of those line segments. As
discussed in the related work section, this basic idea is well known.
However, we propose a new representation that specifically con-
siders two new aspects, namely completeness and variation of the
represented light field.

Assume we can accurately estimate the slope of line segments or,
equivalently, the depth of scene points. A first idea could be to sim-
ply collect and store the line segments and their color along a single
horizontal line of an EPI. In principle this corresponds to storing a
single input image and a depth map. A large number of captured
light rays may be occluded in this particular part of the EPI, hence
completeness of the representation would be compromised. In addi-
tion, scene points may change their color along their corresponding
line segment due to specularities or other view dependent effects.
Hence the above representation would not capture variation in the
light field. See Figure 2 (a) for a visualization of both effects.

Our strategy for representing 3D light field data addresses these two
issues. Firstly, we sample and store a set Γ of line segments originat-
ing at various locations in the input EPI E, until the whole EPI is
completely represented and redundancy is eliminated to the extent
possible. Secondly, we store a difference EPI ∆E that accounts for
variations in the light field. More specifically, the slope m of a line
segment associated with a scene point at distance z is given by

m =
1

d
=

z

f b
, (1)

where d is the image space disparity defined for a pair of images
captured at adjacent positions or, equivalently, the displacement be-
tween two adjacent horizontal lines in an EPI, f is the camera focal
length in pixels and b is the metric distance between each adjacent
pair of imaging positions. Correspondingly an EPI line segment can
be compactly described by a tuple l = (m,u, s, r>), where r is the
average color of the scene point in the EPI. Γ is simply the set of all
tuples l. The actual scheme of how we select line segments l is part
of the depth computation described in the following section. In Fig-
ure 2 (a), the red line represents the first and largest set of tuples that
we will reconstruct. To ensure completeness, our representation will
also store additional tuples inside the occluded regions highlighted
in green.

From Γ, a reconstructed EPI Ê can be generated by rendering the
lines segments in the order of decreasing slopes, i.e., render the scene
points from back to front. See Figure 2 (b) for a 3D visualization of
the full representation Γ. Hence, for efficient EPI reconstruction, Γ
is stored as ordered list of tuples in the order of decreasing slopes.
The difference ∆E = E − Ê of the input E and the reconstruction
Ê captures the remaining variation and detail information in the
light field, such as view dependent effects. This is illustrated in
Figure 2 (c), where a grey color corresponds to zero reconstruction
error. Note a high value of ∆E for the specularities and at inaccurate
slope estimates.

Both Γ and ∆E compactly store all relevant information that is
necessary to reconstruct the full 3D light field as well as extract
an arbitrary input image with a corresponding depth map, or a full
3D point cloud. As an example, for the EPI in Figure 2, ∼277K
EPI-pixels are reduced to ∼15K tuples (about 5.7%). Plain storage
of the full tuple information without any further compression already
results in a reduction to 21% compared to the RGB EPI. As discussed
above various alternatives exist to store a coherent light field. A main
benefit of our representation is its consistency with our algorithm for
depth computation, enabling compact representation and efficient
parallel computation as described in the next section.

4 Depth Estimation

Constructing Γ amounts to computing the line slopes at the EPI-
pixels, i.e., estimating the depth of scene points. As mentioned before
the ray coherence of a dense 3D light field allows our algorithm to
operate on individual EPI-pixels instead of having to consider larger
pixel-neighborhoods like most stereo approaches. As a consequence
it performs especially well at depth discontinuities and reproduces
precise object silhouettes due to the color contrast in these regions.
This property is key to our fine-to-coarse depth estimation strategy:
we estimate depth first at edges in the EPI at the highest resolution,
propagate this information throughout the EPI, and then proceed to
successively coarser EPI resolutions. In contrast to classic coarse-to-
fine schemes, this allows us to preserve sharp depth discontinuities
at object silhouettes, while also estimating accurate depth in homo-
geneous regions. Additionally, our strategy increases computational
efficiency by restricting computations to small fractions of the high
resolution input.

4.1 Overview

Starting at the full resolution of an EPI E, the first step consists of
efficiently identifying regions where the depth estimation is expected
to perform well. To this end we introduce a fast edge confidence
measure Ce that is computed on the EPI. The algorithm then gener-
ates depth estimates for EPI-pixels with a high edge confidence. This
is done by testing various discrete depth hypotheses d and picking
the one that leads to the highest color density of sampled EPI-pixels.
The density estimation is further leveraged to improve the initial
confidence towards a refined depth confidence Cd, which provides
a good indicator for the reliability of a particular depth estimate.
All EPI-pixels with a high reliability are stored as tuples in Γ and
propagated throughout the EPI. This process of depth estimation
and propagation is iterated until all EPI-pixels with a high edge
confidence Ce have been processed.

At this point all confident, i.e., sufficiently detailed regions at the
current resolution level of the EPI E have a reliable depth value
assigned, while the depth in more homogeneous regions is yet
unknown. Our fine-to-coarse approach then downsamples E to a
coarser resolution and starts over with the above procedure, com-
puting edge confidence for yet unprocessed parts of the EPI and so
forth. This procedure is continued until a depth value is assigned
to every EPI-pixel, i.e., the line segment tuples in Γ reconstruct the
complete light field.

4.2 Edge Confidence

As the edge confidence measure Ce is intended to be a fast test for
which parts of the EPI a depth estimate seems promising, we define
it as a simple difference measure

Ce(u, s) =
∑

u′∈N (u,s)

‖E(u, s)− E(u′, s)‖2, (2)

whereN (u, s) is a 1D window in the EPI E around the pixel (u, s).
The size of this neighborhood can be small (9 pixels in our experi-
ments) as it is supposed to measure only the local color variation.

Ce is then thresholded (with a value of 0.02), resulting in a binary
confidence mask Me, visualized as red pixels in Figure 5 (c)–(e). In
order to remove spurious isolated regions, we apply a morphological
opening operator to the mask. During the following depth compu-
tation this binary mask will be used to prevent the computation of
depth estimates at ambiguous EPI-pixels and hence speed up the
computation without sacrificing accuracy.
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Figure 3: At high image resolutions silhouette pixels result in a clear
peak with a distinctive score profile whereas homogeneous regions
lead to more flat and ambiguous scores. On coarser resolutions
the scores in homogeneous regions become more distinct, which
motivates our fine-to-coarse estimation.

4.3 Depth Computation

Next our algorithm computes depth estimates for EPI-pixels in E
marked as confident in Me. For simpler parallelization on a GPU
we perform this computation per scanline in the EPI, i.e., we select a
fixed parameter ŝ and compute a depth estimate for all E(u, ŝ) with
Me(u, ŝ) = 1. As discussed in Section 3, initially we select ŝ as the
horizontal centerline of E, as this generally allows us to compute a
large fraction of the line segments visible in the EPI.

Following Equation (1) we try to assign a depth z, or equivalently a
disparity d, to each EPI-pixel (u, ŝ). For a hypothetical disparity d
the setR of radiances or colors of these EPI-pixels is sampled as

R(u, d) = {E(u+(ŝ− s)d, s) | s = 1, ..., n}, (3)

where n corresponds to the number of views in the light field. From
the density of radiance values in R(u, d) a depth score S(u, d) is
computed in linearized RGB color space. The assumption here is
that the scene is essentially Lambertian, i.e., a set R is likely to
represent an actual scene point if the radiance samples are densely
positioned in the underlying color space. Due to the high number of
available samples in a dense light field our measure is very robust to
outliers and hence implicitly handles occlusions. As we show in our
results it is even robust to inconsistencies such as moving elements.

We compute the density efficiently using iterations of a modified
Parzen window estimation [Duda et al. 1995] with an Epanechnikov
kernel, and define the initial depth score as

S(u, d) =
1

|R(u, d)|
∑

r∈R(u,d)

K (r− r̄) , (4)

where r̄ = E(u, ŝ) is the radiance value at the currently processed
EPI-pixel, and the kernel K(x) = 1− ‖x/h‖2 if ‖x/h‖ ≤ 1 and
0 otherwise. The bandwidth parameter was set to h= 0.02 in our
experiments. Gaussian or other bell-shaped kernels also work well,
but the chosen kernel is cheaper to compute. For a rather noise-free
EPI this initial depth score is sufficient. To reduce the influence of
noisy radiance measurements we borrow ideas from the mean-shift
algorithm [Comaniciu and Meer 2002] by computing an iteratively
updated radiance mean

r̄←
∑

r∈RK(r− r̄)r∑
r∈RK(r− r̄)

(5)

before computing Equation (4). Regarding the efficiency of this ap-
proach it is important to note that a full mean-shift clustering process
or even just running the above mean-shift steps to convergence is
counter-productive, as it significantly increases the computational
complexity, in particular on a GPU due to the required branching and
possibly different control flow. The main purpose, i.e., robustness to

(a) No median (b) Standard median (c) Bilateral median

Figure 4: Our proposed bilateral median filter removes speckles,
while preserving fine details like the thin vertical string in the middle.

noise, is achieved already after a few iterations, hence the algorithm
performs a constant number of 10 iterations for all results shown in
the paper.

For each EPI-pixel (u, ŝ) we compute scores S(u, d) for the whole
range of admissible disparities d, and assign the disparity with the
highest score as the pixel’s depth estimate

D(u, ŝ) = arg max
d

S(u, d). (6)

In addition we also compute the refined confidence Cd as a mea-
sure for the reliability of a depth estimate. Cd combines the edge
confidence Ce with the difference between the maximum score
Smax = maxd S(u, d) and the average score S̄ =

∑
d S(u, d)

Cd(u, ŝ) = Ce(u, ŝ)‖Smax − S̄‖ (7)

The refined confidence measure Cd is meaningful as it combines
two complementary measures. For instance, noisy regions of an EPI
would result in a high edge-confidence Ce, while a clear maximum
Smax is not available. Similarly, ambiguous homogenous regions
in an EPI, where Ce is low, can produce a strong, but insufficiently
unique Smax; see Figure 3.

In order to eliminate the influence of outliers that might have sur-
vived the density estimation process, we apply a median filter on
the computed depths. However, we observed that a straightforward
median filter compromises the precise localization of silhouettes. We
therefore use a bilateral median filter that preserves the localization
of depth discontinuities by leveraging information from the radiance
values of nearby EPIs. This is implemented by replacing the depth
estimate Dv(u, ŝ) by the median value of the set

{Dv′(u′, ŝ) | (u′, v′, ŝ) ∈ N (u, v, ŝ),

‖Ev(u, ŝ)− Ev′(u′, ŝ)‖ < ε,

Me(u′, v′, ŝ) = 1}, (8)

where (u′, v′, ŝ) ∈ N (u, v, ŝ) denotes a small window over Iŝ. The
second condition assures that we only consider EPI-pixels of similar
radiance and the last condition masks out unconfident EPI-pixels for
which no depth estimation is available. In all our experiments we
use a window size of 11×11 and a threshold value ε = 0.1. Corre-
spondingly, we always store at most 11 EPIs during computation.
The effect of this filtering step is illustrated in Figure 4.

4.4 Depth Propagation

Each confident depth estimate D(u, ŝ) with Cd(u, ŝ) > ε is now
stored as a line segment tuple l = (m,u, ŝ, r̄>) in Γ (see Equa-
tion (1)), where r̄ represents the mean radiance of (u, ŝ) com-
puted in Equation (5). Then the depth estimate is propagated along
the slope of its corresponding EPI line segment to all EPI-pixels
(u′, s′) that have a radiance similar to the mean radiance, i.e.,
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Figure 5: Our fine-to-coarse refinement yields reliable depth estimates also in homogeneous image regions, like the bricks. This is achieved by
applying our confidence measure to detect unreliable pixels (marked in red) and estimate their depth at coarser image resolutions with the
depth range bounded by estimates on the higher resolutions.

‖E(u′, s′) − r̄‖ < ε with ε having the same value as in Equa-
tion (8). This step is a conservative visibility estimate and ensures
that foreground objects in the EPI are not overwritten by background
objects during the propagation.

As an alternative to the above test of radiance similarities, we ex-
perimented with running the full mean shift clustering on the set
R(u, d) and propagating the depth estimate directly to the cluster
elements, but we found that our simplified density estimation and
the above procedure provide similar results at a fraction of the time.

Finally, low confidence depth estimates are discarded and marked
for re-computation, and all EPI-pixels with a depth estimate assigned
during the propagation are masked from further computations. A
new part of the EPI is selected for depth computation by setting ŝ
to the nearest s with respect to the center of the EPI that still has
unprocessed pixels. The method then starts over with the radiance
sampling and depth computation as described in Section 4.3, until
all edge confident EPI-pixels at the current EPI resolution have been
either processed or masked during by the propagation.

4.5 Fine-to-Coarse Refinement

Parts of the EPI without assigned depth values are either ambiguous
due to homogeneous colors (insufficient edge confidence), or have a
strongly view dependent appearance (insufficient depth-confidence).
However, since our method starts processing at the highest available
resolution, the set Γ provides reliable reconstructions of all detailed
features in the EPI and, in particular, of object silhouettes. The core
idea of our fine-to-coarse strategy is now to compute depth in less
detailed and less reliable regions by exploiting the regularizing effect
of an iterative downsampling of the EPI. Furthermore, we enhance
robustness and speed up the computation by using the previously
computed confident depth estimates as depth interval bounds for the
depth estimation at coarser resolutions. See Figure 5 for an example
of our refinement strategy and note the improvement from subfigure
(b) to (f) at the bricks.

First the depth bounds are set for all EPI-pixels without a depth
estimate. As depth bounds, the algorithm uses the upper and lower
bounds of the closest reliable depth estimates in each horizontal
row of the EPI. Then the EPIs are downsampled by a factor of 0.5
along the spatial u and v-dimensions, while the resolution along
the angular s-dimension is preserved. We presmooth the EPIs along
the spatial dimensions using a 7×7 Gaussian filter with standard
deviation σ=

√
0.5 to avoid aliasing. The required 7 EPIs are already

in memory from the bilateral median filtering step (Equation (8)).

The algorithm then starts over at the new, coarser resolution with the
previously described steps, i.e., edge confidence estimation, depth
estimation and propagation. EPI-pixels with reliable depth estimates
computed at higher resolutions are not considered anymore but only
used for deriving the above described depth bounds. This fine-to-

coarse procedure is iterated through all levels of the EPI pyramid
until any of the image dimensions becomes less then 10 pixels. At the
coarsest level, depth estimates are assigned to all pixels regardless
of the confidence measurements. The depth estimates at coarser
resolution levels are then successively upsampled to the respective
higher resolution levels and assigned to the corresponding higher
resolution EPI-pixels without a depth estimate, until all EPI-pixels
at the finest resolution level have a corresponding depth estimate.
As a final step we apply a 3×3 median to remove spurious speckles.

Note that unlike other algorithms based on multi-resolution process-
ing and global regularization, our fine-to-coarse procedure (similar
in spirit to the push-pull algorithm [Gortler et al. 1996]) starts at the
highest resolution level and hence preserves all details, which is gen-
erally very challenging in classical, coarse-to-fine multi-resolution
approaches. Our downsampling achieves an implicit regularization
for less reliable depth estimates so that all processing steps are
purely local at the EPI-level. Hence, even massive light fields can be
processed efficiently.

5 Experimental Evaluation

This section briefly presents our setup for capturing 3D light fields
and its calibration. We then show results and evaluations of our
method, including comparisons to various state-of-the-art techniques
in (multi-view) stereo. We also demonstrate exemplary applications
such as segmentation and image-based rendering. Finally, we discuss
how to generalize the algorithm for handling 4D light fields and
unstructured input. The input light fields, our reconstructions, and
additional results are available on our project webpage.

5.1 Capture Setup and Calibration

Setup. We captured 3D light fields by mounting a consumer DSLR
camera on a motorized linear stage. The camera was a Canon EOS
5D Mark II with a 50 mm lens with which we captured images
at various resolutions up to 21 MP. The linear stage was a Zaber
T-LST1500D that is 1.5 meter long and can be controlled from a
computer to obtain an accurate spacing of camera positions. We
captured 100 images of each scene with uniform spacing between
the camera positions and used them for reconstruction. The spacing
between camera positions ranges from 2 mm to 15 mm.

The described setup worked well in practice for capturing high
spatio-angular resolution light fields: it is cheaper and easier to
handle than a full array of cameras, while yielding much higher
spatial and angular resolutions than single light field cameras based
on lenslet arrays or coded aperture. A typical capture session takes
about 2 minutes, because for every picture we first move the camera,
stop, take the picture, and move again to avoid motion blur during
capture and to achieve higher image resolution. With a continuously
moving setup the time could be reduced to a few seconds.



Mansion Church Bikes Couch Statue

Figure 6: Results on various 3D light fields. Top to bottom: One input image, corresponding depth map, and close-up of the highlighted region.
For the Church we used color-based segmentation to exclude the homogeneous sky as no meaningful depth can be computed there.

Figure 7: Shaded 3D mesh, generated by triangulating individual
depth maps and merging them into a single model. Color encodes
depth. More 3D meshes are shown in our supplementary material.

Calibration. To closely approximate a regularly sampled 3D light
field we first correct the captured images for lens distortion using
PTLens2, and then compensate for mechanical inaccuracies of the
motorized linear stage. To this end we estimate the camera poses
using Voodoo camera tracker3, compute the least orthogonal distance
line from all camera centers as a baseline, and then rectify all images
with respect to this baseline [Fusiello et al. 2000].

5.2 Results

Using above setup we captured a variety of 3D light fields of chal-
lenging outdoor and indoor scenes. In Figure 6 we show example
input images and corresponding depth maps. However, our algorithm
computes depth for every scene point that is visible in the input im-
ages. Hence, from our internal representation we can efficiently
extract depth maps for each input view, as well as generate alterna-
tive scene representations like 3D point clouds. Figure 7 additionally
shows a 3D mesh extracted from our reconstructions. Although
we usually achieve a lower accuracy in terms of absolute distance

2http://www.epaperpress.com/ptlens/
3http://www.digilab.uni-hannover.de/docs/manual.html
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Figure 8: Robustness of our method. (a) Reconstruction error and
runtimes for varying numbers of input views. (b) Reconstruction
from only 10 views. (c) Our method is also robust to inconsistencies
and outliers in the data, e.g., people walking by (horizontal lines) or
moving plants (jagged green lines, see also plants in Figure 1).

compared to a laser scanner, our method faithfully reproduces fine
details of complex, cluttered scenes, with precise reconstruction of
object contours, performing well on homogeneous regions at the
same time. These properties are highly desirable in applications
such as segmentation (Figure 12) or novel view synthesis with only
moderate viewpoint changes (Figure 13).

Robustness and performance. Figure 8 (a) and (b) demonstrate
the robustness of our algorithm for different numbers of input views.
We ran our experiments on a desktop PC with an Intel iCore 7
3.2 GHz CPU and an NVidia GTX 680 graphics card, and tested a set
of 256 depth hypotheses for every EPI-pixel in all experiments. As a
baseline solution, we computed a result from 100 input views at the
full 21 MP resolution and evaluated the error using normalized sum-
of-absolute differences (SAD). While our algorithm benefits from a
large number of input views, reasonable results can still be achieved



(a) Input (b) Graph Cut (c) CostVolume Filter (d) Dense seed&grow (e) Semi-global match (f) ours
[∼1 day on 1 MP] [∼1 day on 1 MP] [10 mins] [4 mins on 4 MP] [50 mins at 21MP]

Figure 9: Comparison to two-view stereo methods on the Mansion data set. From left to right: (a) One input image, (b) [Kolmogorov and
Zabih 2001], (c) [Rhemann et al. 2011], (d) [Geiger et al. 2010], (e) [Hirschmüller 2005] . The numbers in brackets denote the running time
for 50 views in the light field, but are measured with different implementations (C/Matlab) and processor types (CPU/GPU).

with only 10 input views (see Figure 8 (b)). A typical runtime for
a single depth map using 100 views at 21 MP resolution is about
9 minutes. With our current implementation, the full propagation
to 50 views takes about 50 minutes. The linear dependence of the
runtimes on the number of images is illustrated in Figure 8 (a). For
example, for 10 views a single depth map requires about 1 minute.

Our method is robust against varying baseline and angular separa-
tions caused by different distances between the camera positions
and the scene points. For the results shown in Figure 6 the angular
separations range from 1.5◦ up to 13◦. The example in Figure 15
captured with a hand-held camera features a considerable angular
separation from 9◦ to 41◦ as well as a large baseline of about 300
meters. In addition our algorithm is robust to non-static scene ele-
ments like people moving in front of the camera or plants moving
in the wind (Figure 8 (c)). For instance, the sparse horizontal color
artifacts visible in the input EPI in Figure 1 are caused by people
passing by during capture. The density estimation in Equation (4)
simply regards those radiance values as outliers and still produces a
consistent result from the remaining samples.

The influence of the two most relevant parameters in our method,
the kernel bandwidth h and the color tolerance ε of the bilateral
median, is conceptually similar to adjusting the window size in stereo
methods comparing image patches. An increase of h and ε compared
to our default values increases robustness to noise, whereas smaller
values better preserve fine details.

Comparison to (multi-view) stereo. We processed the Mansion
data set with a number of state-of-the-art techniques in two-view and
multi-view stereo, and also ran our algorithm on a number of stan-
dard benchmark datasets. However, please note that most of these
algorithms have been designed with different application scenarios
in mind. Hence these comparisons are meant to illustrate the novel
challenges for the field of image-based reconstruction arising from
the ability to capture increasingly dense and higher resolution input
images. For each method we hand-optimized parameters and the
camera separation of the input images for best reconstruction quality.
Comparing the results in Figure 9 and focusing on the closeups,
issues of existing methods with such highly detailed scenes become
obvious. The popular graph cuts [Kolmogorov and Zabih 2001]
as well as the more recent cost volume filtering approach [Rhe-
mann et al. 2011] are time and memory intensive and could not
process resolutions higher than 1 MP. Both methods reconstruct
sharp boundaries, but they are not well localized due to the low reso-
lution. Homogeneous image regions are problematic as well. Good

(a) Furukawa and (b) Beeler et al. [2010] (c) 123D Catch
Ponce [2010] [20 mins on 10 MP] [5 mins on 10 MP]

[6 mins on 10 MP]

Figure 10: Comparison to multi-view stereo methods.

Figure 11: Result on the flower garden sequence with 50 images.
Left: One input image with 0.08 MP resolution. Right: Our depth
map. The computation time was 3 seconds.

performances in terms of memory and runtime are achieved by the
dense seed-and-grow approach of Geiger et al. [2010] and by semi-
global matching [Hirschmüller 2005] (as implemented in OpenCV).
However, these methods show problems in homogeneous regions
and around object contours as well (see black pixels). Leveraging
the huge amount of data in a corresponding light field of the scene,
our fine-to-coarse procedure reconstructs detailed, well-localized
silhouettes and plausible depth estimates in homogeneous regions at
reasonable run times.

In Figure 10 we show results of recent multi-view stereo methods.
For comparison to our result in Figure 9 (f) we show a 3D rendering
of the point clouds which is colored in accordance to depth and
selected a similar closeup region as before. The method of Furukawa



Figure 12: Closeups of depth-based segmentations of the Mansion
data set. Note the high level of detail and that foreground and back-
ground would be very difficult to distinguish solely based on color.

and Ponce [2010] leverages information from 50 views of the light
field. We also compare against the method of [Beeler et al. 2010] that
was originally developed for high quality face reconstruction and that
uses 8 input images. As it is optimized for faces, its core assumptions
regarding smoothness and surface continuity are violated, hence the
authors processed our dataset running only the initial multi-view
matching part of their pipeline. Overall both approaches achieve
good reconstructions, but lack details around contours and miss
some homogeneous regions in comparison to our method. We also
show a result produced using the commercial tool Autodesk 123D
Catch4 that to our knowledge is based on the work of Vu et al. [2009].
The application could process 10 images and produced a very smooth
result that, however, lacks any detail.

We also ran our method on classic stereo data that has been used in
the stereo community for benchmarking. These datasets differ sig-
nificantly from the fundamental assumptions behind our algorithm
as they encompass a relatively small number of low resolution input
images. In Figure 11 we show our result on the flower garden se-
quence5 (50 images, 0.08 MP). On this small spatial resolution, our
method takes about 3 seconds to compute a depth map with quite
accurate silhouettes. However, due to missing texture in the sky,
artifacts in the top left corner arise. In our supplementary material
we show additional comparisons on classic stereo data [Szeliski and
Scharstein 2002; Zitnick et al. 2004]. For this low spatio-angular
resolution data (5–8 images, ≤ 0.8 MP) the quality degrades tan-
gibly as our method has been specifically designed to operate on
the pixel level by leveraging highly coherent data. In such scenarios,
methods employing comparisons of whole image patches and global
regularization are advantageous.

5.3 Applications

Scene reconstruction finds a number of immediate uses in applica-
tions related to computer graphics besides generating a 3D model of
a scene. In the following we illustrate how the output of our method
can be directly used for applications such as automatic image seg-
mentation as well as image-based rendering.

Segmentation. Despite being a common task in movie production,
automatic segmentation like background removal is still a challenge
in detailed scenes. Due to the precise object contours in our recon-
structions we can use our method for automatically creating high
quality segmentations. For the shown results we simply thresholded
all pixels within a prescribed depth interval. Using our depth this
approach is not only easy to implement, but also supports real-time
updates to the segmentation even on the high resolution images. In
Figure 12 we show results on the Mansion data set. We wish to stress
that such results would be very difficult to obtain using classical

4http://www.123dapp.com/catch
5http://persci.mit.edu/demos/jwang/garden-layer/orig-seq.html

Figure 13: Examples for novel view-synthesis by rendering a col-
ored point cloud. The leftmost image is from the set of input images.

color-based or manual segmentation due to the extreme detail in
this scene and the partially similar colors between foreground and
background.

Image-based rendering. Another benefit of our method is that we
get consistent depth estimates for any input view of the light field,
i.e., we compute as complete a scene reconstruction as possible from
the available input data. Thus, we can directly visualize our results
as a colored 3D point cloud using splat-based rendering , with the
ability to look around occluding objects (see Figure 13). Moreover,
we can use the delta EPI representation to reproduce view dependent
effects during rendering, e.g., using a weighting scheme as proposed
in [Buehler et al. 2001].

5.4 Extension to 4D and Unstructured Light Fields

It is straightforward to generalize our reconstruction algorithm to
inputs that do not correspond to a regularly sampled 3D light field.

4D light fields. In a regular 4D light field the camera centers are
horizontally and vertically displaced, leading to a 4D parametrization
of rays as r = L(u, v, s, t), where t denotes the vertical ray origin.
The ray sampling from Equation (3) is then extended to

R(u, v, s, t, d) = {L(u+(ŝ− s) d, v+(t̂− t) d, s, t)
| s = 1, ..., n, t = 1, ...,m}, (9)

where (ŝ, t̂) is the considered view and m denotes the number of
vertical viewing positions. This leads to sampling a 2D plane in a
4D ray space instead of the 1D line in case of 3D light fields. The
depth propagation also takes place along both the s and t-directions.

(a) Image (b) GCL [15 min] (c) Ours [1 min]

Figure 14: Comparison of globally consistent labeling (GCL) [Wan-
ner and Goldlücke 2012] (b) to our result (c) on a 4D light field.

A result for a 4D light field from the Stanford database6 is shown in
Figure 14 where we also provide a visual comparison to the 4D light
field depth estimation method by [Wanner and Goldlücke 2012].
While they achieve already appealing results, our method resolves
additional details, e.g., on the wheels and the small holes in the
Lego bricks. They report a timing of 15 minutes, whereas ours takes
64 seconds. More results on 4D light fields including quantitative
ground truth comparisons are given in our supplementary material.

6http://lightfield.stanford.edu/lfs.html



Unstructured light fields. For arbitrary, unstructured input we
loose the efficiency of the EPI-based processing, but the recon-
struction quality remains. In this scenario we use the camera poses
estimated in the calibration phase (Section 5.1) to determine the
set of sampled rays for a depth hypothesis. More precisely, we
back-project each considered pixel to 3D space in accordance to
the hypothesized depth and then re-project the 3D position to the
image coordinate systems of all other views to obtain the sampling
positions. Formally, the set of sampled rays becomes

R(u, v, s, d) = {L(u′, v′, s) | s = 1, ..., n,

P−1
s [u′ v′ f d]>= P−1

ŝ [u v f d]>}, (10)

where Ps denotes the camera rotation and translation of view s
(estimated in the calibration phase) and f is the camera focal length
in pixels.

In Figure 15 we show an example for a challenging hand-held cap-
ture scenario. The input images have been taken on a boat in front of
the skyline of Shanghai, with considerable variation in orientation
of the camera and of the colors within the scene. We segmented the
sky and the water surface. To assess the quality of our reconstruction
we also show a bird’s-eye view overlaid on a satellite image of this
area. Please see also the supplemental video for the input sequence
and animated novel viewpoint renderings. Computing depth took
162s per view at 3 MP spatial resolution using 100 images. For such
unstructured input we observed an increase in running time of about
50% compared to structured 3D input.

6 Limitations and Future Work

We presented a method for scene reconstruction from densely sam-
pled 3D light fields. A limitation of our method are surfaces with
spatially varying reflectance, as they violate the assumptions behind
the radiance density estimation. This is for example apparent in the
reconstruction of the metallic car surface on the bottom left in the
Statue dataset, Figure 6. This dataset also contains comparably large
homogeneous areas in the background, leading to slightly noisy
depth estimates in these regions. In some cases, however, like for the
windows in the Mansion dataset, the combination of our confidence
measures and the fine-to-coarse approach succeeds in plausibly fill-
ing even such difficult regions. However, a more principled approach
would of course be desirable, e.g., following Criminisi et al. [2005].
In future work we plan to combine our ray density estimation with
more sophisticated reflectance models. Low contrast between fore-
ground and background objects over the whole light field may also
lead to problems, as witnessed on some parts of the cables in the
Church sequence in Figure 6. Finally, while our reconstructions fea-
ture precise contours and are very complete as they produce a depth
estimate for every input ray, we achieve lower accuracy in terms of
absolute distance measurements than a laser scanner. To improve
accuracy, investigating a continuous refinement of our discrete depth
labels also seems promising.

While the reconstruction of static scenes already has a number of
applications, extending our method to temporally varying light fields
of dynamic scenes, e.g., using an array of high resolution cameras,
provides many interesting new opportunities and challenges. We
believe that such very high resolution data may require a rethinking
of existing algorithm designs, e.g., using global optimization.
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Figure 15: Results on a challenging unstructured light field, ob-
tained by hand-held capture (a) from a floating boat. (b) A resulting
depth map. (c) Overlay of our reconstruction on a satellite image
c©2013 DigitalGlobe, Google. (d) Rendering from a novel viewpoint.
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