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Abstract

Reflections can obstruct content during video capture

and hence their removal is desirable. Current removal tech-

niques are designed for still images, extracting only one re-

flection (foreground) and one background layer from the in-

put. When extended to videos, unpleasant artifacts such as

temporal flickering and incomplete separation are gener-

ated. We present a technique for video reflection removal

by jointly solving for motion and separation. The novelty of

our work is in our optimization formulation as well as the

motion initialization strategy. We present a novel spatio-

temporal optimization that takes n frames as input and di-

rectly estimates 2n frames as output, n for each layer. We

aim to fully utilize spatio-temporal information in our ob-

jective terms. Our motion initialization is based on iterative

frame-to-frame alignment instead of the direct alignment

used by current approaches. We compare against advanced

video extensions of the state of the art, and we significantly

reduce temporal flickering and improve separation. In ad-

dition, we reduce image blur and recover moving objects

more accurately. We validate our approach through subjec-

tive and objective evaluations on real and controlled data.

1. Introduction

The popularity of digital videography is driven by the

continuous rise of mobile imaging, whether being an expen-

sive stand-alone camera or a commodity camera embedded

in a phone. Such devices are usually coupled with com-

putational photography software to enhance the quality of

photographs beyond the physical and hardware limitations

[1]. One situation where such enhancement is desirable is

in reflection handling. Reflections can obstruct the original

scene (see Fig. 1), and hence their removal can be desirable.

Optics-driven separation techniques use polarized filters.

This, however, requires careful manual tweaking, generates
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incomplete removal and dims the overall illumination. A

number of computational separation approaches are pro-

posed. However, all are developed to extract one reflec-

tion and one background image for the entire input. Some

techniques take a single still image as input [14, 13, 20],

some take image pairs [18, 29] and others take a sequence

of images [27, 28, 19, 22, 10]. Techniques using sequence

of images exploit the observation that separation can be

generated through temporal filtering. This requires stabi-

lizing the examined layer beforehand. This category of

techniques commonly solves jointly for motion and layers

[27, 22, 19, 28, 6].

No current technique is designed to extract videos from

the input. Current approaches for doing so is to warp the

single-image results through time [28]. This, however, lacks

any moving object and often looks artificial. An alterna-

tive approach is applying separation techniques frame by

frame followed by temporal filtering. This, however, pro-

duces strong temporal flickering and incomplete removal.

It also blurs moving objects.

We present a technique for video reflection removal. The

novelty of our work lies in both our optimization function as

well as the motion initialization strategy. Our optimization

takes n frames as input and directly estimates 2n frames

as output, n for each layer. We aim to fully utilize spatio-

temporal information in our optimization terms (see Tab. 1).

Motions are initialized through iterative frame-to-frame in-

stead of direct alignment used in state of the art. Here, we

use a combination of feature tracks and edge-flow. This im-

proves separation quality. Our approach is iterative, contin-

uously refining separation and motion. Comparing against

advanced video extensions of the state of the art [28, 29],

our technique significantly reduces temporal flickering and

improves the quality of reflection removal (see Fig. 1). It

also reduces blurring of moving objects.

2. State of the Art

A mixed image I is modeled as a linear combination of

the original background B and the foreground reflection F

: I = αB + βF , where (α, β) are mixing parameters. A
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Figure 1. Video reflection removal with different techniques. The reflection is in the form of a bright pattern (see green). The first row zooms

in on the spatio-temporal red slice area and concatenates it through time. The current removal techniques are designed for still-images.

Extending them to videos produces strong temporal flickering and poor separation (see red slices and blue region). Our approach, however,

generates temporally coherent results with more complete removal. We used our more advanced alignment strategy for all methods.

number of techniques have been proposed for separating I

into B and F [27, 28, 22, 29, 18, 20, 13, 15]. Since it is

a severely ill-posed problem, more constraints are required.

Levin et al. [14, 13] observed that high frequency spatial

components such as edges and corners are sparse. The sep-

aration of reflection is generated by maximizing the spar-

sity of such features in the estimated layers. Their tech-

nique, however, requires tense manual identification of the

high frequency components. Shih et al. [20] handles only

reflections containing repetitive ghosting, common in thick

glasses. Another class of techniques requires two mixtures

of B and F under two different mixing proportions (α1, β1)
and (α2, β2) [18, 2, 8]. Sarel et al. [18] minimize the gray-

scale correlation between the underlying layers through it-

erative information exchange. Farid et al. [8] use indepen-

dent component analysis (ICA) to achieve the separation.

Similarly, Bronstein et al. [2] use ICA but on a sparse rep-

resentation such as edges and corners.

Motion is a commonly used cue for reflection separation

[27, 22, 19, 28, 10, 15, 9]. B and F are aligned in time

and separation is achieved by temporal filtering. Alignment

is done through direct frame-to-frame matching. Solution

is refined iteratively by solving for separation and motion

[27, 22, 19, 28, 10]. Szeliski et al. [22] recover B and F

through a minimum and maximum temporal filtering. Weiss

et al. [27] recover a single intrinsic image (B) through a

temporal median operator. Sarel et al. [19] assume repet-

itive F motion and exploit that for stabilization. F is then

separated through Weiss et al.’s [27] temporal filtering. Li

et al. [15] build on Levin et al.’s [13] single-image decom-

position and removes manual interaction by exploiting mo-

tion information. SIFT-flow [17] is used to directly warp all

frames over a reference. Edge labeling is found using per

pixel spatio-temporal variation. Here, stable gradients are

treated as background. Levin et al. [13] is applied for each

frame and the final background is taken as the minimum of

all separated backgrounds. Both Guo et al. [10] and Gai et

al. [9] take multiple frames as input but produce one frame

Xue et Yang et Ours

al. [28] al. [29]

Image compositing ✓ ✓ ✓

Temporal layer redundancy ✗ ✓ ✓

Layer prior ✓ ✗ ✓

Iterative alignment ✗ ✗ ✓

Table 1. Objective terms and alignment strategy of different tech-

niques. We aim to fully utilize spatio-temporal information.

as output. Their technique is based on global parametric

motion modeling and does not handle local movements.

Xue et al. [28] and Yang et al. [29] are the latest related

techniques. Yang et al. focus on optical flow estimation

between two frames while Xue et al. focus on layer separa-

tion. Yang et al. initialize solution using Li et al. [15] and

optimize for layer temporal redundancy, image composit-

ing, intensity and motion smoothness. Their optimization

does not have a layer prior term. Xue et al.’s use edge-flow

to generate two homographies, one for each layer. A dense

motion field is computed for both layers, followed by a tem-

poral stabilization. The background is initialized through

Szeliski et al.’s [22] minimum temporal filtering and the

foreground is taken as the residual. Xue et al. optimization

has an image compositing term and an intensity smoothness

term. However, unlike Yang et al., they have a layer prior

term. This improves separation quality. Tab. 1 summarizes

the different objective terms used by different techniques.

Others addressed reflections in different context. Kopf et

al. [11] and Sinha et al. [21] propose techniques for image-

based rendering of reflections. Tsin et al. [23] addressed

stereo matching for reflections. Elgharib et al. [5, 7] detects

reflections in videos. Lang et al. [12] extends still image

techniques to video. Their technique, however, can not han-

dle the two layer assumption of reflections.

3. Our Approach

A mixed video is modeled as a linear combination of the

background B and the reflection F using It = Bt + Ft.



Figure 2. Algorithm overview. We estimate and segment motions

into two clusters. We assume background have the most features.

The video is warped over one background layer and reflection re-

moved through temporal minimum filtering. Video is generated by

warping the background and reflection is taken as the remaining

component. Layers are refined through our spatio-temporal opti-

mization (Eq. 2) followed by optical flow for motion refinement.

The process is repeated for better results.

Here, t denotes the frame number. We assume (α, β) are

temporally constant. Exploiting the observation that video

frames can be warped on another, the compositing equation

becomes

It = WF
t,ρ · Fρ +WB

t,ρ ·Bρ (1)

WF
t,ρ is the F motion field from frame ρ to t. We solve for Ft

and Bt and their motion field WF
t,ρ and WB

t,ρ. Our approach

directly estimates n B and n F frames. This imposes tem-

poral coherency and maintains image sharpness. We use

feature tracks and an iterative edge-flow matching for ini-

tialization. Our technique is iterative, where each iteration

refines motion and reflection removal.

3.1. Objective Function

Our objective function is composed of three terms

E = λdEd + λlEl + λsEs. (2)

Ed is the data term to ensure the recovered layers satisfy

the image compositing model and that they can be warped

from other points in time (Eq. 1). El is a layer prior defining

to which layer each edge of the input I belongs to. Es is

spatial smoothness, while (λd, λl, λs) are hyper-parameters

to configure the importance of each term. They are fixed to

(2, 2, 1) in all experiments.

The data term minimize the difference between a layer at

time t and its warped version from time ρ through E′

d(ρ) =
∑N

t=1

(

‖Bt −WB
t,ρ ·Bρ‖1 + ‖Ft −WF

t,ρ · Fρ‖1
)

. Here,

‖.‖1 is the L1-norm. N is the total number of frames of

the examined sequence. Instead of biasing the solution

towards a specific reference, we generalize ρ to include

all frames and hence modify the data term to E′′

d (ρ) =
∑N

ρ=1

∑N

t=1

(

‖Bt −WB
t,ρ ·Bρ‖1 + ‖Ft −WF

t,ρ · Fρ‖1
)

.

We substitute the reflection (Ft = It −Bt) and obtain

Ed =

N
∑

ρ=1

N
∑

t=1

(

‖Bt −W
B
t,ρ ·Bρ‖1 + ‖(It −Bt)−W

F
t,ρ · (Iρ −Bρ)‖1

)

.

(3)

The layer prior imposes labeling constraints on the sepa-

rated layers and is defined through Mt. Mt is a binary map

defining to what layer each I pixel belongs to (0 for B). Mt

is estimated by thresholding the alignment errors of the high

frequency components (see Sec. 3.3). Layer estimates are

then constrained by minimizing

El =

N
∑

t=1

(Mt∇It · |∇Bt|+ (1−Mt)∇It · |∇(It −Bt)|) .

(4)

Here, ∇It is estimated by a Canny edge detector and |∇Bt|
is the first order spatial gradient of Bt. Finally, we im-

pose spatial smoothness on the reconstructed layers through

Es =
∑N

t=1
(|∇Bt|+ |∇(It −Bt)|). This is done by min-

imizing the first order spatial gradient.

Fig. 2 shows an overview of our algorithm. Motion are

separated into two clusters. The green and blue dots stick to

F and B respectively. Homography for each layer is esti-

mated and sequence is stabilized over B. Background is ini-

tialized through a minimum temporal filtering and warped

back to the remaining frames. Reflections are taken as the

residual component through F = I − B. Separation is im-

proved by Eq. 2. We iteratively refine our motion and layer

estimates until the convergence is reached.

3.2. Motion Initialization

The first main step in our algorithm is estimating the

warping fields Wt,ρ for each layer (Eq. 3). Given the in-

put sequence I , our aim is to register it over frame t using

either F or B motion

ISt (x, ρ) := I(Wt,ρ(x), ρ), (5)

Here, x denotes 2D pixel co-ordinates. Given a set of points

Xt in frame t and their corresponding Xρ in the reference,

we find Wt,ρ by minimizing ‖Wt,ρ(Xρ)−Xt‖
2
2. Xue et al.

[28] used direct edge-flow matching to define the feature

correspondence. Such direct matching can be erroneous es-

pecially as the gap between t and ρ increases. This gener-

ates temporally incoherent results, which is problematic for

videos. Instead, we propose two different approaches for

motion initialization. We first attempt to use feature point

tracks [25]. If no enough tracks are available then we use

iterative edge-flow matching.

Feature point tracks [25] provide direct correspondence

between frame t and the reference ρ. This makes them at-

tractive for our application. Given that, we estimate Wt,ρ



directly. Edge-flow is effective for capturing weak struc-

tures [17]. We define our warping Wt,ρ as a combination of

two terms: one direct W d
t,ρ and one iterative W i

t,ρ

Wt,ρ = λdW
d
t,ρ + λiW

i
t,ρ, (6)

(λd, λi) are weights to configure the importance of each

term. They are fixed to (λd, λi) = (1, 5) in all experiments.

If tracks are used instead, then we do not need to configure

(λd, λi). The direct warping W d
t,ρ is estimated in a similar

manner to tracks. The iterative warping term, however, is

different.

For a set of points in frame t and their correspon-

dence in the next frame, we match them with one ho-

mography. We impose temporal smoothness on W us-

ing a moving average filter. We use a local window of

5 frames centered on the examined frame t and weighted

by ω ∼ N (0, 4). We use a temporally iterative scheme

to estimate W between the examined frame t and the ref-

erence ρ. First, we generate an estimate of W for each

pair of consecutive frames. For instance, if ρ > t we

estimate Wt+1,t,Wt+2,t+1,Wt+3,t+2, .....Wρ,ρ−1. Hence,

the direct transformation from t to ρ becomes Wt,ρ =
∏u=ρ−1

u=t Wu+1,u. For ρ < t, we do the same process but in

the opposite time direction.

3.3. Separation Initialization and Refinement

We group frame correspondences into two segments us-

ing k-means clustering, and fit one homography for each.

The background is stabilized and separated using minimum

temporal filtering. We warp the initial background to all

frames and estimate the corresponding N reflections. Layer

labeling mask Mt of Eq. 4 is estimated only once by thresh-

olding the background alignment errors. If background,

Mt = 0, otherwise Mt = 1. Layers are refined through

Eq. 2. Here, we use Iterative Reweighted Least Square

(IRLS) for sparse matrices. We use the first motion and

layer estimates to initialize our solver. We update the mo-

tion field through optical flow [16] and refine layers again

using Eq. 2. This process is repeated till convergence. We

usually run Eq. 2 at most twice. Finally, we apply a tempo-

ral moving average filter to reduce flickering. For this we

make sure the mean value of all frames is the same.

The solution of Eq. 2 is expressed in the form of ‖Ay −
C‖ where y is a vector of size M = N × v × h. N is the

total number of frames and (v, h) are the vertical and hori-

zontal resolutions. C is of size 80 × v × h and A is of size

80 × v × h × M . We use IRLS to solve for y. This is a

large system and hence due to computational limitations we

cannot solve all frames at once. Instead, we use a moving

temporal window. We process the video in small chunks of

n frames (see Fig. 3 (a)). For each chunk, n separations are

generated and the final result is taken as the average of these

outputs. Here, from every 15 frames, we selected n = 5

Figure 3. (a) Applying Eq. 2 for all frames at once is computation-

ally intractable. Instead, we process windows of five frames mov-

ing with one frame. This generates five outputs for each frame.

Their average is the final output. (b) A solver conditioned on pre-

vious frame separations generates more artifacts (red).

Figure 4. The impact of the different objective function terms (see

yellow for artifacts). The best results are obtained with all terms.

frames with an equal spacing of 3. This window is cen-

tered on every frame to process all video frames. Fig. 3 (b)

compares a conditional solution against our non-conditional

solution. A ‘Conditional’ solution is constrained by the sep-

aration of previous frames. Fig. 3 (b) shows it generates

temporal flickering (see red box and line).

Tab. 1 compares the main components of our approach

against Xue et al. [28] and Yang et al. [29]. To our best

knowledge, our method is the first method providing the

per-frame layer separation. This is achieved by the dou-

ble summation over all frames in Eq. 3. The absence of

the layer prior from Yang et al. or the temporal layer re-

dundancy from Xue et al. generates flickering, removes

reflection incompletely and blurs local movements. Fig. 4

shows the impact of different objective terms. Removing

any of them generates incomplete separation (see yellow

boxes). Furthermore, we use iterative matching for align-

ment. Fig. 5 shows this generates better separation than the

direct matching of Xue et al. and Yang et al.. Fig. 5 uses

edge-flow for alignment.

4. Results

We have performed experiments on real data and on im-

ages generated in controlled environments. For real se-



Figure 5. Direct alignment can lead to poor separation. Our itera-

tive alignment (Eq. 6), however, generates better results.

quences we assess performance qualitatively. For con-

trolled experiments we also assess performance quantita-

tively against the ground-truth. We processed 12 sequences

two of which are generated under controlled settings. Ad-

vanced video extensions of the state of the art generate an

incomplete separation and strong temporal inconsistencies.

In addition, they blur locally moving objects. Our approach

significantly improves the layer separation and the temporal

coherency and better recovers local motions. Video results

are on https://youtu.be/V87GGFdtDSQ.

Separation Techniques Xue et al. [28] and Yang et al.

[29] are the latest separation techniques. As none of them

is designed for videos, we evaluate our approach against

different implementations, post-scripted ‘+’ and ‘++’. The

former applies the original technique using our moving win-

dow strategy of Fig. 3. We use the same window parame-

ters, 5 frames separated by 3, with 1 frame movement. We

average all separations of every frame to produce the final

result. To reduce flickering, ‘++’ uses a moving temporal

average filter on ‘+’. In all implementations we use our it-

erative alignment strategy instead of the direct alignment of

[28, 29]. This further improves performance (see Fig. 5).

In all comparisons and for all techniques we use the same

parameter values of Eq. 2 and Eq. 6. We also include results

for Gai et al. [9], Li et al. [15] and Guo et al. [10].

4.1. Real Sequences

Fig. 6-11 shows the separation on different sequences

with different techniques. All sequences contain strong re-

flections, a camera motion (angular in Fig. 9) and some

contain local movements (Fig. 10 and Fig. 11). For each

sequence we show two frames and zoom in on a spatio-

temporal slice to show the temporal variations on one im-

age. This visualization is the same one used in [24, 4].

Some sequences are shot outdoor (Fig. 6,8,9,11), others are

shot indoor (Fig. 7) and a few shot in a mobile environment

(moving bus, Fig. 10). Fig. 6 shows a sequence shot by a

person moving from right to left. Xue et al. + generates

poor separation and strong temporal intensity fluctuations

(see yellow spatio-temporal slice). Xue et al. ++ reduces the

temporal fluctuations significantly, yet still generates an in-

complete removal (red boxes). Similar performance is gen-

erated for Yang et al. ++. Our approach, however, removes

the ghosting artifact and generates temporally coherent re-

sults. Fig. 7 shows a sequence shot through a glass window.

Here, a t-shirt and a fan are reflected in the glass window.

Xue et al. + and Xue et al. ++ produces poor separation with

strong temporal inconsistencies (yellow slice). Yang et al.

++ reduces such inconsistencies yet degrades the spatial re-

moval. Our approach enhances both separation and tem-

poral coherency. Fig. 8-9 process two sequences with Xue

et al. ++ and our technique. We produce more temporally

coherent results with better separation.

Fig. 10 shows a challenging sequence shot from a mov-

ing bus. The background is highly dynamic and contains a

bridge, river and moving people, including a cyclist. The

reflection is of the camera man. This is a common scenario

where reflection removal is desirable. For this sequence we

annotate reflection points every 30 frames. We propagate

the labeling through SIFT-flow and outlier regions are taken

as the background. We use this strategy for motion initial-

ization for all techniques. Xue et al. ++ remove reflections,

however, significantly blurs the cyclists. In addition, it blurs

the river and the bridge (red spatio-temporal slice). Yang

et al. ++ generate incomplete separation (green box). Our

approach better removes reflection and generate temporally

coherent results. We also significantly reduce Xue et al.

++’s cyclist blurring.

Fig. 11 shows an example of reflection reconstruction.

Here, the camera man is shooting a glass-covered bill-

board. The street is reflected on the glass. The street con-

tains building, trees and a moving person (see yellow). Xue

et al. generates just one output frame and hence completely

removes the moving person (yellow). Advanced video ex-

tension (Xue et al. +) recovers the person, however, still

blurs him significantly. The improvement, here, is due to us-

ing our moving window strategy which accounts for some

local movements. Similarly, Yang et al. + blurs the per-

son significantly and generates a strong reddish background

bleeding. Our approach outperforms all techniques and re-

covers the moving person with a high accuracy. Using ‘++’

would further blur the person. Fig. 12 processes the input

of Fig. 5 using Gai et al. [9], Li et al. [15] and Guo et al.

[10]. Our removal in Fig. 5 outperforms all techniques.

4.2. Controlled Experiments

We processed two sequences created under controlled

settings. We have the ground-truth of the underlying layers

which allows us to perform subjective and objective evalua-

tion. For objective evaluation we use two classes of metrics;

the first measures the spatial similarity of the reconstructed

https://youtu.be/V87GGFdtDSQ


Figure 6. Reflection removal by different techniques (see Sec. 4, Separation Techniques, for explanation of ‘+’ and ‘++’). Each column

shows two frames and zoom in on the yellow spatio-temporal slice. Xue et al. + generates temporally incoherent results while Xue et al.

++ and Yang et al. ++ have ghosting artifacts (red region). Our approach improves both the removal and temporal coherency (yellow slice).

Figure 7. The reflection removal for a video. Advanced video extensions of state of the art (‘+’ and ‘++’) generate poor separation with

temporal flickering (yellow slice). Our approach generates significantly better separation with temporally coherent results.

Figure 8. The reflection removal by different techniques. Our ap-

proach generates better separation than Xue et al. ++.

layers against the ground-truth while the second assess the

temporal consistency. Spatial similarity is measured using

Normalized Cross Correlation and the Structural Similarity

Index SSIM [26]. Both metrics occupy a range between 0

and 1, where 1 means perfect separation. Both metrics ac-

count for a mean color shift to allow a more robust compari-

Figure 9. Reflection removal by different techniques. Our ap-

proach generates better separation than Xue et al. ++.

son between different techniques. We show the plot over all

frames. To assess temporal coherency, we estimate the Fast

Fourier Transform of the examined sequence and plot the

power spectral density (PSD). We measure the summation

of the high frequency components (larger than 6 Hz) and

show the per frame average in the legend. The more flicker-



Figure 10. Our removal against advanced video extensions of the state of the art (‘+’ and ‘++’). Yang et al. ++ generates incomplete

separation (see green box) while Xue et al. ++ blurs the cyclist, the sea and generate temporally incoherent results (see the red slice). Our

approach significantly reduces temporal flickering, image blurriness and improves separation.

Figure 11. Reflection reconstruction example. We best reconstruct the moving person (yellow) and avoid the red bleeding of Yang et al.+.

Figure 12. Processing the input of Fig. 5 with different techniques.

Our result in Fig. 5 (iterative alignment) generates the best separa-

tion.

ing, the larger this quantity. Here, we are mainly interested

in assessing fluctuations not generated by the original mo-

tion sources, e.g. the camera, objects and so on. Hence, we

remove such motions prior to PSD calculation. The motions

are controlled and therefore known.

The first controlled sequence (Fig. 13) is generated by

synthetically mixing two videos through the image com-

positing equation of Eq. 1. We treat Lena as the foreground

and a picture of buildings as the background. We synthet-

ically add two different global movements for both layers

(-1 and +1 pixels/frame in horizontal direction). We over-

laid a bird on the background and gave it a third different

motion (+2 pixels/frame in horizontal direction). This is to

assess the ability of separation techniques in handling lo-

cally moving objects. We process the generated sequences

using Xue et al. +, Xue et al. ++ and Yang et al. ++. Xue

et al. + and Yang et al. ++ produce poor spatial separation

while Xue et al. ++ produce a more descent one. This is

captured visually and through the NCC and SSIM. In ad-

dition, all techniques have poor temporal consistency. Our

approach generates a temporally coherent good separation.

This is captured by the green spatio-temporal slice and the

PSD. The total high frequency components of both layers

for our approach is 0.0107. This compares favorably with

0.0195 for Xue et al. ++ and 0.0843 for Yang et al. ++. To

assess local movements reconstruction we zoom on the bird

(blue box). Our approach generates a sharper reconstruction

than Xue et al. ++. This improvement is in part due to our

optimization which directly estimates n background outputs

at once. Xue et al. ++ estimates only one background image

for all input frames and hence blur moving objects.

The second controlled sequence (Fig. 14) is generated

by mixing two real objects. The background is a black box

(see yellow region) and the foreground is a big red box with

a small dark one (see red region). Foreground and back-

ground objects are separated by a glass to allow reflection

to occur (purple). Separation techniques require the mixed

sequence to be moving. In addition, the ground-truth back-

ground should undergo the exact camera motion. To achieve

that we use Cinetics CineMoco Dolly and SkateTrack [3].

This allows camera motion to be defined through a con-

troller. It also generated a smooth camera path without

bumps or shakiness. We perform two rounds of shooting

with the same motion settings. The first includes all fore-

ground and background objects to generate the mixed se-

quence. The second is with the background object only to

generate the ground-truth estimate. Our approach produces

better separation over Xue et al. ++ and Yang et al. ++. This

is captured both subjectively and objectively. For our ap-

proach the mean NCC and SSIM is (0.82, 0.82). This com-

pares favorably with Xue et al. ++ (0.77, 0.78) and Yang

et al. ++ (0.81, 0.79). In addition, the total temporal high

frequency components of our reconstructed background is



Figure 13. Evaluating different separation techniques on a controlled synthetic sequence. Here, Lenna is moving to the left while the

background is moving to the right. In addition, the bird (in blue) has a third different motion. Our approach generates the best temporal

coherency and separation. This is captured both subjectively (see spatio-temporal green slice) and objectively through different metrics.

Our temporal PSD is 0.0107 (> 6 Hz). This compares favorably with Xue et al. ++’s 0.0195 and Yang et al. ++’s 0.0843.

Figure 14. Processing a controlled real sequence. The background is shown in yellow and the foreground in red (experimental set-up), with

a reflecting glass in between (purple). We use a camera dolly and SkateTrack to simulate and control motion. This generates the input

sequence. The dolly with the same motion settings is also used to generate the ground-truth background sequence, without the foreground.

Our technique generates the best separation and temporal coherency. This is observed both objectively and subjectively (blue slice). We

measure the temporal PSD of the separated layers and the SSIM against ground-truth. We achieve the least PSD of 0.0128 (> 6 Hz).

0.0128. This compares favorably with 0.0934 for Xue et al.

++ and 0.01752 for Yang et al. ++.

Limitations: Our technique initially uses one homog-

raphy for each layer. This assumption may not valid for

scenes with strong depth variations. Our approach recovers

locally moving objects (bird in Fig. 13, cyclist in Fig. 10).

However, if such motion is too large in the background, it

may not fit in the initial homography and can bleed to the

reflection. Our technique also requires sufficient features in

each layer, undergoing two different global motions. Hence,

similar layers can be handled as long as sufficient features

are detected. Insufficient features leads to inaccurate align-

ment and incomplete removal. We reduced this limitation

through our iterative alignment (Fig. 5). However, it can be

problematic for low contrast reflections. Finally, intensity

saturated regions can bleed in the separation.

5. Conclusion

We presented the first technique for reflection removal

in videos. Current removal approaches are designed for still

images. Our technique takes a video as input and produces

a video through a novel spatio-temporal formulation. Our

objective terms aim to fully utilize spatio-temporal informa-

tion. It also uses a novel iterative alignment strategy. We ex-

amined our approach on a variety of data through subjective

and objective evaluations. This includes real and controlled

data. We compared against advanced video extensions of

the state of the art. Our results show significant reduction in

temporal flickering with more complete removal. We also

reduce image blur and better handle moving objects. Future

work can address highly non-planar layer movements and

temporally varying mixing parameters.
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