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ABSTRACT 

 
Empirical mode decomposition (EMD) developed by Huang 
et al.[1] is a nonlinear data analysis method for non-
stationary real-valued time series. It has been applied 
extensively in many research areas. Recently, several 
generalized EMD methods for complex-valued data analysis 
was proposed [2] [3] .Since a plane closed curve comprises 
many two-dimensional (2D) space data points, one can 
imagine that the boundary points of a plane closed curve as a 
complex data sequence in the complex plane, and make use 
of the newly developed complex EMD (CEMD) to do 
further analysis. We have found that we can use CEMD to 
achieve boundary points  noise-reduction of plane closed 
curves and perform shift-invariant, scale-invariant and 
rotation-invariant pattern recognition. 
 

1. INTRODUCTION 
 
The empirical mode decomposition has been applied in 
numerous fields very popularly, such as cosmological 
analysis in NASA, bio-medical application in Harvard 
University, speaker recognition in FBI, seismic signal proc-
essing in geophysics and many other research areas, since it 
was invented. The main idea of EMD is to perform 
decomposition on data sequence and break it into several 
partitions, so-called Intrinsic Mode Functions (IMFs)    and 
Residual Function (RF) or Trend Function. By inspecting 
the properties of the IMFs and RF, we can gain more insight 
into signal of interest and even use IMFs and RF to do 
further signal processing. However, the original EMD 
method proposed by Huang et al.[1] mainly focused on real-
valued signal and prevents it from being applied in research 
fields where complex-valued signal analysis is demanded. In 
order to deal with the insufficiency of traditional EMD 
method, Tanaka et al.[2] and Gabriel Rilling et al.[3] 
proposed different algorithms respectively that extend the 
computing power of the EMD, making it capable of tackling 
with complex-valued signal. The former method is based on 
the signal decomposition principles of original EMD and 
they use the characteristics of analytical signal in complex 
domain and Hilbert Transform brilliantly to generalize the 
EMD concept. The latter method basically follows the spirits 
of traditional one, but contrary to the original decomposition 

rationale, which is based on the local oscillating 
characteristics of real-valued signal, considering interested 
signal as being composed of 1D fast oscillating signals 
(IMFs) plus 1D slowly oscillating signal (RF), they 
introduced the concept of viewing complex-valued time 
series (2D signal) as rotating motion in the three-
dimensional space as time passes. In other words, we can 
now treat complex-valued signal as 2D fast rotating signals 
(CIMFs) plus 2D slowly rotating signal (CRF).The detailed 
analysis and explanations of underlying principles about 
CEMD were specified in [3], the interested readers may 
refer to it for further informations. The rest of this work is 
organized as follows. Section 2 discusses the application of 
CEMD to generate shift, scale and rotation-invariant shape 
descriptor for plane closed curves, noise-reduction and 
detection of partial changes in these curves. Detailed 
formulations and principles are shown. Simulated and 
experimental results are shown in section 3.Finally, section 4 
concludes this paper. 
 

2. APPLICATIONS OF CEMD AND CIMFS 
 
2.1 Transform plane closed curve into complex sequence 
 
Equipped with the CEMD method mentioned above, one can 
now explore the possibility of its application in areas where 
complex-valued signal is involved. In this work, we mainly 
focus on the application of CIMFs as a shape descriptor for 
plane closed curves which is similar to the fourier descriptor 
[4]. Making use of the CIMFs as shape descriptor of plane 
closed curves acquired through image segmentation 
procedure, we can perform shift, scale and rotation-invariant 
pattern recognition. The plane closed curve comprises many 
boundary points which are 2D grids in Cartesian coordinates, 
and we can denote the coordinates as a complex number. For 
example, a boundary point at Cartesian coordinates (a,b) can 
be viewed as a complex number a+bj in the complex plane. 
Given a segmented plane closed curve, one can transform all 
the Cartesian coordinates of the boundary points into their 
counterparts in complex plane first, and then calculate the 
center of mass of these complex numbers. Secondly, taking 
the farest point from the center of mass as our point of 
departure and connecting all the remaining points 
sequentially, either in clockwise or counterclockwise 
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direction. After putting these boundary points all together, 
we have constructed a complex-valued data sequence which 
is a representation of the original curve. Finally, through the 
process of performing CEMD on this data sequence, 
decomposing it into CIMFs and CRF, we can take these 
partial signals as shape descriptor which is shift, scale and 
rotation-invariant to perform pattern recognition or shape 
matching. And even more, we can also subtract these CIMFs 
from the original data to reduce the data noise of curve 
accompanied by sensing process, or detecting partial 
changes of curve’s shape. 
 
2.2 Noise-reduction 
 
Noise is an annoying artifact which affects the perceptual 
quality and increases the difficulty of pattern recognition of 
the segmented plane closed curves after sensing and 
segmentation process. Although there are many noise 
models available to characterize the noise under different 
environments and conditions, we choose AWGN model to 
demonstrate the noise-reduction capability of the CEMD 
method because it is a very simple yet sufficient model for 
illustration purpose. Hence, we restrict our experiment to the 
AWGN model. That is, we model the noise-corrupted data 
sequence y(n) as the following equation, where x(n) is the 
ideal boundary data sequence of the plane closed curve and 
(n) is AWGN.  

( ) ( ) ( )y n x n nε= + , where 
. . .

2(0, )
i i d

N εε σ                   (1) 

As mentioned previously, CEMD is a kind of signal 
decomposition method which decomposes the original data 
into fast rotating parts (CIMFs) and slowly rotating parts 
(CRF).Since noise varies randomly and changes very rapidly, 
we expect that the fast rotating parts (CIMFs) will capture 
most of the noise movements. By subtracting some of the 
CIMFs from the noise-corrupted data, we can get a more 
pleasing, noise-reduced data sequence for further processing.  
The procedure for noise-reduction appears as  : 
Step 1 Acquire noise-corrupted  data   y(n)  as (1) shows. 
Step 2 Generate the replica  y’(n) of the data  y(n) in step 1. 
Step 3 Concatenate y(n) and y’(n) into a new sequence s(n). 
Step 4 Extract one-cycle data z(n) from two-cycle data s(n). 
Step 5 Perform CEMD on z(n) and generate its CIMFs&RF.  
Step 6 Subtract the first two CIMFs from z(n) to  get  z’(n).  
Step 7 Finally, we obtain  a  noise-reduced  sequence  z’(n). 
The reason of concatenating original sequence and its 
replica and performing CEMD on z(n) is that we could 
avoid boundary effect as Fig.1 shows. Contrary to the 
fourier descriptor based method [4], which is only capable 
of reducing global noise, we have performed another 
experiment that takes use of the mentioned CEMD 
descriptor based   method to reduce the noise of locally  

Figure 1 Avoid boundary effect by extracting z(n) from s(n) 
 
noise-corrupted and simulations and other consideration are 
shown in section 3. 
 
2.3 CIMFs as shape descriptor for pattern recognition  
 
Shift, scale and rotation-invariant properties are the major 
requirements for doing pattern recognition. When the 
interested object is not positioned correctly, the image and 
the following segmented plane closed curves will be shifted. 
The size of the projection of the object in the focal plane 
depends on the distance from the camera to the object. For 
example, as the object approaches the camera, we get a 
bigger projection in the image plane i.e. the object is scaled. 
The difference of tilt angle between the object and the image 
plane will lead to rotation of the segmented plane close 
curves. In order to overcome these problems, we propose a 
simple method that takes CIMFs as shape descriptor. By 
computing cross-correlation function (CCF) between 
segmented object’s CIMFs and database objects’ CIMFs, we 
observe that we can still recognize these objects of interest, 
even if they have been shifted, scaled or rotated. To analyze 
the proposed method, we perform geometric transformations 
(i.e. shift, scaling and rotation) on some selected objects 
from database and then compute the CCF between these 
choosed objects and database ones. The transformation of 
coordinates is characterized  as:  

( , ) {( , )}s t T x y=                        (2) 

or one can use affine transform which has matrix  form  as: 

[ ] [ ] [ ]
11 12

21 22

31 32

0

1 1 1 0

1

t t

s t x y x y t t

t t

= Τ =               (3) 

The coordinate equations and Affine transformation matrix 
T of shift, scaling and rotation are summarized as follows: 
 

1 0 0

0 1 0

1

s

t
s t

s x v
Shift

t y v
v v

= +

= +
 

130



0 0

0 0

0 0 1

s
s

t
t

k
s k x

Scaling k
t k y

=

=
 

cos sin 0
cos sin

sin cos 0
sin cos

0 0 1

s x y
Rotation

t x y

θ θ
θ θ

θ θ
θ θ

= −
−

= +

 

Above matrices for shift, scaling &rotation are from [5][6]. 
The procedure for taking CIMFs as shape descriptor and 
finding object in the database that the shape is closest to 
original one appears as follows: 
Step 1 Acquire the transformed data  y(n)  form  input x(n). 
Step 2 Generate the replica  y’(n) of the data  y(n) in step 1. 
Step 3 Concatenate y(n) and y’(n) into a new sequence s(n). 
Step 4 Extract one-cycle data z(n) from two-cycle data s(n). 
Step 5 Perform CEMD on z(n) and generate its CIMFs&RF. 
Step 6 Compute CCF of CIMF1 between z(n) and database 
object,CIMF1 stands for 1st CIMF and denote CCF as R( ). 
Step 7 Find object j in database that maximizes R(0) (dc 
term of CCF).The CCF is cross-correlation function which is 
defined as :         *( ) { }xy n m nR m E x y

+
=                           (4) 

 
3. EXPERIMENTAL RESULTS 

 
The testing plane closed curves of this work are all from the 
MPEG-7 CE1-part B database which is designed to evaluate 
similarity retrieval.Fig.2 demonstrates six kinds of testing 
shape objects for illustration purpose. 
 

 
                        Figure 2 Testing shape objects. 
 
3.1 Experimental results about noise-reduction 
 
As mentioned in section 2.2, we can subtract CIMFs (e.g. 
the first two CIMFs)from globally noise-corrupted or locally 
noise-corrupted data z(n) which is obtained from plane 
closed curve to produce a noise-reduced version of 
data.Fig.3 shows the simulated results which are generated 
by MATLAB R2008a.The program is also written in 
MATLAB language.Fig.3(a)(d) shows coordinates of 
boundary data points of plane closed curves(as Fig.2 depicts) 
in complex plane  ( horizontal-axis stands for  imaginary-
axis, vertical-axis stands for real-axis, the origins are 
positioned at top left corner of these six sub-figures). 

 
Figure 3 Simulated results of the noise-reduction procedure. 
 
Fig.3 (b) (e) shows noise-corrupted boundary points where 
the left column is globally noise-corrupted version and the 
right column is locally noise-corrupted version. The noise is 
modeled as AWGN and its variance is 3.Finally, Fig.3(c)(f) 
shows noise-reduced data. As one can observe from these 
figures that the noisy disturbances are successfully reduced 
by subtraction process of the first two CIMFs. 
 
3.2 Experimental results on CIMFs as descriptor 
 
We illustrate several examples of using CIMFs as shape 
descriptor. First experiment is about scaling and shift as 
Fig.4 shows.The left column of Fig.4 shows the shape ‘bat-
7’,its 2x scaled version and  CCF between their CIMFs. The 
right column shows the shape ‘bat-7’, its shifted version 
(real-axis:152 pixels imaginary-axis:184 pixels),and CCF 
between their CIMFs. We observe that the CCFs all have 
strong peaks at |R(0)|, indicating  that  the  shapes  are 
similar. The peak under 2x scaled situation is two times 
higher than that under shifted situation, indicating that   the 
energy of scaled version is two times higher than shifted 
version. The left column of Fig.5 depicted the shape ‘bird-
17’,its +60 degrees(counterclockwise) rotated,2x scaled and 
shifted (real-axis:152 pixels imaginary-axis:184 pixels) 
version of data and the CCF between their CIMF1.It is clear 
that there is a strong peak at dc,i.e.|R(0)|, demonstrating high 
correspondence between the object ‘bird-17’and its 
transformed version (after three operations). On  the other  
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Figure 4 CIMFs as shape descriptor (scale and shift) 

 
Figure 5 CIMFs as shape descriptor (rotation, scale & shift) 

hand, by inspecting the right column of Fig.5,we observe 
that the CCF between two different shapes (‘bird-17’ and 
‘apple-9’) does not have a peak at |R(0)| or at remaining lag 
indices ‘m’. According to the discussions in the above 
paragraph, we can take CIMFs as a simple shape descriptor 
by computing CCF between first CIMFs of different shapes 
and compare the value at |R(0)| to classify these different 
shapes. Finally, CIMFs may also be used to detect partial 
changes of curve’s shape. As Fig.6 depicts, the first row 
shows boundary points of the shape object ‘bug’.  The   right 

 
Figure 6 Use CIMFs to detect partial changes 

plot is almost equivalent to the left one except one of the 
bug’s legs is stretched. The second row shows the difference 
between their first CIMFs. The right column is zoomed 
version of the left one. We observe that there are peaks at 
the beginning and ending positions of the stretched part and 
differences are almost zero at other positions, indicating that 
we may use CIMFs to detect small partial changes between 
almost the same curves. The execution time that is necessary 
to generate above descriptors is about 5 secs (CPU:Intel I7-
920 quad core,RAM:3GB DDR3 1333MHz). 
 

4. CONCLUSION 
 

Several applications of CEMD about noise-reduction,  shift, 
scale and rotation-invariant shape description of plane 
closed curves and detection of their shape’s partial changes 
have been introduced. The experimental results about these 
applications are also demonstrated. 
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