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Abstract

In this paper, we investigate a closed-loop auditory model
and explore its potential as a feature representation for speech
recognition. The closed-loop representation consists of an
auditory-based, efferent-inspired feedback mechanism that reg-
ulates the operating point of a filter bank, thus enabling it to
dynamically adapt to changing background noise. With dy-
namic adaptation, the closed-loop representation demonstrates
an ability to compensate for the effects of noise on speech, and
generates a consistent feature representation for speech when
contaminated by different kinds of noises. Our preliminary ex-
perimental results indicate that the efferent-inspired feedback
mechanism enables the closed-loop auditory model to consis-
tently improve word recognition accuracies, when compared
with an open-loop representation, for mismatched training and
test noise conditions in a connected digit recognition task.
Index Terms: efferent, auditory model, feature extraction

1. Introduction

Despite continuous progress in automatic speech recognition
(ASR), the human ability to understand speech in the presence
of noise is still considerably superior to current ASR technol-
ogy, especially when the noise has not been previously seen, or
in the case of dynamic noises [1]. There is considerable body
of prior and ongoing research to develop statistical methods to
compensate or adapt to new noise conditions [3, 4, 5, 6]. Much
of this work incorporates well-known spectral representations
such as Mel-frequency cepstral coefficients (MFCCs) or per-
ceptual linear prediction (PLP) [7, 8]. However, it is also worth-
while to consider novel spectral representations as well. For
example, as scientists learn more about the role of medial olivo-
cochlear (MOC) efferent system in the human auditory system,
it is reasonable to consider their potential use as a feedback
mechanism for ASR [9]. In this paper, we investigate one such
efferent-inspired auditory model, and explore its potential as a
front-end representation for ASR.

Our work was inspired by the mounting evidence of the
possible role of the MOC in the human cochlea [9], and ex-
periments that integrated efferent feedback capabilities into au-
ditory models to predict speech intelligibility in noise [10, 11,
13, 12, 14]. In [10, 11], the authors reported that by including
a phenomenological representation of the MOC efferent path-
way into an auditory model, they were able to match human
confusion patterns for a task of speech discrimination in noise,
and produce robust performance for varying levels of station-
ary additive noise. More recently, in [14], an auditory model,
tuned manually to mimic efferent function, was tested as an
ASR front-end and was shown to improve performance in the
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presence of noise, compared to the auditory model without ef-
ferent activity.

Despite the observed progress in previous studies, the con-
cept of incorporating auditory neural feedback into an ASR
front-end has not been widely considered. For example, the
majority of auditory-based feature extraction algorithms that
have been incorporated into an ASR have been feed-forward, or
open-loop models [7, 8]. This observation motivated us to in-
vestigate the potential of integrating an efferent incorporated au-
ditory model, or closed-loop model, into an ASR front-end, and
measure the ability of the closed-loop model to process speech
in the presence of unseen noise.

In this paper, we modified the efferent-inspired auditory
model in [10, 11] to create a closed-loop feature extraction
method, and we applied it as a front-end for an ASR task.
Previous studies have systematically examined how efferent-
incorporated auditory models improved speech intelligibility
for speech in one particular type of noise with varying levels of
intensities [10, 11, 14]. In this paper, we designed a connected
digit recognition task that incorporated a variety of noises. We
then tested the ability of the closed-loop model to cope with
mismatched training and test noises for a digit recognition task.
The purpose of this experimentation was to further explore the
potential role for incorporating efferent-like feedback into ASR
front-ends. To provide perspective, performance of the closed-
loop feature extraction method was compared to that of the stan-
dard MFCC approach.

2. Nonlinear Closed-loop Auditory Model

For our research, we are using the closed-loop model described
in [10], which was inspired by current evidence about the role
of the efferent system in regulating the operating point of the
cochlea. This regulation results in an auditory nerve (AN) rep-
resentation that is less sensitive to changes in environmental
conditions. In implementing the model, we use a bank of over-
lapping filters as cochlear channels, uniformly distributed along
the equivalent rectangular bandwidth (ERB) scale, which cover
the entire speech band. A block diagram of one closed-loop
cochlear channel is shown in Figure 1. The upper path of the fig-
ure consists of the open-loop components, while the lower path
contains the feedback mechanism. In the following sections, we
describe the open-loop components, the feedback mechanism,
and the feature extraction method used for subsequent recogni-
tion experiments.

2.1. The Open-loop Components

As indicated in the upper path in Figure 1, the open-loop com-
ponents of each channel is comprised of 1) an multi-band path
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Figure 1: The structure of one closed-loop cochlear channel.

non-linear (MBPNL) filter, 2) a generic model of the inner hair
cell (IHC), and 3) a dynamic range window (DRW). The IHC
component consists of a half-wave rectifier followed by a low-
pass filter, representing the reduction of synchrony with center
frequency of the cochlear channel. The DRW component acts
as a hard limiter, with lower and upper bounds, representing
the dynamic range of the simulated IHC response, which also
reflects the observed dynamic range at the AN level.

The MBPNL filter is Goldstein’s model of nonlinear
cochlear mechanics [15]. This model operates in the time do-
main and changes its gain and bandwidth with changes in the
input intensity, in accordance with observed physiological and
psychophysical behavior. An illustration of the changing char-
acteristics of an MBPNL filter is shown in Figure 2, which plots
the frequency response of an MBPNL filter with a center fre-
quency of 1820 Hz and the tip gain setting to 40 dB for differ-
ent input intensities [10, 11]. There are two important nonlin-
ear characteristics of the MBPNL model that should be pointed
out. First, the gain of the filter increases when the input inten-
sity decreases. Second, the bandwidth of the model decreases
as the input intensity decreases. These features are helpful for
reducing the dynamic range of the output signal, and mimic the
behavior of the human cochlea.

2.2. The Feedback Mechanism

In [10], the efferent-inspired feedback mechanism is introduced
by modeling the effect of the medial olivocochlear efferent
path. Morphologically, MOC neurons project to different places
along the cochlear partition in a tonotopic manner, making
synapse connections to the outer hair cells and, hence, affect-
ing the mechanical properties of the cochlea (e.g. increasing
basilar membrane stiffness) [16].

This effect-inspired feedback is realized by introducing a
frequency dependent feedback mechanism which controls the
tip gain, G;, of each MBPNL filter, as shown in Figure 1. The
tip gain of each cochlear channel is adjusted according to the in-
tensity level of the sustained background noise in that frequency
band, as measured at the output of the DRW. Hence, the gain
per frequency channel, G; is slowly changing, following long-
term changes in the noise spectral distribution. To estimate the
gain profile we assume a long enough time-window that is sig-
nal free (i.e. which contains only noise) which can be estimated
from background noise. We pass the noise signal through the
open-loop model with the DRW lower bound fixed. As sug-
gested in [10, 11], we adjust the gain until the average noise
energy is just above the lower bound of DRW by a prescribed
value, ¢, such as 1 dB. More specifically, suppose G; is the gain
for the " filter in the filter bank, and X, is the noise energy
we observe at the output of the i*" channel after the filter is mul-
tiplied with GG;. Let the lower bound of DRW be Y. Then we
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Figure 2: The frequency response of an MBPNL filter with cen-
ter frequency of 1820 Hz, for input intensities ranging from 20-
100 dB.

select G, the gain for the ‘" filter, to be a value that satisfies
the following equation:
G; =arg|Xg, — Y| < e (dB) (1)
G;
Note that the value of G} is not unique. Based on our exper-
imental results, G; can be set to any value that satisfies Equa-

tion 1, since different valid values of G did not cause signifi-
cant performance differences.

2.3. Feature Generation

The feature generation method used for our recognition exper-
iments follows the standard MFCC extraction process [7]. The
MFCCs were generated every 10ms via short-time fourier trans-
form (STFT) using a sliding 25ms Hamming window. Mel-
frequency spectral coefficients were generated by summing
STFT magnitudes weighted by triangular Mel-spaced filters,
and then converted to dB. Final MFCCs were created via the
discrete cosine transform (DCT) to produce a 13 dimensional
vector. With the exception of the Mel-warping step, the audi-
tory model outputs were processed in a similar fashion to also
produce a 13 dimensional feature vector every 10ms.

Figure 3 illustrates the responses of the output of the open-
loop and the closed-loop MBPNL models to an input digit se-
quence under a variety of noise conditions including speech-
shaped noise, white noise, pink noise, train noise, and subway
noise. From the figure, we can see that the features generated
by the closed-loop MBPNL model appear to be more consistent
than those generated by the open-loop model.

3. Experimental Methodology

The speech recognition experiments we performed to assess
the closed-loop MBPNL model were based on connected digits
contaminated with a variety of noises. We expanded the ex-
perimental setup in [14] to include conditions where we could
examine the capability of the closed-loop model for handling
various noises. We synthesized noisy digits and created train-
ing and test sets with five different noise types at the following
conditions: 1) the noise levels are held fixed at 70 dB SPL, 2)
speech is added at a particular SNR level relative to the back-
ground noise SPL, and 3) a 300ms interval of background noise
precedes the digit sequence to enable the closed-loop model to
adapt to the background noise. The 300ms noise interval was
used to automatically compute the gains, G;, for each channel.

The TIDigits corpus was partitioned into a 6,752 utterance
training set, and a 1,001 utterance test set. There was no over-
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Figure 3: The spectral representations generated by the open-loop MBPNL model baseline (left) and the closed-loop MBPNL model
(right) for a digit sequence contaminated with (from top to bottom) speech-shaped, white, pink, train, and subway noise at 10 dB SNR

level.

lap between any training and testing utterances. Five different
types of background noise were used for contaminating the digit
recordings. In addition to pink noise and speech-shaped noise
that were investigated in prior research with efferent-inspired
auditory models [10, 14], we also investigated white noise, as
another stationary noise for our experiment [18]. In addition to
stationary noises, two non-stationary noises, train and subway
noise, were randomly picked from the Aurora2 [2] database and
included in our experimental setup.

In order to investigate the potential of the closed-loop for
coping with various kinds of noises, we performed a series of
jackknifing experiments with mismatched training and test con-
ditions. For each experimental condition, one of the noise types
was designated as the test condition. The training data was
then partitioned into sixteen subsets that represented the cross-
product between the four remaining noise types and four differ-
ent SNRs of 5, 10, 15, and 20 dB. The resulting training set thus
represented different noises and multiple SNR conditions. For
each selected noise test condition, four different SNR condi-
tions were tested (5, 10, 15, 20 dB SNR). In this case, the entire
test set was configured with the test noise condition and a fixed
SNR level. Thus, we performed a total of 20 (5 noise types x
4 SNR conditions) recognition experiments. ITU software was
used to determine noise and signal energy levels and the appro-
priate signal gain needed for a particular SNR level [19].

Once the training and testing datasets had been created, the
remainder of the experiments followed the standard Aurora con-
vention [2]. For the recognition tasks, both the open-loop and
the closed-loop models generated a 42-dimensional feature vec-
tor made up of energy and 13 DCT coefficients, as well as their
first- and second-order time derivatives. The standard Aurora
HMM-based speech recognizer was used for these experiments.
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To provide a baseline comparison to the open-loop and
closed-loop models, the standard MFCC representation was
also subjected to the same training and testing conditions. To
generate the standard MFCC, the synthetic digit data was first
normalized to the maximum utterance value for each utterance
as is common practice.

4. Experimental Results

Tables 1- 3 report digit correctness for the twenty (5x4) mis-
matched recognition scenarios described in Section 3 for the
three different feature representations. Although we report cor-
rectness in this paper, digit accuracies for this series of experi-
ments hold the same trend. Each table column specifies a test
noise condition (i.e., that was not used for training), while each
row indicates the test SNR condition. Table 4 summarizes the
twenty experimental results for each of the three representations
by showing the average and the standard deviation of the ASR
correctness obtained for all twenty test conditions.

From the recognition performances shown in Tables 1- 4,
the closed-loop model provided the best correctness and the
smallest performance variance compared to the other two rep-
resentations over all testing conditions. Specifically, the closed-
loop model achieved a 25% and 41% relative improvement in
word error rate compared to the MFCC baseline and the open-
loop model baseline, respectively. While the open-loop model
performed worse than the MFCC baseline, which we believe
was due to speech normalization used in MFCC, the closed-loop
version clearly benefited from a feedback loop. The closed-loop
model also clearly showed a robust tolerance to mismatched
conditions, as its worst-case correctness was considerably supe-
rior to either of the other two models. The results show the po-



Condition | sp-shaped | white | pink | train | subway | Avg
20 dB SNR 95 94 95 95 94 95
15 dB SNR 95 93 94 94 94 94
10 dB SNR 91 89 92 93 91 91
5dB SNR 81 77 86 86 82 82
Avg 90 88 92 92 90 90

Table 1: Digit recognition correctness (%) produced by the
MFCC baseline representation for mismatched training and test
noise conditions. Each entry represents a test condition; the
corresponding training conditions are the crossproduct between
the four remaining noise types and all SNRs. Sp-shaped stands
for speech-shaped noise.

Condition | sp-shaped | white | pink | train | subway | Avg
20 dB SNR 96 93 90 96 89 93
15 dB SNR 95 90 87 96 88 91
10 dB SNR 94 83 82 93 85 87
5dB SNR 88 71 71 86 79 79
Avg 93 84 82 93 86 88

Table 2: Digit recognition correctness (%) produced by the
open-loop model for mismatched training and test noise con-
ditions.

Condition | sp-shaped | white | pink | train | subway | Avg
20 dB SNR 97 95 96 97 96 96
15 dB SNR 97 94 97 97 95 96
10 dB SNR 95 91 96 95 92 92
5dB SNR 84 84 92 85 82 85
Avg 93 91 95 94 91 93

Table 3: Digit recognition correctness (%) produced by the
closed-loop model for mismatched training and test conditions.

Representation | MFCC | Open-loop | Closed-loop
Average (%) 90 88 93
Deviation (%) 5.30 7.47 5.01

Table 4: Summary of average and deviation of digit recognition
correctness shown in Tables 1- 3 produced by the MFCC, open-
loop, and closed-loop representations.

tential of the closed-loop MBPNL model for generating consis-
tent speech representations across varying background noises.

5. Conclusion

In this work, we have explored the use of a closed-loop audi-
tory model as a front-end for speech recognition. The model
is inspired by the role of the auditory MOC efferent mecha-
nism, which feeds back to the cochlea. In our realization, the
feedback mechanism controls the gain of a nonlinear model
of cochlear mechanics (MBPNL), which enables the model to
dynamically adapt to changing noise conditions. After being
evaluated on a noisy digit recognition task and compared to a
standard MFCC baseline front-end and an open-loop version of
the MBPNL model, the closed-loop model showed the best and
the most consistent digit recognition performance across a vari-
ety of mismatched training and testing conditions and SNR lev-
els. We believe these results indicate that that representations of
speech that incorporate feedback show promise for generating
robust speech features and are worthy of further investigation
on other speech recognition tasks.
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