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Abstract

The ability to infer linguistic structures from noisy speech streams seems to be an innate

human capability. However, reproducing the same ability in machines has remained a challeng-

ing task. In this thesis, we address this task, and develop a class of probabilistic models that

discover the latent linguistic structures of a language directly from acoustic signals. In particu-

lar, we explore a nonparametric Bayesian framework for automatically acquiring a phone-like

inventory of a language. In addition, we integrate our phone discovery model with adaptor

grammars, a nonparametric Bayesian extension of probabilistic context-free grammars, to in-

duce hierarchical linguistic structures, including sub-word and word-like units, directly from

speech signals. When tested on a variety of speech corpora containing different acoustic condi-

tions, domains, and languages, these models consistently demonstrate an ability to learn highly

meaningful linguistic structures.

In addition to learning sub-word and word-like units, we apply these models to the problem

of one-shot learning tasks for spoken words, and our results confirm the importance of inducing

intrinsic speech structures for learning spoken words from just one or a few examples. We also

show that by leveraging the linguistic units our models discover, we can automatically infer the

hidden coding scheme between the written and spoken forms of a language from a transcribed

speech corpus. Learning such a coding scheme enables us to develop a completely data-driven

approach to creating a pronunciation dictionary for the basis of phone-based speech recogni-

tion. This approach contrasts sharply with the typical method of creating such a dictionary by

human experts, which can be a time-consuming and expensive endeavor. Our experiments show

that automatically derived lexicons allow us to build speech recognizers that consistently per-

form closely to supervised speech recognizers, which should enable more rapid development

of speech recognition capability for low-resource languages.

Thesis Supervisor: James R. Glass

Title: Senior Research Scientist
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Chapter 1

Introduction

� 1.1 Overview

Language is full of structure: sentences are composed of words, words consist of syllables, and

syllables contain phonetic units. Understanding the latent structures in language is crucial to the

process of human language acquisition [97]. Since infants are born, they continuously receive

speech streams from people in their surrounding environment. Without much guidance, infants

gradually learn to interpret speech: distinguishing between individual phonemes [98, 48, 118,

31, 172], building phonemic categories specific to their native language [184, 18, 99], segment-

ing as well as categorizing syllables and words [160, 159, 108, 128, 96], associating meaning

with words [36], combining words [21] and recognizing grammars to form sentences [61, 62].

If machines are able to automatically discover these hidden linguistic structures automatically

as infants do, then we may be able to create intelligent systems that learn to comprehend hu-

man languages autonomously. In addition, given that understanding linguistic structures of a

language is the key to building Automatic Speech Recognition (ASR) systems, if the phonetic

and lexical structures of a language can be inferred automatically, then we may be able to de-

velop ASR systems in a less supervised or totally unsupervised way. Much work has examined

the problem of inferring linguistic structures embedded in text data, such as grammar induc-

tion. However, possibly prohibited by the problem complexity, little literature has investigated

linguistic structure discovery directly from speech.

The goal of this thesis is therefore to devise unsupervised models that infer linguistic struc-

tures from speech data. Our motivation is both scientific and practical.

• Scientifically, from a cognitive viewpoint, this problem is similar to the early task that in-

fants must deal with when learning their first language. There is abundant evidence show-

ing that infants are capable of discriminating between different phonemes and learning to

recognize language-specific phonetic categories at an early age [98, 48, 118, 184, 18, 99].

29
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In addition, by the age of 8 months, infants are shown to be able to detect word bound-

aries in continuous speech [160]. Even though many computational models have been

proposed to capture these early language acquisition behaviors, most of the proposed

models are designed for less realistic input data such as truncated speech segments of

particular phonemes, manually annotated phone sequences, or phone transcriptions gen-

erated by ASR systems [181, 60, 13, 25, 33, 34]. Compared to the sensory speech stream

that infants are exposed to, these data are highly processed clean signals. As a result, it is

unclear how well these models can perform on noisier input data. Furthermore, because

of the mismatch in input data type, it is also not clear how closely these models resemble

the human language acquisition process. A computational model that induces linguistic

structure of a language directly from the continuous speech stream, therefore, not only

makes a breakthrough from previous simplified assumptions on input data type, but also

provides a means to more closely capture the human language acquisition process.

• Discovery of linguistic structure from acoustic signals also has many practical values.

First, the inferred linguistic knowledge can assist linguists in studying a language. For

example, examining the sequence of inferred phonetic units embedded in acoustic signals

may help linguists learn phonological properties of the language. Second, the induced

linguistic structures, such as phonetic and lexical units, can be utilized to extract impor-

tant content information about the speech data for applications such as spoken document

summarization and information retrieval [114, 116, 66, 27]. For example, by treating the

discovered lexical items as pseudo words, we can represent a spoken document as a bag

of pseudo words, which can then be used as input for text-processing systems. Given the

vast amount of speech content available online such as lecture recordings1, news broad-

casts, and audio books2, this application of discovered linguistic structure is particularly

useful. Finally, discovering linguistic structures in speech also allows us to develop un-

supervised training procedures for ASR systems. For instance, by modeling the set of

discovered phonetic units with Hidden Markov Models (HMMs) [153, 87], we can ob-

tain an acoustic model for a language without any transcribed speech data. Furthermore,

with some access to the word level transcriptions of the acoustic data, we can infer the

mapping scheme between the graphemes and the induced phonetic units, and automat-

ically create a pronunciation lexicon, which is an essential requirement for building an

ASR system.
1For instance, http://ocw.mit.edu/ (MIT OpenCourseWare).
2For example, https://librivox.org/ (LibriVox, free public domain audiobooks).
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Figure 1.1. The scope of this thesis. This thesis starts with an investigation of acoustic unit discovery from continu-

ous speech, which is then extended to the problem of hierarchical linguistic structure discovery. We furhter develop

the idea of unsupervised linguistic structure learning from acoustic signals in two domains, language acquisition

and unsupervised ASR training. Note that except for the task of pronunciation learning, all the phone labels and

word transcriptions are shown only for illustration.

We start our investigation with the problem of unsupervised acoustic phone-like unit dis-

covery, the problem of finding phone-like units in continuous speech. After successfully dis-

covering phonetic units, we approach an even more difficult task that is joint learning of the

phonetic, syllabic and lexical structures of a language directly from continuous speech – the

early challenges that infants must tackle to acquire their mother tongue. After developing two

models for automatic linguistic structure discovery, we further extend our investigation and ap-

ply the models to two domains. The first domain is language acquisition. Within this domain,

we study the problem of one-shot learning of spoken words – the remarkable human ability

to recognize and generalize novel spoken words from only one example. The second domain

we focus on is unsupervised ASR training, where our objective is to unveil the latent encod-

ing scheme between the writing and the spoken systems of a language, which is essential in

converting continuous speech signals to symbolic phoneme representations for ASR systems.

The scope of this thesis is depicted in Fig. 1.1. In the next section, we describe the problem

of unsupervised acoustic phone-like unit discovery and briefly discuss our approach. For the

sake of brevity, throughout the rest of this thesis, we use the terms acoustic unit and sub-word

unit to represent acoustic phone-like unit.
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� 1.2 Unsupervised Acoustic Unit Discovery

Discovering acoustic units is the task of finding the phonetic structure of a language from

only speech data. No text data or any language-specific knowledge is assumed to be available.

The task can be divided into three sub-tasks: segmentation, clustering segments, and mod-

eling the sound pattern of each cluster [50]. In previous work, the three sub-problems were

often approached sequentially and independently in which initial steps are not related to later

ones [113, 50, 17]. For example, the speech data were usually segmented first, and clusters of

acoustic units were learned based on the segments. In a sequential approach, the speech seg-

mentation was never refined regardless of the clustering results, which prevented knowledge

learned in one part of the problem from helping with learning the other parts of the problem.

In contrast to previous methods, we approach the task by modeling the three sub-problems

as well as the unknown set of acoustic units as latent variables in one nonparametric Bayesian

model. More specifically, we formulate a Dirichlet Process mixture model [3, 42, 120, 35]

where each mixture is a Hidden Markov Model (DPHMM) that is used to model an acoustic

unit and to generate observed segments of that unit. Our model seeks the set of sub-word units,

segmentation, clustering, and HMMs that best represent the observed speech data through an

iterative inference process, which is implemented by using Gibbs sampling. When tested on

a corpus of English sentences, our model is able to discover sub-word units that are highly

correlated with English phones, and also produces better segmentation than the state-of-the-art

unsupervised baseline.

This DPHMM framework for unsupervised acoustic unit discovery is the foundation of this

thesis. Building upon this model, we develop a computational model for discovering hierarchi-

cal linguistic structures from acoustic signals, and extend our investigation in two directions:

language acquisition and unsupervised ASR training. In Section 1.3, we discuss the problem

of acquiring phones and words that infants must solve when learning their first language, and

briefly describe our model for joint discovery of phonetic and lexical units from continuous

speech. In Section 1.4, we give an overview on the problem of one-shot learning and discuss

the role of the phonetic compositional structure of a language in the task of learning new spoken

words from just one or a few examples. In Section 1.5, we turn our focus to ASR and discuss

the challenges of building speech recognizers for new languages that are posed by the current

training procedure, and provide solutions to overcome the challenges.
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� 1.3 Hierarchical Linguistic Structure Discovery from Speech

Humans exchange knowledge, share experience, express opinions, and convey ideas via speech

everyday. This verbal use of language is a hallmark of intelligence and is arguably the most

unique innate ability of human beings [148, 179]. Language acquisition is an extremely com-

plex process that involves an enormous amount of perceptual, computational, social and neural

activity [97], which makes modeling this process with machines a truly daunting task. How-

ever, although most of the mechanism behind language acquisition remains unknown, research

in cognitive science has shown that for some parts of the process, infants seem to rely on sta-

tistical clues for learning, and this is where probabilistic modeling can come into play. In this

thesis, we focus our discussion on one particular problem of this type: phonetic and lexical unit

learning, in which computational learning strategies are involved.

As pointed out in [96, 124, 88, 160, 159, 64], success in some sub-problems of the language

acquisition procedure relies on infants’ sensitivity to the distributional patterns of sounds in

a language. For example, 9-month old infants can learn sequential constraints on permissible

strings of phonemes in ambient language and discriminate between frequent phonetic sequences

and less frequent ones [88]. Likewise, the transitional probabilities between adjacent syllables,

which differ within and across words, can also help infants detect word boundaries in contin-

uous speech [160, 159]. These statistical signals are important clues that help infants acquire

phonetic categories and word types.

In addition to being an important source of information for infants, distributional patterns

are also important learning constraints for probabilistic models. Much prior research has suc-

cessfully modeled various parts of the language acquisition process by leveraging distributional

patterns observed in natural language [60, 13, 25, 174, 33, 34, 82]. For example, by encoding

word co-occurrence patterns and phonotactic constraints as grammar rules, the authors of [82]

were able to apply adaptor grammars to effectively discover syllable and word boundaries

from unsegmented phonetic transcripts of child-directed speech [83]. In fact, adaptor gram-

mars have proven to be a powerful probabilistic framework for word segmentation [80, 82, 77],

given their flexibility for modeling hierarchical linguistic structures, and their effectiveness for

learning units of generalization from training data.

To learn hierarchical linguistic structure from speech data, we employ adaptor grammars

as the basis of our approach. However, despite their effectiveness, adaptor grammars have

only been developed for learning structures from symbolic input. In this thesis, we go beyond

the original design of adaptor grammars and construct a novel probabilistic framework, which
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not only discovers acoustic units, but also learns higher level linguistic structures such as syl-

labic and lexical units from continuous speech. Learning on this framework is supported by

a Metropolis-Hastings-based inference procedure, which empowers synergies in unsupervised

acquisition of phonetic and lexical units from speech. When tested on lecture recordings of var-

ious topics [59], our model demonstrates its ability to discover informative spoken keywords

that occur frequently for each lecture.

� 1.4 One-shot Learning of Spoken Words

The ability to learn new spoken words from only a few examples is an essential ingredient for

language development. Most previous related computational work has focused on the problem

of learning the meaning of words from a few examples. For instance, in [186], children were

tested to decide which objects belong to the set of elephants and which do not after hearing the

word elephant paired with an exemplar. Various factors such as cross-situational learning that

may contribute to learning word meaning were also investigated in previous work [170, 47].

However, by any account, the acquisition of meaning is possible only if a child can learn the

spoken word as a category, mapping all instances (and excluding non-instances) of a word like

elephant to the same phonological representation, and this is the focus of the discussion on

one-shot learning presented in this thesis. Particularly, we investigate the representation that

humans may use to accomplish one-shot learning of spoken words.

Although only acquisition of new spoken words is discussed in this thesis, in reality, hu-

mans learn new concepts from just one or a few examples, making meaningful generalizations

that go far beyond the observed examples in all kinds of scenarios. Replicating this ability in

machines is challenging. Nonetheless, recent advances in cognitive science and machine learn-

ing have brought new insights into the mechanism behind one-shot learning. Particularly, the

idea of developing new concepts from previous learning experience with related examples is a

prominent theme. This idea of learning-to-learn can be realized as probabilistic models that

first induce intrinsic structures in the data of interests, and then generalize for new data based

on the induced intrinsic structures. For example, in [104], a hierarchical Bayesian model is

exploited to learn the intrinsic compositional structure embedded in handwritten characters of

fifty languages. The model infers primitive strokes that are shared across all the characters from

a large number of handwritten examples, as shown in Fig. 1.2-(a)-i. These intrinsic structures

embedded in all the characters can then be combined to create characters that are either familiar

or new to the model, as shown in (ii) and (iii) of Fig. 1.2-(a), which thus allow the model to
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Figure 1.2. Hierarchical Bayesian modeling as applied to (a) handwritten characters [104] and (b) speech. Color

coding highlights the re-use of primitive structure across different objects. The speech primitives are shown as

spectrograms.

generalize to new concepts. As presented in [104], the model is able to achieve human-level

performance for classifying new handwritten characters by learning from only one example.

The key to the effectiveness of the hierarchical Bayesian model presented in Fig. 1.2-(a)

for one-shot learning of handwritten characters is that the model first learns the compositional

structure shared across all different type of characters and acquires a library of basic strokes of

written characters. These basic strokes can be regarded as the knowledge that the model has

learned from its previous exposure to character data, which can then help the model learn and

generalize to novel characters. We adopt the same learning-to-learn idea and investigate the

importance of acquiring compositional structures for the task of one-shot learning of spoken

words. More specifically, we apply our framework for unsupervised acoustic unit discovery to

infer the basic acoustic units in a set of speech data, as illustrated in (i) and (ii) of Fig. 1.2-(b).

These acoustic units can be viewed as knowledge the model has learned about the composition

within spoken words as depicted in Fig. 1.2. The model can interpret new spoken words as

new compositions of these basic acoustic units and thus generalize based on what it has learned

from other speech data. We evaluate the model on both one-shot classification and one-shot

generation of new spoken Japanese words and compare the performance our model to that of

humans. The experimental results show that learning compositional structures in speech helps

one-shot learning of spoken words even when the new words are spoken in a new language.
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Figure 1.3. An overview of a typical ASR system, which contains an acoustic model, a pronunciation lexicon, and a

language model. When the recognizer receives a speech input, it searches for the best word hypothesis based on the

three components. The focus of a part of the thesis is on the lexicon, which consists of a list of word pronunciations

of a language. The creation of a pronunciation lexicon remains the most inefficient process in developing a speech

recognizer. Therefore, in this thesis, we present a framework that automatically discovers word pronunciations from

parallel text and speech data.

This demonstrates an example of learning-to-learn through transferring knowledge of phonetic

structure across languages.

� 1.5 Pronunciation Learning for Unsupervised ASR Training

The effortless first language acquisition process demonstrated by humans stands in stark con-

trast to the highly supervised approach for training ASR systems. The basic ASR training

procedure requires a large corpus of annotated speech data that includes audio waveforms and

the corresponding orthographic transcriptions. In addition, we need a pronunciation lexicon

that consists of a list of words and their associated phonemic pronunciations. With the required

data, three major components of a speech recognizer can then be trained: (1) acoustic models

can be built to model the speech realizations of phonetic units using the lexicon and the anno-

tated speech data, (2) pronunciation models can be constructed based on the lexicon entries, and

finally (3) language models can be trained upon the transcriptions. An illustration of a typical

ASR system is shown in Fig. 1.3. Though various training methods exist, the development of a

speech recognizer generally follows this standard recipe.

The requirement of a corpus of annotated speech data and a pronunciation lexicon is a sig-

nificant impediment to the creation of speech recognizers for new languages. A generous esti-

mate of the current language capacity of ASR systems would be roughly 100 to 150 out of the

nearly 7,000 languages that are spoken all around the world [151]. Fortunately, crowdsourc-

ing platforms such as Amazon Mechanical Turk have recently made collection of annotated
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Figure 1.4. (a) An example of the input data and (b) the hidden structures embedded in the input data that need to

be discovered by our model. The red arrows show the mapping between graphemes and phones. The thick arrows

indicate that a grapheme is not mapped to any sounds, which is denoted as ε. The dotted arrows indicate that a

grapheme is mapped to two sub-words at a time, and the solid arrows indicate that a grapheme is mapped to exactly

one sub-word. The phone transcription is the sequence denoted by [·].

speech corpora a less expensive and more efficient task [126, 110, 107, 14, 123]. Although the

traditional approach may still be preferred for certain low-resource languages [54], this new

data collection paradigm has proven that annotated corpora can be relatively easily created by

native speakers of a language. In contrast, as annotators must understand the subtle differences

between distinct phonetic units, and familiarize themselves with the labeling system, the cre-

ation of a pronunciation lexicon demands a large amount of linguistic knowledge and cannot be

easily crowdsourced. Given the nature of its production, the pronunciation lexicon is arguably

the main hurdle in developing an ASR system. If word pronunciations can be automatically

inferred from an annotated corpus, then the costly and time-consuming process of manually

creating a lexicon can be avoided, and ASR systems can potentially be more efficiently de-

ployed for many more languages.

We investigate the problem of inferring a pronunciation lexicon from an annotated cor-

pus without exploiting any language-specific knowledge. A typical training sample is shown

in Fig. 1.4-(a), where we have access to only the speech data along with the corresponding

word level transcription. Our goal is to discover the basic phonetic structure hidden in the

speech data, indicated by the vertical purple bars and the phone transcriptions in Fig. 1.4-(b),
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as well as the latent encoding scheme between the graphemes of the language and the discov-

ered phonetic units, which is indicated by the red arrows in Fig. 1.4-(b). Note that the phone

transcription shown in Fig. 1.4-(b) is only for illustration as our model does not have access to

the true phonetic labels during training. We formulate our approach as a hierarchical Bayesian

model, which jointly discovers these two latent structures. Having obtained these two pieces

of information, we can then convert sequences of graphemes in the language into sequences of

phonetic units and thus create a word pronunciation lexicon for the language. We evaluate the

quality of the induced lexicon and acoustic units through a series of speech recognition experi-

ments on a conversational weather query corpus [195]. The results demonstrate that our model

consistently performs closely to recognizers that are trained with an expert-defined phonetic

inventory and lexicon.

� 1.6 Thesis Contributions

The primary contributions of this thesis are threefold.

1. Unsupervised linguistic structure discovery from acoustic signals: We develop a set

of unsupervised models for discovering linguistic structures directly from acoustic sig-

nals. In particular, we are the first to apply Dirichlet process mixture models to the task

of acoustic unit discovery. Furthermore, we construct a novel modification to adaptor

grammars such that the adaptor grammars can infer linguistic structures directly from

speech signals. Our research results demonstrate that the proposed unsupervised models

are capable of discovering highly meaningful linguistic units, which can potentially be

applied to tasks such as keyword spotting, spoken document summarization, and infor-

mation retrieval.

2. Representation for capturing one-shot learning behavior: We verify that learning

compositional structure embedded in acoustic signals is important for learning new spo-

ken words, which resonates with the findings of previous work on other one-shot learning

tasks. Furthermore, our model shows that phonetic knowledge can be transferred across

languages for learning words in a new language. Even though replicating human one-

shot learning capability still remains a challenging task, our work suggests the type of

structure to learn for capturing how humans learn rich concepts from very sparse data.

3. Automatic pronunciation lexicon creation: We invent a framework for learning word

pronunciations from parallel speech and text data without the need for any language-
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specific knowledge. Our work provides a practical solution to the expensive and time-

consuming process of creating pronunciation lexicons that are necessary for training pho-

netic ASR systems.

The remarkable ability possessed by humans for first language acquisition is one of the ma-

jor inspirations of this work. However, given the complexity of the whole language acquisition

process, we refrain from claiming any solution to the grand problem. Nonetheless, we believe

the success our models demonstrate in discovering linguistic structures directly from sensory

speech signals has unlocked the door to a broad avenue for future research on the language

acquisition process.

� 1.7 Chapter Overview

The remainder of this thesis is organized as follows:

• Chapter 2 discusses the problem of unsupervised acoustic unit discovery and presents

our approach based on the Dirichlet process mixture model for the task.

• Chapter 3 presents a model, based on an adaptation of adaptor grammars and the acous-

tic unit discovery framework, for learning hierarchical linguistic structures, including

phonetic, syllabic, and lexical units, from speech data.

• Chapter 4 describes a variation of the acoustic unit discovery model and shows how to

apply the modified model to investigate the role of the compositional structure in speech

for one-shot learning of spoken words.

• Chapter 5 shows our approach to the joint learning of acoustic units and the grapheme-to-

phone encoding scheme of a language from annotated speech data. We also demonstrate

how to apply the learning results of the model to automatically produce a word pronun-

ciation lexicon, which can then be used to build phonetic ASR systems.

• Chapter 6 summarizes the key points of this thesis and suggests possible directions for

future work.



40 CHAPTER 1. INTRODUCTION



Chapter 2

Acoustic Unit Discovery in Speech

� 2.1 Chapter Overview

Unsupervised discovery of meaningful sub-word units from the speech signal has attracted

much interest in the fields of Automatic Speech Recognition (ASR) and cognitive science.

For ASR, the problem is interesting because it has the potential to change the current highly-

supervised approach for building speech recognizers. Take the acoustic model as an example.

The standard process of training an acoustic model for a language requires not only language-

specific knowledge such as the phone set of the language, but also a large amount of transcribed

speech data. Unfortunately, these necessary data are only available for a very small number of

languages in the world. Therefore, if meaningful acoustic units can be automatically discovered

from speech data, then acoustic models for a much larger number of languages in the world

can be efficiently trained. In addition, these acoustic models alone can be applied to many

problems such as Spoken Term Detection (STD), spoken document retrieval, and language

identification [111, 44, 86, 105, 53]. Furthermore, as demonstrated in Chapter 5, with some

word transcriptions for speech data, we can learn a pronunciation lexicon for a language based

on automatically acquired acoustic units, which enables a fully automated method for training

phone-based speech recognizers.

Unsupervised unit discovery is also interesting for the field of cognitive science because

learning meaningful acoustic units from speech is one of the first challenges that an infant

must face when he or she acquires his or her native language. There has been much research

studying how infants acquire their first language; however, most of the works are based on

highly processed input data such as phone transcriptions of child-directed speech or isolated

speech segments of phones [119, 60, 40, 41, 24, 181, 33, 34]. A framework for unsupervised

acoustic unit discovery enables us to more closely study how infants acquire a language from

speech. In addition, as shown in Chapter 4, learning the basic acoustic units embedded in

41
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speech is important for one-shot learning of spoken words, which is arguably the most essential

step for humans to learn new concepts about the world.

In this chapter, we investigate the problem of unsupervised acoustic unit discovery using

only spoken utterances as training data. In other words, neither prior language-specific knowl-

edge, such as the phone set of a language, nor transcribed data are available for training. We

present an unsupervised model that simultaneously segments the speech, discovers a proper set

of sub-word units, and learns a Hidden Markov Model (HMM) for each induced acoustic unit.

Our approach is formulated as a Dirichlet process mixture model in which each mixture is an

HMM that represents a sub-word unit. Our model seeks the set of sub-word units, segmenta-

tion, clustering, and HMMs that best represent the observed speech data through an iterative

inference process based on Gibbs sampling.

We test our model on the TIMIT corpus [52], and the results demonstrate that our model

discovers sub-word units that are highly correlated with standard English phones and also pro-

duces better segmentation than the state-of-the-art unsupervised baseline for the task of speech

segmentation. We evaluate the quality of the learned acoustic units on an STD task. Com-

pared to the baselines, our model improves the relative precision of top hits by at least 22.1%,

and outperforms a language-mismatched acoustic model that is trained with the conventional

highly-supervised method.

The rest of this chapter is organized as follows. In Section 2.2, we review three lines of re-

search that are related to unsupervised acoustic unit discovery from speech data. We formalize

the problem and introduce the observed and latent variables for the problem in Section 2.3. We

present our model and describe the generative process implied by our model in Section 2.4. The

inference algorithm based on Gibbs sampling for learning our model is shown in Section 2.5.

We evaluate the model both qualitatively and quantitatively, and we describe the experimen-

tal setup in Section 2.6 as well as demonstrate the results in Section 2.7. Lastly, this chapter

concludes in Section 2.8.

� 2.2 Related Work

There are three lines of research that are related to unsupervised acoustic unit discovery: 1)

unsupervised sub-word modeling, 2) unsupervised speech segmentation and 3) nonparametric

Bayesian methods for segmentation and clustering. We review related work in each of the three

categories and briefly compare our work to the previous approaches.
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� 2.2.1 Unsupervised Sub-word Modeling

As suggested in [50], unsupervised acoustic modeling can be broken down into three sub-tasks:

segmentation, clustering segments, and modeling the sound pattern of each cluster. We follow

this general guideline, which is also used in [113, 50, 17], and approach the problem of unsu-

pervised acoustic modeling by solving three sub-problems of the task. Even though our work,

as well as the previous work of [113, 50, 17], all adopt the same guidelines, the key difference

is that our model does not assume independence among the three aspects of the problem. Par-

ticularly, in previous work, the three sub-problems were often approached sequentially and in-

dependently in which initial steps are not related to later ones. For example, the speech data are

usually segmented regardless of the clustering results and the learned acoustic models. On the

contrary, we approach the problem by modeling the three sub-problems as well as the unknown

set of sub-word units as latent variables in one nonparametric Bayesian model. Therefore, our

model can refine its solution to one sub-problem by exploiting what it has learned about other

parts of the problem. Second, unlike [113, 50] in which the number of sub-word units to be

learned is assumed to be known, our model learns the size from the training data directly.

Instead of segmenting utterances, the authors of [182] train a single state HMM using all

data at first, and then iteratively split the HMM states based on an objective function. This

method achieves high performance in a phone recognition task using a label-to-phone trans-

ducer trained from some transcriptions. However, the performance seems to rely on the quality

of the transducer. For our work, we assume no transcriptions are available and measure the

quality of the learned acoustic units via a spoken query detection task as in [74]. The authors

of [74] approach the task of unsupervised acoustic modeling by first discovering repetitive pat-

terns in the data, and then learn a whole-word HMM for each found pattern, where the state

number of each HMM depends on the average length of the pattern. The states of the whole-

word HMMs are then collapsed and used to represent acoustic units. This approach implicitly

imposes information from the word-level on learning sub-word units, which provides a stronger

learning constraint than what our model has. More specifically, instead of discovering repetitive

patterns first as in [74], our model learns from all given speech data.

Although there has been computational work on the problem of unsupervised learning of

sub-word units in the field of cognitive science [181, 40, 41, 24], most of these models cannot

be directly applied to speech input. These models usually assume that the phonetic boundaries

in speech are known, and that the speech data are already converted in a low-dimensional

space such as the first and second formant of vowel sounds. In contrast, our model infers sub-

word segmentation and sub-word categories from a feature representation that more closely
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resembles raw speech data.

� 2.2.2 Unsupervised Speech Segmentation

As mentioned in Section 2.2.1, one goal of our model is to segment speech data into small

sub-word (e.g., phone) segments. Since segmentation performance is one of the metrics we use

to evaluate the model, we review previous unsupervised speech segmentation methods in this

section. In general, most unsupervised speech segmentation methods rely on acoustic change

for hypothesizing phone boundaries [165, 152, 28, 37, 56]. Even though the overall approaches

differ, these algorithms are all one-stage and bottom-up segmentation methods [165]. In con-

trast, given that segmentation is only one of the three tasks that our model jointly tackles, it

does not make a single one-stage decision. Instead, the model infers the segmentation through

an iterative process, and exploits the learned sub-word models to guide its hypotheses on phone

boundaries.

� 2.2.3 Nonparametric Bayesian Methods for Segmentation and Clustering

Our model is inspired by previous applications of nonparametric Bayesian models to segmen-

tation and clustering problems in natural language processing and speaker diarization [60, 45];

particularly, we adapt the inference method used in [60] to train our model. The unsupervised

acoustic unit discovery problem is, in principle, similar to the word segmentation problem dis-

cussed in [60]. In the word segmentation problem, sequences of phone transcriptions of spoken

utterances are given, and the goal of the model presented in [60] is to find the word bound-

aries within each phone sequence. As for our problem, sequences of speech features are given,

and the goal of our model is to find the phone boundaries within each feature sequence. The

main difference, however, is that our model is under the continuous real value domain, and the

problem of [60] is under the discrete symbolic domain. Therefore, the model of [60] does not

need to cluster the induced word segments since the cluster label of each segment is simply

the sequence of phones it carries. For the domain our problem is applied to, our model has to

include the cluster label of each phone segment as a latent variable, and thus the learning for

our model is more complex.

� 2.3 Problem Formulation

The goal of our model, given a set of speech utterances, is to jointly learn the following:
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Figure 2.1. An example of the observed data and hidden variables of the problem for the word banana. See

Section 2.3 for a detailed explanation.

1. Segmentation: To find the phonetic boundaries within each utterance (i.e., to find seg-

ments).

2. Nonparametric clustering: To find a proper set of clusters and group acoustically similar

segments into the same cluster (i.e., to find sub-word units).

3. Sub-word modeling: To learn an HMM to model each sub-word acoustic unit.

We model the three sub-tasks as latent variables in our approach. In this section, we describe

the observed data, latent variables, and auxiliary variables of the problem and show an example

in Fig. 2.1. In the next section, we show the generative process our model uses to generate the

observed data.

� 2.3.1 Observed and Latent Variables

• Speech Feature (xit): The only observed data for our problem are a set of spoken utter-

ances, which are converted to a series of 25 ms 13-dimensional Mel-Frequency Cepstral

Coefficients (MFCCs) [23], and their first- and second-order time derivatives at a 10 ms

analysis rate. We use xit ∈ R39 to denote the tth feature frame of the ith utterance.
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Fig. 2.1 illustrates how the speech signal of a single word utterance banana is converted

to a sequence of feature vectors xi1 to xi11.

• Boundary (bit): We use a binary variable bit to indicate whether a phone boundary exists

between xit and xit+1. If our model hypothesizes xit to be the last frame of a sub-word

unit, which is called a boundary frame, bit is assigned with value 1, or it is assigned

0 otherwise. Fig. 2.1 shows an example of the boundary variables where the values

correspond to the true answers. We use an auxiliary variable giq to denote the index of

the qth boundary frame in utterance i. For example, in Fig. 2.1, gi2 = 4. To make the

derivation of posterior distributions easier in Section 2.5, we define gi0 to be the beginning

of an utterance, and Li to be the number of boundary frames in an utterance. For the

example shown in Fig. 2.1, Li is equal to 6.

• Segment (pij,k): We define a segment to be composed of feature vectors between two

boundary frames. We use pij,k to denote a segment that consists of xij , x
i
j+1 · · ·xik and

dij,k to denote the length of pij,k. See Fig. 2.1 for more examples.

• Cluster Label (cij,k): We use cij,k to specify the cluster label of pij,k. We assume segment

pij,k is generated by the sub-word HMM with label cij,k.

• HMM (θc): In our model, each HMM has three emission states, which correspond

to the beginning, middle, and end of a sub-word unit [76]. A traversal of each HMM

must start from the first state, and only left-to-right transitions are allowed even though

we allow skipping of the middle and the last state for segments shorter than three frames.

The emission probability of each state is modeled by a diagonal Gaussian Mixture Model

(GMM) with 8 mixtures. We use θc to represent the set of parameters that define the cth

HMM, which includes state transition probability aj,kc , and the GMM parameters of each

state emission probability. We use wmc,s ∈ R, µmc,s ∈ R39, and λmc,s ∈ R39 to denote the

weight, mean vector, and diagonal of the inverse covariance matrix of the mth mixture in

the GMM for the sth state in the cth HMM.

• Hidden State (sit): Since we assume the observed data are generated by HMMs, each

feature vector, xit, has an associated hidden state index. We denote the hidden state of xit
as sit.

• Mixture ID (mi
t): Similarly, each feature vector is assumed to be emitted by the state

GMM it belongs to. We use mi
t to identify the Gaussian mixture that generates xit.
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Figure 2.2. Monophone frequency distribution of the si sentences of the TIMIT corpus [52]. The most frequent

monophone is the closure, denoted as /cl/ in the TIMIT corpus, that appears before the release of unvoiced stop

consonants /t/, /p/ and /k/, and the least frequent monophone is /zh/.
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Figure 2.3. Triphone frequency distribution of the si sentences of the TIMIT corpus [52]. The most frequent

triphone sequence is /s-cl-t/, which appears roughly 520 times in all the 1890 si sentences.

� 2.4 Model

� 2.4.1 Dirichlet Process Mixture Model with Hidden Markov Models

We aim to discover and model a set of sub-word units that represent the spoken data. If we think

of utterances as sequences of repeated sub-word units, then in order to find the sub-words, we
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need a model that concentrates probability on highly frequent patterns while still preserving

some probability for previously unseen patterns. As a sanity check on the assumption that there

are only a few frequently observed sub-word units, and many more rarely seen sub-words in real

data, we plot the 48 monophone frequency distribution and the triphone frequency distribution

of the si sentences in the TIMIT corpus in Fig. 2.2 and Fig. 2.3. As illustrated in the two

figures, for both monophones and triphones, there are a few highly frequent units, while most

of the units do not appear as often. Given that frequencies of the clusters induced by Dirichlet

processes also exhibit the same long tail property, Dirichlet processes are particularly suitable

for our goal1. Therefore, we construct our model as a Dirichlet Process (DP) mixture model,

whose components are HMMs that are used to model sub-word units. We assume each spoken

segment is generated by one of the clusters in this DP mixture model.

� 2.4.2 Generative Process

Here, we describe the generative process our model uses to generate the observed utterances

and present the corresponding graphical model. For clarity, we assume that the values of the

boundary variables bit are given in the generative process. In the next section, we explain how

to infer their values.

Let pi
giq+1,giq+1

for 0 ≤ q ≤ Li− 1 be the segments of the ith utterance. Our model assumes

each segment is generated as follows:

1. Choose a cluster label ci
giq+1,giq+1

for pi
giq+1,giq+1

. This cluster label can be either an ex-

isting label or a new one. Note that the cluster label determines which HMM is used to

generate the segment.

2. Given the cluster label, choose a hidden state for each feature vector xit in the segment.

3. For each xit, based on its hidden state, choose a mixture from the GMM of the chosen

state.

4. Use the chosen Gaussian mixture to generate the observed feature vector xit.

1Another widely used stochastic process in the field of natural language processing is the Pitman-yor pro-

cess [150, 149], whose discount parameter empowers its flexibility on modeling the long tail distribution observed

in many statistics embedded in human languages such as word frequencies. Since the Dirichlet process is a spe-

cial case of the Pitman-yor process, it is straightforward to extend our model and the inference algorithm to use

Pitman-yor process as a prior.
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Figure 2.4. The graphical model for our approach. The shaded circle denotes the observed feature vectors, and

the squares denote the hyperparameters of the priors used in our model. The dashed arrows indicate deterministic

relations. Note that the Markov chain structure over the st variables is not shown here to keep the graph concise.

The generative process indicates that our model ignores utterance boundaries and views the

entire data as concatenated spoken segments. Given this viewpoint, we discard the utterance

index, i, of all variables in the rest of the chapter.

The graphical model representing this generative process is shown in Fig. 2.4, where the

shaded circle denotes the observed feature vectors, and the squares denote the hyperparameters

of the priors used in our model. Specifically, we use a Bernoulli distribution as the prior of

the boundary variables and impose a Dirichlet process prior on the cluster labels and the HMM

parameters. The dashed arrows represent deterministic relations. For example, the boundary

variables deterministically construct the duration of each segment, d, which in turn sets the

number of feature vectors that should be generated for a segment. In the next section, we show

how to infer the value of each of the latent variables in Fig. 2.4 Note that the value of π in

Fig. 2.4 is irrelevant to our problem; therefore, it is integrated out in the inference process.

� 2.5 Inference

We employ Gibbs sampling [55] to approximate the posterior distribution of the hidden vari-

ables in our model. To apply Gibbs sampling to our problem, we need to derive the conditional

posterior distribution of each hidden variable of the model. In the following sections, we first

derive the sampling equations for each hidden variable, and then describe how we incorporate
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acoustic cues to reduce the sampling load at the end.

� 2.5.1 Sampling Equations for the Latent Variables

Here we present the sampling equations for each hidden variable defined in Section 2.3. We

use P (·| · · · ) to denote a conditional posterior probability given observed data, all the other

variables, and hyperparameters for the model.

Cluster Label (cj,k) Let C be the set of distinct label values in c−j,k, which represents all

the cluster labels in training data except cj,k. The conditional posterior probability of cj,k for

c ∈ C is:

P (cj,k = c| · · · ) ∝ P (cj,k = c|c−j,k; γ)P (pj,k|θc)

=
n(c)

N − 1 + γ
P (pj,k|θc) (2.1)

where γ is a parameter of the DP prior; the higher the value of γ, the more likely a segment

will be associated with a new cluster. Intuitively, sub-word units in a language should be much

sparser than the observed spoken segments; therefore, we set γ to a small number in our exper-

iment as shown in Section 2.6.3. The first line of Eq. 2.1 follows Bayes’ rule. The first term is

the conditional prior, which is a result of the DP prior imposed on the cluster labels. The second

term is the conditional likelihood, which reflects how likely the segment pj,k is generated by

HMMc. We use n(c) to represent the number of cluster labels in c−j,k taking the value c, and

N to represent the total number of segments in the current segmentation.

In addition to existing cluster labels, cj,k can also take a new cluster label, which corre-

sponds to a new sub-word unit. The corresponding conditional posterior probability is:

P (cj,k 6= c, c ∈ C| · · · ) ∝ γ

N − 1 + γ

∫
θ
P (pj,k|θ) dθ (2.2)

To deal with the integral in Eq. 2.2, we follow the suggestions in [154, 136]. We sample

an HMM from the prior (note that a new HMM is sampled for each segment), and compute

the likelihood of the segment given the new HMM to approximate the integral. Finally, by

normalizing Eq. 2.1 and Eq. 2.2, the Gibbs sampler can draw a new value for cj,k by sampling

from the normalized distribution.

Hidden State (st) To enforce the assumption that a traversal of an HMM must start from the

first state and end at the last state, we do not sample hidden state indices for the first and last
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Algorithm 2.5.1 Initialization of st for the first inference iteration
for j ≤ t ≤ k do

if t = j then
sti = 1

else if t = k then
ski = 3

else
P (sti = q|st−1i ) = a

st−1
i ,q

cj,ki
end if

end for

frames of a segment. If a segment has only one frame, we assign the first state to it. For each

of the remaining feature vectors in a segment pj,k, we sample a hidden state index according to

the conditional posterior probability:

P (st = s| · · · ) ∝ P (st = s|st−1)P (xt|θcj,k , st = s)P (st+1|st = s)

= ast−1,s
cj,k

P (xt|θcj,k , st = s)as,st+1
cj,k

(2.3)

where the first term and the third term are the conditional prior — the transition probability

of the HMM that pj,k belongs to. The second term is the likelihood of xt being emitted by

state s of HMMcj,k . The variables st−1 and st+1 are the current state ids associated with xt−1
and xt+1. Note that for initialization, st is sampled from the first prior term in Eq. 2.3. More

specifically, the value of st in the first inference iteration is initialized by the process shown in

Alg. 2.5.1.

Mixture ID (mt) For each feature vector in a segment, given the cluster label cj,k and the

hidden state index st, the derivation of the conditional posterior probability of its mixture ID is

straightforward:

P (mt = m| · · · ) ∝ P (mt = m|θcj,k , st)P (xt|θcj,k , st,mt = m)

= wmcj,k,stP (xt|µ
m
cj,k,st

, λmcj,k,st) (2.4)

where 1 ≤ m ≤ 8. The conditional posterior consists of two terms: 1) the mixing weight of

the mth Gaussian in the state GMM indexed by cj,k and st and 2) the likelihood of xt given

the Gaussian mixture. The sampler draws a value for mt from the normalized distribution of

Eq. 2.4.
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HMM Parameters (θc) Each θc consists of two sets of variables that define an HMM: the

state emission probabilities wmc,s, µ
m
c,s, λ

m
c,s and the state transition probabilities aj,kc . In the

following, we derive the conditional posteriors of these variables.

Mixture Weight wmc,s: We use wc,s = {wmc,s|1 ≤ m ≤ 8} to denote the mixing weights of the

Gaussian mixtures of state s of HMM c. We choose a symmetric Dirichlet distribution with a

positive hyperparameter β as its prior. The conditional posterior probability of wc,s is:

P (wc,s| · · · ) ∝ P (wc,s;β)P (mc,s|wc,s)

∝ Dir(wc,s;β)Mul(mc,s;wc,s) (2.5)

∝ Dir(wc,s;β′) (2.6)

where mc,s is the set of mixture IDs of feature vectors that belong to state s of HMM c. Themth

entry of β′ is β+
∑

mt∈mc,s
δ(mt,m), where we use δ(·) to denote the discrete Kronecker delta.

The last line of Eq. 2.6 comes from the fact that Dirichlet distributions are a conjugate prior for

multinomial distributions. This property allows us to derive the update rule analytically.

Gaussian Mixture µmc,s, λ
m
c,s: We assume the dimensions in the feature space are indepen-

dent. This assumption allows us to derive the conditional posterior probability for a single-

dimensional Gaussian and generalize the results to other dimensions.

Let the dth entry of µmc,s and λmc,s be µm,dc,s and λm,dc,s . The conjugate prior we use for the two

variables is a normal-Gamma distribution with hyperparameters µ0, κ0, α0, and β0 [134].

P (µm,dc,s , λ
m,d
c,s |µ0, κ0, α0, β0) = N(µm,dc,s |µ0, (κ0λm,dc,s )−1)Ga(λm,dc,s |α0, β0)

By tracking the dth dimension of feature vectors x ∈ {xt|mt = m, st = s, cj,k = c, xt ∈
pj,k}, we can derive the conditional posterior distribution of µm,dc,s and λm,dc,s analytically follow-

ing the procedures shown in [134].

Transition Probabilities aj,kc : We represent the transition probabilities at state j in HMM c

using ajc. If we view ajc as mixing weights for states reachable from state j, we can simply

apply the update rule derived for the mixing weights of Gaussian mixtures shown in Eq. 2.6 to

ajc. Assuming we use a symmetric Dirichlet distribution with a positive hyperparameter η as

the prior, the conditional posterior for ajc is:

P (ajc| · · · ) ∝ Dir(ajc; η′)
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where the kth entry of η′ is η+nj,kc , the number of occurrences of the state transition pair (j, k)

in segments that belong to HMM c. Briefly, to compute the posterior distribution of ajc, we only

need to track the number of times each transition pair (j, k) occurs among all segments that

belong to cluster c and use these values to update the prior Dirichlet distribution.

Boundary Variable (bt) To derive the conditional posterior probability for bt, we introduce

two variables:

l = (argmax
gq

gq < t) + 1

r = argmin
gq

t < gq

where l is the index of the closest turned-on boundary variable that precedes bt plus 1, while

r is the index of the closest turned-on boundary variable that follows bt. Note that because g0
and gL are defined, l and r always exist for any bt.

Our Gibbs sampler considers one boundary variable at a time while keeping the values of

other boundary variables the same. Therefore, the value of bt only affects the segmentation

between xl and xr. If bt is turned on, the sampler hypothesizes two segments pl,t and pt+1,r

between xl and xr. Otherwise, only one segment pl,r is hypothesized. Since the segmentation

on the rest of the data remains the same no matter what value bt takes, the conditional posterior

probability of bt is:

P (bt = 1| · · · ) ∝ P (pl,t, pt+1,r|c−,θ) (2.7)

P (bt = 0| · · · ) ∝ P (pl,r|c−,θ) (2.8)

where we assume that the prior probabilities for bt = 1 and bt = 0 are equal; c− is the set of

cluster labels of all segments except those between xl and xr ; and θ indicates the set of HMMs

that have associated segments. Our Gibbs sampler hypothesizes bt’s value by sampling from

the normalized distribution of Eq. 2.7 and Eq. 2.8. The full derivations of Eq. 2.7 and Eq. 2.8

are shown in Eq. 2.9 and Eq. 2.10.
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P (pl,t, pt+1,r|c−,θ) = P (pl,t|c−,θ)P (pt+1,r|c−, cl,t,θ)

=

[∑
c∈C

n(c)

N− + γ
P (pl,t|θc) +

γ

N− + γ

∫
θ
P (pl,t|θ) dθ

]
(2.9)

×

[∑
c∈C

n(c) + δ(cl,t, c)

N− + 1 + γ
P (pt+1,r|θc) +

γ

N− + 1 + γ

∫
θ
P (pt+1,r|θ) dθ

]

P (pl,r|c−,θ) =
∑
c∈C

n(c)

N− + γ
P (pl,r|θc) +

γ

N− + γ

∫
θ
P (pl,r|θ) dθ (2.10)

Note that in Eq. 2.9 and Eq. 2.10, N− is the total number of segments in the data except

those between xl and xr. For bt = 1, to account for the fact that when the model generates

pt+1,r, pl,t is already generated and owns a cluster label, we sample a cluster label for pl,t that

is reflected in the Kronecker delta function. To handle the integral in Eq. 2.9 and Eq. 2.10, we

sample one HMM from the prior and compute the likelihood using the new HMM to approxi-

mate the integral as suggested in [154, 136].

� 2.5.2 Heuristic Boundary Elimination

To reduce the inference load on the boundary variables bt, we exploit acoustic cues in the

feature space to eliminate bt’s that are unlikely to be phonetic boundaries. We follow the

pre-segmentation method described in [57] to achieve the goal. For the rest of the bound-

ary variables that are proposed by the heuristic algorithm, we randomly initialize their values

and proceed with the sampling process described above. Fig. 2.5 shows an example of applying

the boundary elimination algorithm to a spoken utterance. It can be seen that only a small set of

feature vectors, highlighted with vertical red bars in Fig. 2.5, are proposed as potential segment

boundaries. Empirically, this boundary elimination algorithm can reduce the computational

complexity of the inference algorithm described in this section by roughly an order of magni-

tude on clean speech corpora. In addition, as illustrated in Fig. 2.5, a subset of these proposed

boundaries often coincide with true phone boundaries, which offers a good initialization for our

model in the enormous hypothesis space.

� 2.6 Experimental Setup

To the best of our knowledge, there are no standard corpora for evaluating unsupervised meth-

ods for acoustic modeling. However, numerous related studies have reported performance on
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Figure 2.5. The result of applying the boundary elimination algorithm to a spoken utterance. The vertical red bars

indicate potential segment boundaries proposed by the algorithm.

the TIMIT corpus [28, 37, 152, 191, 192], which creates a set of strong baselines for us to

compare against. Therefore, the TIMIT corpus is chosen as the evaluation set for our model. In

this section, we describe the TIMIT corpus and the methods used to measure the performance

of our model on the following three tasks: sub-word acoustic modeling, segmentation, and

nonparametric clustering.

� 2.6.1 TIMIT Corpus

The TIMIT corpus is designed to provide speech data for acoustic-phonetic studies [52, 106,

194]. The corpus contains broadband recordings of 438 male speakers and 192 female speak-

ers of eight major dialects of American English, each reading ten phonetically rich sentences.

There are three sets of sentences in the TIMIT corpus: 1) the sa sentences that are read by ev-

ery speaker, which are designed to reflect dialectal differences, 2) the sx phonetically compact

sentences, which provide a good coverage of pairs of phones [106], and 3) the si phonetically

diverse sentences, which contain sentences extracted from the Brown Corpus [95] and a collec-

tion of dialogs from stage plays [71]. The si sentences aim to add diversity in sentence types

and phonetic contexts to the corpus.

The 6,300 sentences are further divided into training, dev, and test sets, which contain 4620,

500, and 1180 sentences. There is no speaker or sentence overlap between the training and test

sets. The recorded utterances are stored as 16-bit, 16 kHz speech waveform files, and the time-

aligned phonetic transcriptions of the recorded sentences are also provided in the corpus, which

are the gold standard we use to evaluate the model.
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� 2.6.2 Evaluation Methods

Nonparametric Clustering

Our model automatically groups speech segments into different clusters. One question we are

interested in answering is how these learned clusters correlate to English phones. To answer

that question, we develop a method to map cluster labels to the phone set in a dataset. We align

each cluster label in an utterance to the phone(s) it overlaps with in time by using the boundaries

proposed by our model and the manually-labeled ones. When a cluster label overlaps with more

than one phone, we align it to the phone with the largest overlap. An exception is when a cluster

label is mapped to /vcl/ /b/, /vcl/ /g/, and /vcl/ /d/, where the duration of the release /b/, /g/, and

/d/ is almost always shorter than the closure /vcl/, in which case we align the cluster label to

both the closure and the release. We compile the alignment results for 3,696 training utterances,

which consist of the TIMIT training set excluding all the sa subset, and present a confusion

matrix between the learned cluster labels and the 48 phonetic units used in TIMIT [115].

Unsupervised Phone Segmentation

We compare the phonetic boundaries proposed by our model to the manual labels provided

in the TIMIT dataset. We follow the suggestion of [165] and use a 20-ms tolerance window

to compute recall, precision rates, and F-score of the segmentation our model proposed for

TIMIT’s training partition. We compare our model against the state-of-the-art unsupervised

and semi-supervised segmentation methods that were also evaluated on the same set of data [28,

152].

Sub-word Modeling

Finally, and most importantly, we need to gauge the quality of the learned sub-word acoustic

models. In previous work, [182] and [50] tested their models on a phone recognition task and a

term detection task respectively. These two tasks are fair measuring methods, but performance

on these tasks depends not only on the learned acoustic models, but also other components

such as the label-to-phone transducer in [182] and the graphone model in [50]. To reduce

performance dependencies on components other than the acoustic model, we turn to the task of

spoken term detection, which is also the method used in [74].

We compare our unsupervised acoustic model with three supervised ones: 1) an English

triphone model, 2) an English monophone model, and 3) a Thai monophone model. The first

two were trained on TIMIT, while the Thai monophone model was trained from 32 hours of
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Word
# occurences # occurences

in the traning set in the test set

age 3 8

warm 10 5

year 11 5

money 19 9

artists 7 6

problem 22 13

children 18 10

surface 3 8

development 9 8

organizations 7 6

Table 2.1. The ten keywords, used in the spoken term detection evaluation task, and their frequencies in the training

and test sets of TIMIT.

clean, read Thai speech from the LOTUS corpus [90]. All of the three models, as well as

ours, used three-state HMMs to model phonetic units. To conduct spoken term detection ex-

periments on the TIMIT dataset, we computed a posteriorgram representation for both training

and test feature frames over the HMM states for each of the four models. Ten keywords were

randomly selected for the task. The list of the ten keywords and their counts of occurrences in

the training and test sets are shown in Table 2.1. For every keyword, spoken examples were

extracted from the training set and were searched for in the test set using segmental dynamic

time warping [191].

In addition to the supervised acoustic models, we also compare our model against the state-

of-the-art unsupervised methods for this task [191, 192]. [191] trained a GMM with 50 com-

ponents to decode posteriorgrams for the feature frames, and [192] used a deep Boltzmann

machine (DBM) trained with pseudo phone labels generated from an unsupervised GMM to

produce a posteriorgram representation. The evaluation metrics they used were: 1) P@N, the

average precision of the top N hits, where N is the number of occurrences of each keyword in

the test set and 2) EER: the average equal error rate at which the false acceptance rate is equal

to the false rejection rate. We also report experimental results using the P@N and EER metrics.
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γ αb β η µ0 κ0 α0 β0

1 0.5 3 3 µd 5 3 3/λd

Table 2.2. The values of the hyperparameters of our model, where µd and λd are the dth entry of the mean and the

diagonal of the inverse covariance matrix of training data.

� 2.6.3 Hyperparameters and Training Details

The values of the hyperparameters introduced in Section 2.5 are shown in Table 2.2, where

µd and λd are the dth entry of the mean and the diagonal of the inverse covariance matrix

computed from training data. We pick these values to impose weak priors on our model. We

run our sampler for 20,000 iterations, after which the evaluation metrics for our model all

converged. In Section 2.7, we report the performance of our model using the sample from the

last iteration.

� 2.7 Results and Analysis

� 2.7.1 Nonparametric Clustering

Fig. 2.6 shows a confusion matrix of the 48 phones used in TIMIT and the sub-word units

learned from the 3,696 utterances of the TIMIT training set excluding the sa sentences. Each

circle represents a mapping pair for a cluster label and an English phone. The confusion matrix

demonstrates a strong correlation between the cluster labels and individual English phones. For

example, clusters 19, 20, and 21 are mapped to the vowel /ae/. A more careful examination on

the alignment results shows that the three clusters are mapped to the same vowel in a different

acoustic context. For example, cluster 19 is mapped to /ae/ followed by stop consonants, while

cluster 20 corresponds to /ae/ followed by nasal consonants. This context-dependent relation-

ship is also observed in other English phones and their corresponding sets of clusters. Fig. 2.6

also shows that a cluster may be mapped to multiple English phones. For instance, cluster 89 is

mapped to more than one phone; nevertheless, a closer look reveals that the cluster is mapped

to /n/ and /d/, which are sounds with a similar place of articulation (i.e. dental). These corre-

lations indicate that our model is able to discover the phonetic composition of a set of speech

data without any language-specific knowledge.
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Figure 2.6. A confusion matrix of the learned cluster labels from the TIMIT training set excluding the sa type

utterances and the 48 phones used in TIMIT. Note that for clarity, we show only pairs that occurred more than 200

times in the alignment results. The average co-occurrence frequency of the mapping pairs in this figure is 431.

� 2.7.2 Sub-word Modeling

The performance of the four acoustic models on the spoken term detection task is presented in

Table 2.3. The English triphone model achieves the best P@N and EER results and performs

slightly better than the English monophone model, which indicates a correlation between the

quality of an acoustic model and its performance on the spoken term detection task. Although

our unsupervised model does not perform as well as the supervised English acoustic models,

it generates a comparable EER, and achieves better detection performance for top hits than the

Thai monophone model. This indicates that even without supervision, our model captures and

learns the acoustic characteristics of a language automatically and is able to produce an acoustic

model that outperforms a language-mismatched acoustic model trained with high supervision.

Table 2.4 shows that our model improves P@N by a large margin and generates only a

slightly worse EER than the GMM baseline on the spoken term detection task. At the end of the

training process, our model induced 169 HMMs, which were used to compute posteriorgrams.
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unit(%) P@N EER

English triphone 75.9 11.7

English monophone 74.0 11.8

Thai monophone 56.6 14.9

Our model 63.0 16.9

Table 2.3. The performance of our model and three supervised acoustic models on the spoken term detection task.

unit(%) P@N EER

GMM [191] 52.5 16.4

DBM [192] 51.1 14.7

Our model 63.0 16.9

Table 2.4. The performance of our model, the GMM, and the state-of-the-art DBM baselines on the spoken term

detection task for the TIMIT corpus.

This seems unfair at first glance because [191] only used 50 Gaussians for decoding, and the

better result of our model could be a natural outcome of the higher complexity of our model.

However, [191] pointed out that using more Gaussian mixtures for their model did not improve

their model performance. This indicates that the key reason for the improvement is our joint

modeling method instead of simply the higher complexity of our model.

Compared to the DBM baseline, our model produces a higher EER; however, it improves

the relative detection precision of top hits by 24.3%. As indicated in [192], the hierarchical

structure of DBM allows the model to provide a decent posterior representation of phonetic

units. Even though our model only contains simple HMMs and Gaussians, it still achieves a

comparable, if not better, performance than the DBM baseline. This demonstrates that even

with just a simple model structure, the proposed learning algorithm is able to acquire rich

phonetic knowledge from data and generate a fine posterior representation for phonetic units.

� 2.7.3 Unsupervised Phone Segmentation

Table 2.5 summarizes the segmentation performance of the baselines, our model, and the heuris-

tic pre-segmentation (pre-seg) method. The language-independent pre-seg method is suitable

for seeding our model. It eliminates most unlikely boundaries while retaining about 87%

true boundaries. Even though this indicates that at best our model only recalls 87% of the

true boundaries, the pre-seg reduces the search space significantly. Additionally, the heuristic

method is language-independent. Therefore, it can be integrated into our unsupervised learning
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unit(%) Recall Precision F-score

Dusan (2006) [unsupervised] [28] 75.2 66.8 70.8

Qiao (2008) [semi-supervised]* [152] 77.5 76.3 76.9

Our model [unsupervised] 76.2 76.4 76.3

Pre-seg 87.0 50.6 64.0

Table 2.5. The segmentation performance of the baselines, our model, and the heuristic pre-segmentation on TIMIT

training set. *The number of phone boundaries in each utterance was assumed to be known in this model.

framework easily. Last but not least, it also allows the model to capture proper phone dura-

tions, which compensates for the fact that we do not include any explicit duration modeling

mechanisms in our approach.

In the best semi-supervised baseline model [152], the number of phone boundaries in an

utterance was assumed to be known. Although our model does not incorporate this information,

it still achieves a very close F-score. When compared to the baseline in which the number of

phone boundaries in each utterance was also unknown [28], our model outperforms it in both

recall and precision, improving the relative F-score by 18.8%. The key difference between the

two baselines and our method is that our model does not treat segmentation as a stand-alone

problem; instead, it jointly learns segmentation, clustering, and acoustic units from data. The

improvement on the segmentation task shown by our model further supports the strength of the

joint learning scheme proposed in this chapter.

� 2.8 Chapter Conclusion

In this chapter, we investigate and present a nonparametric Bayesian unsupervised approach to

the problem of acoustic unit discovery from speech data. Without any prior knowledge, our

method is able to discover phonetic units that are closely related to English phones, improve

upon state-of-the-art unsupervised segmentation methods, and generate more precise spoken

term detection performance on the TIMIT dataset. We see several directions to extend our

work. First, can we use more flexible topological structures to model acoustic units within our

framework as in [147]? For example, instead of fixing the number of states for each HMM to be

three, can this number be directly learned from data? Second, while we assume no prior linguis-

tic knowledge is available for training our model in the proposed learning framework, chances

are that in reality we will have some knowledge about a language such as knowledge gained

from a closely related language, or some universal phonological structure observed across well-



62 CHAPTER 2. ACOUSTIC UNIT DISCOVERY IN SPEECH

studied languages. How can we incorporate this information into the current model? Last but

not least, as mentioned at the beginning of this chapter, discovering acoustic units from contin-

uous speech is a task that infants must deal with when learning their first language. How can

we compare the proposed model to humans? Can we make the proposed approach a cognitively

plausible modeling framework for language acquisition?

The framework for unsupervised acoustic unit discovery presented in this chapter is the

cornerstone of this thesis. In Chapter 3 to Chapter 5, we will use this framework as a founda-

tion and venture out to investigate other problems that are related to automatic linguistic unit

discovery from acoustic signals. Particularly, in Chapter 3, we present an unsupervised method,

which is built on top of the framework depicted in this chapter, for acquiring phonetic, syllabic,

and lexical structures from speech, the challenge that infants must solve when learning their

mother tongue. In Chapter 4, we also apply this model to examine the role of the compositional

structure in speech for the task of one-shot learning of spoken words. Finally, in Chapter 5,

we demonstrate how to learn word pronunciations from a set of parallel text and speech data.

The set of learned word pronunciations can then replace the manually-created lexicons used in

modern ASR systems, which allows us to avoid the intensive human supervision involved in

the current method for training speech recognizers.



Chapter 3

Hierarchical Linguistic Structure

Discovery from Speech

� 3.1 Chapter Overview

In Chapter 2, we presented a DPHMM model for discovering phone-like acoustic units from

speech. However, languages contain much richer structures that go beyond basic phonetic

units. For instance, phone sequences form syllables, and syllable sequences form words. In this

chapter, we investigate the problem of discovering hierarchical linguistic structures from speech

data directly. In particular, we aim to learn not only the phonetic units but also the syllabic

and the lexical units from acoustic signals. To accomplish the goal, we integrate an adaptor

grammar with a noisy-channel model, which captures phonetic variability often observed in

informal speech, and an acoustic model, which converts acoustic signals into symbolic phonetic

units. This integrated framework is able to learn repeated, or reusable, acoustic patterns at all

structural levels.

More concretely, when evaluated on lecture recordings, the model demonstrates an ability

to discover lexical units that correspond to the set of words with high Term Frequency-Inverse

Document Frequency (TFIDF) scores associated with each lecture. In addition, our model also

demonstrates its capability of inducing phonetic units and discovering syllabic structures that

can be reused to compose different lexical units, all directly from acoustic signals. An analysis

on the experimental results reveals that modeling phonetic variability is the key to successfully

acquiring lexical units from speech data. Last but not least, the analysis also shows that the

synergies between phonetic and lexical unit learning helps improve the model performance.

The remainder of the chapter proceeds as follows. In Section 3.2, we discuss problems

that are related to linguistic structure discovery from acoustic data and review the current ap-

proaches to tackling each of the related problems. In Section 3.3, we present our model and go

63
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through the three main components of it: the adaptor grammars, the noisy-channel model, and

the acoustic model in detail. After introducing the model, we show how to infer the latent vari-

ables by using Metropolis-Hastings algorithms in Section 3.4. In Section 3.5, we describe the

dataset and the metrics used to evaluate the effectiveness of our model. The experimental results

and analyses are reported in Section 3.6. Finally, we conclude the chapter in Section 3.7.

� 3.2 Related Work

� 3.2.1 Spoken Term Discovery

Our work is closely related to the Spoken Term Discovery (STD) problem, which is the task

of discovering repeated lexical items from acoustic data. Previous work has approached this

problem using pattern matching and graph clustering techniques [146, 191, 192, 75, 2, 127]. In

particular, the authors of [146] modified the classic Dynamic Time Warping (DTW) algorithm

to find acoustically similar speech segments within a dataset. To cluster the acoustic patterns,

the segments were treated as adjacent nodes in a graph, connected by weighted edges indicating

the similarity between the segments. Subsequently, graph clustering algorithms were employed

to group the nodes into clusters based on acoustic similarity. The discovered clusters were

shown to correspond to meaningful lexical entities such as words and short multi-word phrases

in [146].

Building on this framework, the authors of [191, 192] proposed robust features that allowed

lexical units to be discovered from spoken documents generated by different speakers. A sim-

ilar approach to STD that was based on line segment detection on dotplots was also presented

in [75]. Finally, instead of comparing every utterance pair to find recurrences of acoustic pat-

terns as in [146, 191, 192, 75], an incremental comparison scheme was introduced in [127].

In [127], utterances were only compared to other utterances within a fixed recency window.

Any utterance outside the window was represented only by the fragments already found within

it. After the speech segments were all found incrementally, a graph clustering algorithm was

then exploited to discover hidden categories of spoken words.

In [2], a multi-modal framework that utilized both speech and visual streams to discover

lexical units in acoustic signals was proposed. The visual stream was abstracted as a sequence

of discrete semantic tags, and each input spoken utterance was paired with one of these tags.

When two utterances have the same visual semantic label, a Dynamic Programming (DP) algo-

rithm is employed to search for acoustically similar segments within the pair. The discovered

speech segments were then assigned to the cluster corresponding to the visual semantic tag. In
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summary, instead of exploiting unsupervised clustering algorithms, the framework of [2] relied

on the visual semantic label to cluster the speech segments.

Our model contrasts with the previous methods in two ways. First, due to the nature of

the pattern matching techniques employed in the previous frameworks, no more than isolated

speech segments that sparsely spread all over a dataset can be found by these methods. On

the contrary, our model is able to induce continuous linguistic units embedded in the speech

data. Furthermore, these methods can only discover shallow linguistic entities. For example,

no structures within the discovered lexical acoustic units were learned by any of the methods.

In contrast, our model is capable of acquiring hierarchical structures that contain rich linguistic

information directly from acoustic signals.

� 3.2.2 Word Segmentation on Symbolic Input

Much previous works has investigated the problem of segmenting continuous phoneme se-

quences into words. In particular, quite a few nonparametric Bayesian models have been pro-

posed for the problem. In [60], the author applied both the Dirichlet Processes (DP) mixture

model and the Hierarchical Dirichlet Processes (HDP) mixture model to discover latent word

types in the input data. A nested Pitman-Yor language model was proposed to capture both

the phoneme-ngram and the word-ngram statistics to find word boundaries in unsegmented

phonetic input [131]1. Even though the models proposed in [60] and [131] demonstrated their

strength in finding word boundaries, these models all assumed an unrealistic degree of phonetic

regularity. To overcome this drawback, a sequential and a joint model that are based on [60]

were respectively proposed in [33, 34] for learning lexical units, and modeling phonetic vari-

ability from noisy phonetic input. Furthermore, the nested Pitman-Yor language model was

also extended in [137, 69] to simultaneously learn lexical units and a language model from

phoneme lattices representing speech signals.

Another model that is worth noting are adaptor grammars [83], which have proven to be

a powerful framework for word segmentation. Particularly, adaptor grammars have been suc-

cessfully applied to find word boundaries in various types of symbolic input, including phonetic

transcriptions of speech signals, strings of Chinese characters, and unsegmented sequences of

Sesotho characters [83, 80, 82, 77, 12, 78]. Briefly, adaptor grammars are a framework for

defining a variety of hierarchical nonparametric Bayesian models. In fact, the DP mixture

model proposed in [60] can be viewed as a special case of the adaptor grammars. The strength
1The Pitman-Yor language model was also used to learn the character-ngram and word-ngram to segment

Japanese and Chinese character strings.
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of adaptor grammars comes from their flexibility in learning units of generalization and the

simplicity of encoding linguistic structures as grammars.

The major difference between our model and the methods discussed in this section is that

our model infers linguistic units directly from acoustic signals. Particularly, unlike all the other

methods, our model does not rely on any phonetic transcriptions that are generated either man-

ually or by a pre-trained acoustic model. We achieve the goal by integrating adaptor grammars

with a noisy-channel model and an acoustic model, which are described in more detail in Sec-

tion 3.3.

� 3.2.3 Linguistic Structure Discovery from Acoustic Signals

The goal of [20] is the most similar to ours: discovering linguistic structures directly from

speech. The authors of [20] presented a two-level cascaded framework, in which one level of

the model learns subword-like units, and the other level learns word-like units. Through an

iterative optimization procedure, the model finds a set of acoustic patterns for each level and

induces a language model for the word-like units from speech signals.

While our work and [20] share similar goals, there are two main differences that set our

approach apart from theirs. First, in our approach, we explicitly model phonetic variability,

which allows different phonetic realizations of a word to be mapped to the same lexical unit.

Given that word-like units are defined as unique sequences of subword-like units in [20], it

is not clear how their model clusters variant pronunciations of a word together. Second, by

using adaptor grammars, we can easily encode linguistic structures that are richer than the two-

level one defined in [20] and learn the corresponding composition from the speech data. For

example, by modeling words as sequences of syllables, and representing syllables as sequences

of phonetic units, we can infer acoustic patterns for three levels, which correspond to phonetic,

syllabic, and lexical units. Last but not least, as mentioned earlier, adaptor grammars can learn

units of generalization and encourage reuse of linguistic structures, which is a phenomenon

frequently observed in natural language [143] and difficult to capture by a maximal likelihood

learning framework such as the one proposed in [20].

� 3.3 Model

� 3.3.1 Problem Formulation and Model Overview

Given a corpus of spoken utterances, the goal of our model is to jointly infer the latent linguistic

structures in each spoken utterance, which hierarchically consists of phonetic, syllabic, and
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Speech input

Hidden
linguistic structures

(a)

(b) ( [15 3] [47 2] [18 3] [36 49] [25 67] )

k ax l ae b ax r ey sh eng l ow b ax l ay ey sh enz

( [5 47 89] [18 3] [47 19] [27 49] [25 67] ) ( [2 51 39] )

ae n d

Figure 3.1. (a) Speech representation of the utterance globalization and collaboration, which is shown as a typical

example of the input data to our model, and (b) the hidden linguistic structures that our model aims to discover that

are embedded in the speech data, including the phonetic units (denoted as integers), syllabic units (indicated by [·]),
and lexical units (shown in (·)). Note that the phone transcription, g l ow b ax l ay z ey sh en ae n d k ax l ae b ax r

ey sh en, is only used to illustrate the structures our model aims to learn and is not given to our model for learning.

lexical units. Fig. 3.1-(a) and Fig. 3.1-(b) respectively show an input example and an illustration

of the learning targets of our model using the utterance globalization and collaboration. The

integers indicate the distinct phonetic units that our model learns from the speech data, and [·]
and (·) denote the syllabic and lexical units. Note that the phone transcription, g l ow b ax l ay z

ey sh en ae n d k ax l ae b ax r ey sh en, is only used to illustrate the structures our model aims

to discover and is not available to our model for learning.

To discover hierarchical linguistic structures directly from acoustic signals, we divide the

problem into three sub-tasks: 1) phonetic unit discovery, 2) phone variability modeling, and 3)

syllabic and lexical unit learning. Each of the sub-tasks corresponds to some latent structures

embedded in the speech data that our model needs to find. Here we briefly discuss the three sub-

tasks as well as the latent variables associated with each sub-problem, and provide an overview

on the proposed model for each of the sub-tasks.

Phonetic unit discovery For this sub-task, the goal of the model is to discover the phonetic

units underlying each spoken utterance. In other words, the model aims to convert the speech

input xi into a sequence of Phone-Like Units (PLUs), ~vi, which implicitly determines the

phone segmentation, zi, in the speech data as indicated in (iv)-(vi) of Fig 3.2-(b). We use

xi = {xi,t|xi,t ∈ R39, 1 ≤ t ≤ Ti} to denote the series of Mel-Frequency Cepstral Coefficients

(MFCCs) representing the ith utterance [23], where Ti stands for the total number of feature

frames in utterance i. In particular, we transform each spoken utterance into a series of 25 ms

13-dimensional MFCCs and their first- and second-order time derivatives at a 10 ms analysis

rate. Each xi,t is associated with a binary variable zi,t, indicating whether a PLU boundary

exists between xi,t and xi,t+1. The feature vectors with zi,t = 1 are highlighted by the dark



68 CHAPTER 3. HIERARCHICAL LINGUISTIC STRUCTURE DISCOVERY FROM SPEECH

Noisy-channel model
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Adaptor grammar
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(iii) edit operations

vi

zi (v) phone-like unit 
boundarieslower-level knowledge

higher-level knowledge
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Figure 3.2. (a) An overview of the proposed model for inducing hierarchical linguistic structures directly from

acoustic signals. The model consists of three major components: an adaptor grammar, a noisy-channel model, and

an acoustic model. As indicated in the graph, the learning framework for the model allows partial knowledge learned

from each level to drive discovery in the others. (b) An illustration of an input example, xi, and the associated latent

structures in the acoustic signals di,ui,oi, ~vi,zi. These latent structures can each be discovered by one of the three

components of the model as specified by the red horizontal bars between (a) and (b). See Section 3.3 for a more

detailed description.

blue bars in Fig. 3.2-(vi), which correspond to the boundaries of the speech segments. Each

speech segment is labelled with a PLU id vi,j,k ∈ L, in which L is a set of integers that

represent the PLU inventory embedded in the speech corpus. We denote the sequence of PLU

ids associated with utterance i using ~vi as shown in Fig. 3.2-(iv), where ~vi = {vi,j |1 ≤ j ≤ Ji}
and vi,j = {vi,j,k|vi,j,k ∈ L, 1 ≤ k ≤ |vi,j |}. The variable Ji is defined in the discussion of the

second sub-task.

As depicted in Fig. 3.2-(a), we construct an acoustic model to approach this sub-problem.

More specifically, the acoustic model is composed of a set of Hidden Markov Models (HMMs),

π, that are used to infer and model the PLU inventory from the given spoken utterances. With

these HMMs, we can segment and decode the speech signals xi into a series of PLUs ~vi.

Phone variability modeling In conversational speech, phonetic realization of a word can eas-

ily vary because of the context, the stress patterns, etc. Take the word the as an example.

While the pronunciation /dh ax/ is generally identified as the standard, the word can also be

pronounced as /dh iy/ when it precedes a word that starts with a vowel, or when it is used to

emphasize the proceeding noun. Without a mechanism that can map these two pronunciations

into a unique representation, any model that induces linguistic structures based on phonetic

input would fail to recognize these two pronunciations as instances of the same word type.
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We exploit a noisy-channel model to address this problem and design three edit operations

for the noisy-channel model: substitution, split, and deletion. Each of the operations takes a

PLU as an input and is denoted as sub(u), split(u), and del(u) respectively. We assume that

for every inferred sequence of PLUs ~vi in Fig. 3.2-(b)-(iv), there is a corresponding series of

PLUs, ui = {ui,j |1 ≤ j ≤ Ji}, in which the pronunciations for any repeated word in ~vi are

identical. The variable Ji indicates the length of ui. By passing each ui,j through the noisy-

channel model, which stochastically chooses an edit operation oi,j for ui,j , we obtain the noisy

phonetic realization vi,j . Note that we denote vi,j as a vector since if a split operation is chosen

for ui,j , the output of the noisy-channel model will contain two PLUs. The relationship among

ui, oi, and ~vi is shown in (ii)-(iv) of Fig. 3.2-(b). The pairs of white squares and circles depict

substitution operations in which ui,j is replaced with the same PLU. On the other hand, the pairs

of shaded squares and circles illustrate the split and deletion operations along with examples

of substitution operations where ui,j is substituted with a different PLU. In order to distinguish

between the two sequences of PLUs ui and ~vi, we refer to the input of the noisy-channel model

ui as the top-layer PLUs and the output ~vi as the bottom-layer PLUs.

Syllabic and lexical unit learning With the standardized phonetic representation ui obtained,

higher-level linguistic structures such as the syllabic and lexical units can be inferred for each

spoken utterance. We employ an Adaptor Grammar (AG) [83] to achieve the goal as indicated in

Fig. 3.2-(a) and use di to denote the parse tree that encodes the hierarchical linguistic structures

as shown in Fig. 3.2-(b)-(i).

In summary, we integrate an adaptor grammar with a noisy-channel model and an acoustic

model to achieve the goal of discovering hierarchical linguistic structures directly from acoustic

signals. Even though the sub-tasks are discussed in a bottom-up manner, our model provides

a joint learning framework, allowing knowledge learned from one sub-task to drive discovery

in the others as illustrated in Fig. 3.2-(a). In the rest of this section, we provide a review on

AGs and then formally define the noisy-channel and acoustic model. At the end, we present the

generative process implied by our model.

� 3.3.2 Adaptor Grammars

Adaptor grammars are a non-parametric Bayesian extension of the Probabilistic Context-Free

Grammars (PCFGs). In this section, we briefly review the definition of PCFGs and then show

how to extend PCFGs to AGs. We refer readers to [83] and Chapter 3 of [140] for a more

detailed description of AGs and their connection to PCFGs.
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A PCFG can be defined as a quintuple (N,T,R, S, {~θq}q∈N ), which consists of disjoint

finite sets of nonterminal symbols N and terminal symbols T , a finite set of production rules

R ⊆ {N → (N ∪ T )∗}, a start symbol S ∈ N , and vectors of probabilistic distributions

{~θq}q∈N . In particular, each ~θq contains the probabilities associated with the rules that have

the nonterminal q on their left-hand side, which are denoted as the rule set Rq. We use θr to

indicate the probability of rule r ∈ R. In our implementation, we adopt a Bayesian learning

framework and impose a Dirichlet prior on each ~θq ∼ Dir(~αq), where ~αq represents the vector

of hyperparameters for the Dirichlet distribution associated with q.

We use t to denote a complete derivation, which represents either a tree that expands from

a nonterminal node q to its leaves, which contain only terminal symbols, or a tree that is com-

posed of a single terminal symbol. We define root(t) as a function that returns the root node

of t and denote the k immediate subtrees of the root node as t̂1, · · · , t̂k. The probability dis-

tribution over T q, the set of trees that have q ∈ N ∪ T as the root, is recursively defined as

follows.

Gqpcfg(t) =


∑

r∈Rq θr
∏k
i=1G

root(t̂i)
pcfg (t̂i) root(t) = q ∈ N

1 root(t) = q ∈ T
(3.1)

Eq. 3.1 completes the definition of a PCFG, which can be extended to an adaptor gram-

mar. Simply put, an adaptor grammar is a sextuple (N,T,R, S, {~θq}q∈N , {Y q}q∈N ), in which

(N,T,R, S, {~θq}q∈N ) is a PCFG, and {Y q}q∈N is a set of adaptors for the nonterminals. An

adaptor Y q is a function that maps a base distribution over T q to a distribution over distribu-

tions over T q. The distribution Gqag(t) for q ∈ N of an AG is a sample from this distribution

over distributions. More specifically,

Gqag(t) ∼ Y q(Hq(t)) (3.2)

Hq(t) =
∑

r∈Rq
θr

∏k

i=1
G

root(t̂i)
ag (t̂i) (3.3)

where Hq(t) denotes the base distribution over T q. In this chapter, we use adaptors that

are based on Pitman-Yor processes [150]; therefore, each Y q corresponds to two parameters

〈aq, bq〉, which are the hyperparameters of the Pitman-Yor process. We use a = {aq|q ∈ N}
and b = {bq|q ∈ N} to represent the sets of hyperparameters associated with the nonterminal

symbols. If aq = 1, then the adaptor Y q becomes an identity function and Gqag(t) = Hq(t),

which indicates that the nonterminal q is not adapted. For terminal symbols q ∈ T , we define



Sec. 3.3. Model 71

Gqag(t) = 1, which is a distribution that puts all its probability mass on the single-node tree

labelled q.

Conceptually, AGs can be regarded as PCFGs with memories, which cache the complete

derivations of adapted nonterminals in a grammar and allow AGs to either reuse the cached

trees or select a production rule in R to expand an adapted nonterminal. We denote the set of

trees that the AG caches for q ∈ N in the parses D of a corpus as Xq(D) and use nq(D) to

list the number of times that each cached tree expands q in D. Furthermore, we gather the top

expansion rule for each tree inXq(D) and assign this set of rules to T q. The frequency of each

rule appearing at the top of the trees in Xq(D) is stored in f q, which implies that the sum of

f q equals the length ofXq(D).

Since our goal is to discover the latent hierarchical linguistic structures in spoken utterances,

we model an utterance as a sequence of words, represent a word as a sequence of syllables, and

view syllables as a series of phones. We encode this hierarchical structure in the following AG

as a constraint for parsing each spoken utterance.

Sentence→Word+

Word→ Syllable+

Syllable→ Phone+

Phone→ l for l ∈ L

(3.4)

We adopt the notations of [82] and use underlines to indicate adapted nonterminals and

employ + to abbreviate right-branching recursive rules for nonterminals. The last rule shows

that the terminals of this AG are the PLU ids, which are represented as ui and depicted as the

units in the squares of Fig. 3.2-(b)-(ii).

� 3.3.3 Noisy-channel Model

We formulate the noisy-channel model as a PCFG and encode the substitution, split, and dele-

tion operations as the grammar rules. In particular, for l ∈ L,

l→ l′ for l′ ∈ L

l→ 1′1l
′
2 for l′1, l

′
2 ∈ L

l→ ε

(3.5)

where l ∈ L are the start symbols as well as the nonterminals of the PCFG. The terminals of

this PCFG are l′ ∈ L, which correspond to the bottom-layer PLUs ~vi that are depicted as the
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units in circles in Fig. 3.2-(b)-(iv). Note that {l} and {l′} correspond to the same set of PLUs.

However, we exploit two sets of notations to specify that {l′} are the terminals of this grammar

and cannot be further expanded. The three sets of rules respectively map to the sub(·), split(·),
and del(·) operations; thus, the probability of each edit operation is automatically captured

by the corresponding rule probability. We impose a Dirichlet prior on the rule probability

distribution associated with each nonterminal l. More specifically, we assume ~θl ∼ Dir(~αl),

where ~αl is a (|L|2 + |L| + 1)-dimensional vector, whose entries correspond to the pseudo

counts for the |L|2 split rules, |L| substitution rules, and the 1 deletion rule. Note that the first

rule set l→ l′ includes the identity substitution.

As far as the discussion is concerned, the size of the PLU inventory is assumed to be known.

This is a reasonable assumption if the corpus consists of speech data in a language whose pho-

netic properties are well studied, such as English. However, if the corpus is in a language for

which not much prior knowledge is available, then the size of the phonetic inventory embedded

in the corpus will need to be inferred from the data. Here we formulate a noisy-channel model

that simultaneously infers a phonetic inventory of an unknown size and models the phone vari-

ability by using the infinite PCFG [117]. More concretely, we define the following grammar

rules.

Phone→ l for l ∈ L (3.6)

l → lsub | lsplit | ldel (3.7)

lsub → l′ for l′ ∈ L (3.8)

lsplit → l′1l
′
2 for l′1, l

′
2 ∈ L (3.9)

ldel → ε (3.10)

The last rule of the AG defined in Eq. 3.4 involves the PLUs to be discovered; therefore, we

repeat it here in Eq. 3.6. The second rule shown in Eq. 3.7 specifies the three edit operations

that can be applied to a top-layer PLU. The outcomes of applying each edit operation on a

top-layer PLU are listed in Eq. 3.8-3.10, which correspond to the grammar rules shown in

Eq. 3.5. Note that the size of L is unknown in this grammar. We impose the following priors on

the probabilistic distributions associated with the nonterminal symbols in Eq. 3.6-3.10. These

priors allow us to induce a PLU inventory of a proper size directly from the data.
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~θ Phone ∼ GEM(αPhone) (3.11)

~θl ∼ Dir(~αl) (3.12)

~θlsub ∼ DP (αlsub , ~θ Phone) (3.13)

~θlsplit ∼ DP (αlsplit , ~θ Phone~θ PhoneT ) (3.14)

~θldel = δ(ε) (3.15)

In particular, we let ~θ Phone distribute according to the stick-breaking distribution [166] as

shown in Eq. 3.11, where αPhone is the parameter of the Beta distribution used in the stick-

breaking construction process. Each entry of ~θ Phone represents a phone-like unit that our model

discovers. To ensure that the input {l} and the output {l′}, {l′1}, and {l′2} of the noisy-channel

model in Eq. 3.6-3.9 correspond to the same set of PLUs, we impose DP priors on ~θlsub and
~θlsplit by using ~θ Phone to construct the base distributions as shown in Eq. 3.13 and Eq. 3.14.

More specifically, ~θ Phone~θ PhoneT is the product distribution over pairs of PLUs, and αlsub and

αlsplit are the concentration parameters of the DPs. The probabilistic distribution associated

with the deletion operation of Eq. 3.10 is the one that concentrates all its probability mass on the

symbol ε, which is denoted as δ(ε) in Eq. 3.15. Finally, a 3-dimensional Dirichlet distribution

is imposed on ~θl as shown in Eq. 3.12, which indicates the prior probability of choosing each

of the three edit operations.

For computational efficiency, we only explore the finite version of the noisy-channel model

for the experiments reported in this chapter. In particular, we employ the DPHMM model

introduced in Chapter 2 to infer the PLU inventory from the speech data first. We then build the

noisy-channel model described in Eq. 3.5 based on the discovered PLUs. However, the infinite

noisy-channel model defined in Eq. 3.11-3.15 demonstrates the extendability of our approach

to a full non-parametric Bayesian framework. It is not clear whether the full non-parametric

Bayesian model would perform better than its finite counterpart in practice. Nevertheless, with

the flexibility in phonetic inventory learning, we regard the full non-parametric Bayesian model

as a more cognitively plausible framework for capturing the early language acquisition process.

� 3.3.4 Acoustic Model

Finally, we assign each discovered PLU l ∈ L with an HMM, πl, which is used to model

the speech realization of each phonetic unit in the feature space. In particular, to capture the

temporal dynamics of the features associated with a PLU, each HMM contains three emission
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states, which roughly correspond to the beginning, middle, and end of a phonetic unit [76].

We model the emission distribution of each state by using 39-dimensional diagonal Gaussian

Mixture Models (GMMs). The prior distributions embedded in each of the HMMs are the

same as those described in Section 2.5. Dirichlet prior is imposed on the transition probability

distribution, and the mixture weights of the GMM, for each state. In addition, a normal-Gamma

distribution is applied as the prior for each Gaussian component in the GMMs.

� 3.3.5 Generative Process of the Proposed Model

With the adaptor grammar, the noisy-channel model, and the acoustic model defined, we sum-

marize the generative process implied by our model as follows. For the ith utterance in the

corpus, our model

1. Generates a parse tree di from GSentence
ag (d).

2. For each leaf node ui,j of di, samples an edit rule oi,j from ~θui,j to convert ui,j to vi,j .

3. For vi,j,k ∈ vi,j , 1 ≤ k ≤ |vi,j |, generates the speech features using πvi,j,k , which

deterministically sets the value of zi,t.

The generative process explicitly points out the latent variables our model defines for each

utterance, which we summarize as follows.

• di: the parse tree that encodes the hierarchical linguistic structures of the ith training

sample.

• ui: the top-layer PLUs.

• oi: the set of edit operations applied to ui.

• ~vi: the bottom-layer PLUs.

• zi: the phonetic segmentation hidden in the acoustic signals.

• π: the HMM parameters.

• {~θq}q∈Nag∪Nnoisy-channel : the rule probabilities of the base PCFG in the adaptor grammar

and of the noisy-channel model.

In the next section, we derive the inference methods for all the latent variables except for

{~θq}q∈Nag∪Nnoisy-channel , which we integrate out during the inference process.
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� 3.4 Inference

We exploit Markov chain Monte Carlo algorithms to generate samples from the posterior dis-

tribution over the latent variables. In particular, we construct three sampling steps to move on

the Markov chain: 1) jointly sampling di, oi, ui, 2) generating new samples for oi, ~vi, zi, and

3) updating π. In the rest of this section, we describe each of the sampling moves in detail.

� 3.4.1 Sampling di, oi, and implicitly ui

We employ the Metropolis-Hastings (MH) algorithm [19] to generate samples for di and oi,

which implicitly determines ui. Given the current bottom-layer PLUs of the ith utterance,

~vi, and d−i,o−i, which are the current parses and the current edit operations associated with

all the sentences in the corpus except the ith utterance, we construct the following proposal

distribution for d′i and o′i. We use di and d′i to distinguish the current from the proposed parse.

The relationship between oi and o′i is similarly defined. Note that this proposal distribution is

an approximation of the true joint conditional posterior distribution of di and oi.

p′(d′i,o
′
i|~vi, d−i,o−i; {~αq},a, b) (3.16)

= p′(d′i,o
′
i|d−i,o−i; {~αq},a, b) for o′i ∈ {o′i|rhs(o′i) = ~vi} (3.17)

= p′(o′i|o−i; {~α}q)p′(d′i|d−i,o′i; {~α}q,a, b) (3.18)

≈
∏

o′i,j∈o′i

C−i(u
′
i,j → v′i,j) + ~α

u′i,j
u′i,j→v′i,j

C−i(u′i,j) +
∑

r∈Ru
′
i,j
~α
u′i,j
r︸ ︷︷ ︸

(a)

p′(d′i|d−i,o′i; {α}q,a, b)︸ ︷︷ ︸
expanded by the approximating PCFG in [83]

(3.19)

where q ∈ Nag∪Nnoisy-channel. Since the current top-layer PLUs of all the other utterances u−i,

the boundary variables zi and z−i, the HMM parameters π, and the observed speech signals

xi, are independent of d′i and o′i given ~vi, d−i,o−i, we omit u−i, zi, z−i, π, and xi in Eq. 3.16.

The function rhs(o′i) returns the sequence of the right-hand side symbols of each edit operation

in o′i. Therefore, Eq. 3.17 results from only considering the set of edit operation sequences o′i
whose right-hand side symbols match the given ~vi. We apply the chain rule to Eq. 3.17 and use

the conditional independence properties o′i ⊥⊥ d−i|o−i and d′i ⊥⊥ o−i|o′i implied by our model

to obtain Eq. 3.18.

The notation C−i(w) in Eq. 3.19 denotes the number of times that w is used in the analyses

for the corpus, excluding the ith utterance, in whichw can be any countable entity such as a rule
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or a symbol. We estimate p′(o′i|o−i; {~α}q) in Eq. 3.18 by multiplying the relative frequency of

each edit operation o′i,j in o′i using counts C−i(u′i,j → v′i,j) and C−i(u′i,j) as well as ~αu
′
i,j as

shown in Eq. 3.19. Note that Eq. 3.19-(a) is only an approximation for p′(o′i|o−i; {~α}q) since

the counts C−i(u′i,j → v′i,j) and C−i(u′i,j) are not incremented according to o′i. More clearly,

if any edit operation appears more than once in o′i, then Eq. 3.19-(a) will not contain the exact

value of p′(o′i|o−i; {~α}q). As for the second term of Eq. 3.18, we employ the approximating

PCFGs for AGs described in [83] to estimate the probability of every possible d′i as indicated

by the last term of Eq. 3.19.

Eq. 3.19 defines the joint probability of d′i and o′i under the proposal distribution. To effi-

ciently compute the probabilities of all possible combinations of d′i and o′i, which is required

for drawing a sample from the proposal distribution, we construct a new PCFG G′. In particu-

lar, we combine the PCFG that approximates the adaptor grammar with the PCFG whose rule

set consists of all the edit operations o′i,j used and weighted as in Eq. 3.19-(a). The new PCFG

G′ is thus a grammar that can be used to parse the terminals ~vi and generate derivations that

are rooted in the start symbol of the AG. More specifically, with G′, we can transform the task

of sampling d′i and o′i from the proposal distribution to the task of generating a parse for ~vi
using G′. The latter task can be efficiently solved by using an adaptation of the Inside-Outside

algorithm for PCFGs [109], which is described in detail by [84], [63], and [43].

Once new proposals for d′i and o′i are generated, we can accept the proposals with proba-

bility A(d,o,d′,o′) shown in Eq. 3.20, where d′ = {d−i, d′i},o′ = {o−i,o′i}, and d is the

same as d′ except that d′i is replaced with di. The set of edit operations o is defined in a similar

manner.

A(d,o,d′,o′) = min{1, pmodel(d
′,o′|z,x; { ~αq},a, b)p′(di,oi|vi, d−i,o−i; {~αq},a, b)

pmodel(d,o|z,x; {~αq},a, b)p′(d′i,o′i|vi, d−i,o−i; {~αq},a, b)
}

(3.20)

where pmodel(d,o|z,x; { ~αq},a, b) is the joint posterior probability of d and o defined by our

model, which can be decomposed into pag(d|o; { ~αq},a, b)pnoisy-channel(o; { ~αq}) as follows.

pag(d|o; { ~αq},a, b) =
∏
q∈Nag

∏|Xq(d)|
k=1 (aq(k − 1) + bq)

∏nqk(d)−1
j=1 (j − 1− aq)∏sum(nq(d))

i=1 (i− 1 + bq)︸ ︷︷ ︸
(a)

∏|T q |
k=1

∏fqk
j=1(j − 1 + ~αq

T qk
)∏sum(fq)

i=1 (i− 1 +
∑

r∈Rq ~α
q
r)︸ ︷︷ ︸

(b)

(3.21)
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whereXq(d), nq(d), T q and f q are defined in Section 3.3.2. Eq. 3.21-(a) is the probability of

using the cached subtrees to expand q in d according to the Pitman-Yor process associated with

q, with Hq in Eq. 3.3 integrated out. Eq. 3.21-(b) is the probability of choosing the top rule in

each cached subtree, computed by integrating over ~θq, q ∈ Nag. Similarly, by integrating out
~θq, q ∈ Nnoisy-channel, we can obtain

pnoisy-channel(o; {~αq}) =
∏

q∈Nnoisy-channel

∏|Eq(o)|
k=1

∏cqk(o)
j=1 (j − 1 + ~αq

Eq
k(o)

)∏sum(cq(o))
i=1 (i− 1 +

∑
r∈Rq ~α

q
r)

(3.22)

where Eq(o) represents the set of edit operation rules used in o that have q on their left-hand

side, and cq(o) contains the number of times that each of the rules in Eq(o) appears in o.

� 3.4.2 Sampling zi, oi, and implicitly ~vi

The di and oi obtained in Section 3.4.1 deterministically assign a new sequence of top-layer

PLUs ui to the ith utterance. Given the new ui and the speech data xi, we describe how to

generate new samples for the boundary variables zi and the bottom-layer PLUs ~vi. Similar to

the previous sampling move, updating ~vi given ui is equivalent to replacing the edit operation

sequence oi with a new o′i that satisfies the constraint that lhs(o′i) = ui. In particular, lhs(o′i)

is a function that returns the sequence of the left-hand side symbols of each edit rule in o′i.

By taking this viewpoint, we can transform the problem of updating zi and ~vi to the task of

sampling new values for zi and oi. In this section, we present the inference method by using

the two sets of variables {zi, oi} and {zi, ~vi} interchangeably.

We develop a Metropolis-Hastings sampler and construct the following proposal distribu-

tion p′(o′i, z
′
i|ui,xi,o−i,π; {~αq}), which approximates the true conditional posterior of oi and

zi defined by our model.

p′(o′i, z
′
i|ui,xi,o−i,π; {~αq}) = p′(o′i, z

′
i|xi,o−i,π; {~αq}) for o′i ∈ {o′i|lhs(o′i) = ui}

(3.23)

=
p′(o′i, z

′
i,xi|o−i,π; {~αq})∑

o′i,z
′
i
p′(o′i, z

′
i,xi|o−i,π; {~αq})︸ ︷︷ ︸

(a)

=
p′(o′i|o−i; {~αq})p′(z′i,xi|o′i,π; {~αq})∑

o′i,z
′
i
p′(o′i|o−i; {~αq})p′(z′i,xi|o′i,π; {~αq})︸ ︷︷ ︸

(b)

(3.24)
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where q ∈ Nnoisy-channel. Eq. 3.23 reflects the constraint we impose on o′i. We apply Bayes’ rule

to Eq. 3.23 to reach Eq. 3.24-(a). Furthermore, the chain rule and the conditional independence

properties o′i ⊥⊥ π|o−i andxi, z′i ⊥⊥ o−i|o′i are exploited to decompose p(o′i, z
′
i,xi|o−i,π; {~αq})

of Eq. 3.24-(a) into p′(o′i|o−i; {~αq})p′(z′i,xi|o′i,π; {~αq}) in Eq. 3.24-(b).

The product p′(o′i|o−i; {~αq})p′(z′i,xi|o′i,π; {~αq}) is approximated under the proposal dis-

tribution by Eq. 3.25.

p′(o′i|o−i; {~αq})p′(z′i,xi|o′i,π; {~αq}) ≈
∏

o′i,j∈o′i

C−i(u
′
i,j → v′i,j) + ~α

u′i,j
u′i,j→v′i,j

C−i(u′i,j) +
∑

r∈Ru
′
i,j
~α
u′i,j
r︸ ︷︷ ︸

defined to be Q(o′i)

∏
v′i,j,k∈v

′
i,j ,v

′
i,j∈~v′i

p(xi,j,k|πv′i,j,k)

(3.25)

where we estimate the probability of each edit rule o′i,j ∈ o′i by its relative frequency observed

in o−i. As shown in Eq. 3.25, p′(o′i|o−i; {~αq}) is approximated by the product of the relative

frequency of each rule o′i,j in o′i. The boundary variables z′i deterministically split the speech

data xi into a sequence of speech segments as illustrated by the dark blue bars in Fig. 3.2-

(vi). Each of the speech segments is linked to a bottom-layer PLU vi,j,k, for which we denote

the speech segment as xi,j,k. In addition, as shown in Fig. 3.2, each of the speech segments

is further mapped to a top-layer PLU through the edit operations. The last term of Eq. 3.25

represents the emission probability of xi,j,k given the corresponding HMM πv′i,j,k , which can

be efficiently computed with the forward-backward algorithm. Note that different segmenta-

tions correspond to different sets of xi,j,k. Therefore, p(o′i|o−i; {~αq})p(z′i,xi|o′i,π; {~αq}) in

Eq. 3.25 is a function of not only o′i but also the speech segmentation encoded by z′i.

Eq. 3.25 specifies the joint probability of xi, z′i and o′i under the proposal distribution.

To generate proposals for o′i and z′i, we need to compute the joint probability for each o′i ∈
{o′i|lhs(o′i) = ui} combined with all the possible segmentations encoded by z′i. We modify

the efficient message-passing algorithm for hidden semi-Markov models [132] to achieve the

goal. To derive our algorithm, we define and compute the backwards messagesB andB∗. First,

Bt(j) , p(xi,t+1:Ti |I(xi,t) = j, zi,t = 1)

=

Ji∑
m=j+1

B∗t (m)

m−1∏
n=j+1

θ′ui,n→ε (3.26)
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where I(xi,t) is a function that returns the index of the top-layer PLU that xi,t is mapped to,

and xi,t1:t2 is an abbreviation that represents the speech segment consisting of speech features

xi,t1 , · · · , xi,t2 . By definition, Bt(j) is the probability of xi,t+1:Ti , which can be calculated

by summing over all possible segmentations in xi,t+1:Ti and all the valid alignments between

ui,j+1:Ji and xi,t+1:Ti . Note that we use ui,ji:j2 to denote the partial sequence of the top-layer

PLUs ui,j1 , · · · , ui,j2 . More specifically, the value of Bt(j) can be computed recursively by

using B∗ as shown in Eq. 3.26, which is defined as follows.

B∗t (j) , p(xi,t+1:Ti |I(xi,t+1) = j, zi,t = 1) (3.27)

=

Ti−t∑
m=1

p(xi,t+1:t+m|ui,j)︸ ︷︷ ︸
(a)

Bt+m(j) (3.28)

=

Ti−t∑
m=1

{
∑
l′∈L

θ′ui,j→l′p(xi,t+1:t+m|πl′)

+
∑
l′1∈L

∑
l′2∈L

θ′ui,j→l′1l′2
p(xi,t+1:t+m|πl′1πl′2)}Bt+m(j) (3.29)

=

Ti−t∑
m=1

{
∑
l′∈L

θ′ui,j→l′p(xi,t+1:t+m|πl′)

+

m−1∑
n=1

∑
l′1∈L

∑
l′2∈L

θ′ui,j→l′1l′2
p(xi,t+1:t+n|πl′1)p(xi,t+n+1:t+m|πl′2)}Bt+m(j) (3.30)

B∗t (j) is the probability of xi,t+1:Ti given that the speech segment starting with xi,t+1 is

mapped to ui,j , which is explicitly expressed in Eq. 3.28-(a). The summation in Eq. 3.28

runs through all possible durations for the segment beginning at xi,t+1, and Bt+m(j) stands

for the total probability of xi,t+m+1:Ti . The probability p(xi,t+1:t+m|ui,j) can be obtained

by marginalizing p(vi,j |ui,j)p(xi,t+1:t+m|π,vi,j) over all vi,j that ui,j can map to based on

Rui,j . In particular, we exploit the substitution and split edit rules in Rui,j , and use the prob-

abilities associated with these rules, θ′ui,j→l′ and θ′ui,j→l′1l′2 , to compute p(xi,t+1:t+m|ui,j) as

demonstrated in Eq. 3.29. Specifically, the probability θ′r is estimated by the relative frequency

of r with the counts in o−i as described in Eq. 3.25. The two items p(xi,t+1:t+m|πl′) and

p(xi,t+1:t+m|πl′1πl′2) in Eq. 3.29 are the likelihood of observing xi,t+1:t+m given the HMMs that

are associated with the bottom-layer PLUs l′ and l′1l
′
2. Finally, we expand p(xi,t+1:t+m|πl′1πl′2)

in Eq. 3.30 to explicitly list all possible positions of the boundary between the two segments

that are mapped to l′1 and l′2. The initialization and the termination steps for computing B and
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B∗ are shown in Eq 3.31-3.32 and Eq. 3.33 respectively.

(Initialization) BTi(j) ,

1 if j = Ji∏Ji
m=j+1 θui,m→ε if j < Ji

(3.31)

(Initialization) Bt(Ji) ,

1 if t = Ti

0 otherwise
(3.32)

(Termination) B0(0) =

Ji∑
j=1

B∗0(j)

j−1∏
m=1

θui,m→ε (3.33)

where Eq. 3.32 specifies that no feature vectors can be left unaligned with the top-layer PLUs.

The message-passing algorithm ends when the value of B0(0) is computed. By definition,

B0(0) carries the sum of the probabilities of all possible segmentations in xi,1:Ti (encoded in

z′i) and the alignments between xi,1:Ti and ui,1:Ji (captured by ~v′i).

With B and B∗, we can generate samples of ~v′i and z′i from the proposal distribution using

the forward-sampling scheme presented in Alg. 3.4.1. The function SampleFromBt(j) in

line 6 generates a sample by using the relative probability associated with each entry of the

summation defining B that is shown in Eq. 3.26 and Eq. 3.33. The generated sample represents

the index of the top-layer PLU that is to be linked with the speech segment starting with xi,t+1.

If a top-layer PLU is not aligned with any speech features, which can be verified by using the

criterion of line 7, then the ε symbol is assigned to the corresponding bottom-layer PLU as

indicated by line 9 of Alg. 3.4.1.

The function SampleFromB∗t (nextj) in line 13 returns a tuple 〈m,v′i,nextj , n〉 by sam-

pling from the normalized distribution composed of the summation entries of Eq. 3.30. The

valuem indicates the duration of the speech segment that starts from xi,t+1. The vector v′i,nextj
contains the bottom-layer PLUs that ui,nextj maps to. If a split edit rule is sampled, then n spec-

ifies the location of the boundary between the two speech segments that are tied to vi,nextj ,1
and vi,nextj ,2. Implicitly, m and n determine the phone boundaries in the speech data and set

the values of z′i as shown in line 15 and line 17 of Alg. 3.4.1.

When the forward-sampling algorithm terminates, a new segmentation z′i and a proposal

of ~v′i for the ith utterance are obtained. By combining ui and ~v′i, we can get a new sequence

of edit operations o′i. The generated proposals z′i and o′i are then accepted with probability

A(z,o, z′,o′) defined in Eq. 3.34.
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Algorithm 3.4.1 Generate proposals for ~v′i and z′i from Bt(j) and B∗t (j)

1: ~v′i = [ ] % initialize ~v′i to be an empty array
2: z′i ← 0 % assign 0 to each entry of z′i
3: j ← 0

4: t← 0

5: while j < Ji ∧ t < Ti do
6: nextj ← SampleFromBt(j)

7: if nextj > j + 1 then
8: for k = j + 1 to k = nextj − 1 do
9: v′i,k ← ε

10: ~v′i.append(v
′
i,k) % append v′i,k to ~v′i

11: end for
12: else
13: 〈m,v′i,nextj , n〉 ← SampleFromB∗t (nextj)

14: ~v′i.append(v
′
i,nextj

) % append v′i,nextj to ~v′i
15: z′i,t+m ← 1

16: if n 6= NULL then
17: z′i,t+n ← 1

18: end if
19: end if
20: t← t+m

21: j ← nextj

22: end while

A(z,o, z′,o′) = min{1, pmodel(z
′,o′|x,π; {~αq})p′(zi,oi|ui,xi,o−i,π; {~αq})

pmodel(z,o|x,π; { ~αq})p′(z′i,o′i|ui,xi,o−i,π; {~αq})
} (3.34)

where z comprised zi (the current segmentation in xi) and z−i, which denotes the segmenta-

tions of all the utterances in the corpus except the ith utterance. The notation z′ is defined in a

similar manner except that zi is substituted for z′i. The probability pmodel(z,o|x,π; {~αq}) can

be computed in the following way.
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pmodel(z,o|x,π; {~α}q) =
p(z,o,x|π; {~α}q)∑

z

∑
o p(z,o,x|π; {~α}q)

(Bayes’ rule)

=
pnoisy-channel(o; {~αq})p(z,x|o,π; {~αq})∑

z

∑
o p(z,o,x|π; {~α}q)

(3.35)

where pnoisy-channel(o; {~α}q) is defined in Eq. 3.22. It can be shown that the denominator and

p(z,x|o,π; {~αq}) in Eq. 3.35 are cancelled out in A(z,o, z′,o′). As a result, A(z,o, z′,o′)

can be simply reduced to pnoisy-channel(o
′;{~α}q)Q(oi)

pnoisy-channel(o;{~α}q)Q(o′i)
using the Q(·) defined in Eq. 3.25.

� 3.4.3 Sampling π

Given zi and ~vi of each utterance in the corpus, generating new samples for the parameters of

each HMM πl for l ∈ L is straightforward. We briefly summarize the process in this section

and refer readers to Section 5 of Chapter 2 for a more detailed description. For each PLU l,

we gather all speech segments that are mapped to a bottom-layer PLU vi,j,k = l. For every

segment in this set, we use πl to block-sample the state id and the GMM mixture id for each

feature vector. From the state and mixture assignments, we can collect the counts that are

needed to update the priors for the transition probability and the emission distribution of each

state in πl. New samples for the parameters of πl can thus be yielded from the updated priors.

� 3.4.4 Parameters for the Model

We discuss the choices for the parameters of the adaptor grammar, the noisy-channel model

and the acoustic model in this section.

Adaptor grammar The adaptor grammar has two sets of parameters: {~αq}q∈Nag , the pa-

rameters for the Dirichlet priors imposed on the rule probabilities in the base PCFG, and

{aq, bq}q∈Nag , the hyperparameters for the Pitman-Yor processes. We let ~αq be an array of

all ones for q ∈ Nag. With this choice of ~αq, we impose a weak prior on the rule probabilities
~θq and favor neither sparse nor dispersed probability distributions for ~θq a priori. As for aq and

bq, rather than specifying a particular value for each of them, we apply a uniform Beta(1, 1)

prior on aq and a vague Gamma(10, 0.1) prior on bq for q ∈ L. The values of aq and bq are

sampled after every sweep through the corpus for the inference steps described in the previ-

ous three sections. We exploit the publicly available software [79] that is implemented based

on [83] to generate samples for aq and bq.
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Noisy-channel model The parameters of the noisy-channel model are {~αq}q∈Nnoisy-channel of

the Dirichlet priors imposed on the probabilistic distributions over the edit operation rules. In

particular, each ~αq has |L|2+ |L|+1 entries, which represent the prior preferences for applying

the split, substitution, and deletion operations on the top-layer PLU q. To provide a strong

learning constraint, we encourage the noisy-channel model to substitute a top-layer PLU with

the exact matching bottom-layer PLU. More clearly, we put a large prior on the edit operation

rule l→ l′ for l′ = l. In practice, we set ~αql→l′ to be 2000 and the rest of the entries of ~αq to be 1.

This choice of ~αq may seem extreme at first glance given that it is heavily biased towards to the

matching edit operation. However, with a closer look, we can see that for a PLU inventory of 50

units, the marginal prior probability on the exact matching rule is only 2000
2500+2000+49+1 ∼ 0.44,

which can go lower when the size of the PLU inventory grows.

Acoustic model We set up the HMMs π the same way as in Section 2.4. Hence, the parame-

ters used for the acoustic model can be retrieved from Table 2.2.

� 3.5 Experimental Setup

In this section, we describe the dataset and the evaluation methods used to assess the effective-

ness of the proposed model for discovering linguistic structures directly from acoustic signals.

In addition, in order to study the importance of each component of the model, we construct a

series of ablative systems by removing one component of the model at a time. We also describe

the lesioned systems in this section.

� 3.5.1 Dataset

To the best of our knowledge, there are no standard copora for evaluating models for automatic

linguistic structure discovery. More specifically, a variety of datasets have been used in previous

work, including a child-directed speech corpus [33, 34, 82], the MIT Lecture corpus [146, 191],

the WSJCAM0 corpus of read news articles [69], the Switchboard corpus of short telephone

conversations [75], and a corpus of Mandarin broadcast news [20].

In this paper, we perform experiments on the same six lecture recordings used in [146, 191],

which are a part of the MIT Lecture corpus [59]. A brief summary of the six lectures is listed

in Table 3.1. The reason for testing our model on the MIT Lecture corpus is threefold. First,

compared to the broadcast news corpus and the read speech corpus used in [20] and [69],

the speaking style observed in the lecture data is more spontaneous, which creates a more

challenging learning task for our model. Second, each of the six lectures consists of speech
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Lecture topic Speaker Duration

Economics Thomas Friedman 75 mins

Speech processing Victor Zue 85 mins

Clustering James Glass 78 mins

Speaker adaptation Timothy Hazen 74 mins

Physics Walter Lewin 51 mins

Linear algebra Gilbert Strang 47 mins

Table 3.1. A brief summary of the six lectures used for the experiments reported in Section 3.6.

data from a different speaker with a duration of up to one hour or more. Unlike the telephone

conversation corpus used in [75], this characteristic of the Lecture corpus allows us to train the

model on a set of single-speaker speech data. This can significantly reduce the amount of noise

in the experimental results that may arise from the problem of speaker variability. Finally, the

learning of our model is contingent on the existence of repeating patterns in the data. Therefore,

in order to gain useful insights into our model, the testing speech data must contain recurrent

patterns that allow our model to learn. Since each lecture is about a well-defined topic, it

often contains a set of highly frequent subject-specific words. These subject-specific words

correspond to an abundance of repeated acoustic patterns in the speech data that our model can

leverage for learning.

� 3.5.2 Systems

In this section, we describe the various systems that are compared in the experiments, which

include the full model and two lesioned ones. Also, we explain how to initialize the training for

each of the systems.

Full system Two full systems based on the model described in Sec. 3.3 are constructed. The

only difference between the two systems is how the value ofK, the size of the PLU inventory, is

determined. We fix the value of K to be 50 for one system, and for the other system, we let the

value of K be discovered by the DPHMM framework presented in Chapter 2 for each lecture.

The number of PLUs that the DPHMM model finds for each lecture is shown in Table 3.2. We

refer to these two systems as Full50 and FullDP respectively.

Initialization The training of the FullDP system is initialized by using the output of the

DPHMM model for each lecture. More specifically, as shown in Chapter 2, the DPHMM
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Lecture # units

Economics 99

Speech processing 111

Clustering 91

Speaker adaptation 83

Physics 90

Linear algebra 79

Table 3.2. Number of phonetic units found by DPHMM for each lecture.

model learns a set of HMMs, discovers the phone boundaries in the acoustic signals, and as-

signs a PLU label to each speech segment. We exploit the HMMs, the boundaries, and the

PLU ids found by the DPHMM model as the initial values for the latent variables π, bi, and

~vi of the FullDP system. After initialization, the training of FullDP proceeds by following the

three sampling moves described in Section 3.4. Similarly, we employ a Hierarchical HMM

(HHMM), which is presented in detail in Section 4.3, to find the initial values of π, bi, and ~vi
for the Full50 system. In addition to the full systems, the lesioned systems that are described in

the rest of this section are also initialized in the same manner.

No acoustic model We remove the acoustic model from Full50 and FullDP to obtain the first

lesioned systems, which are denoted as the -AM (read as minus AM) systems. For example,

Full50-AM represents the Full50 system without the acoustic model. Since the lesioned sys-

tems do not have an acoustic model, they can neither resegment nor relabel the speech data.

In other words, the initial HMMs, the segmentation, and the bottom-layer PLUs remain intact

during training for the -AM systems. This also implies that there is no learning of phonetic

units in the -AM systems. Therefore, by comparing a -AM system to its full counterpart, we

can investigate the synergies between phonetic and lexical unit acquisition in the full model.

No noisy-channel To evaluate the importance of modeling phonetic variability, we further

remove the noisy-channel module from the -AM systems to form the -NC systems. More

specifically, the -NC systems treat the initial bottom-layer PLUs ~vi as the top-layer PLUs ui
and keep ui the same for the entire training period. A -NC system can thus be regarded as

a pipeline framework for discovering linguistic structures from speech, in which the phone

sequence of each utterance is discovered as the first step, and the latent linguistic structures are

learned in the second step.
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Figure 3.3. An illustration of how the reference transcriptions of the speech segments discovered by our model

are determined: (a) partial forced-aligned word transcription used for illustration, (b) examples of speech segments

that our model may discover for the sentence, and (c) the reference transcription for each of the example speech

segments determined by using the procedure described in Section 3.5.3. The t variable indicates the time indices of

the boundaries of the words in the transcription and those of the speech segments.

� 3.5.3 Evaluation methods

Two evaluation metrics are used to quantitatively gauge the effectiveness of the systems de-

scribed above for discovering linguistic structures from acoustic signals. We describe the two

metrics in this section.

Coverage of words with high TFIDF scores As mentioned before, each lecture contains a

set of frequent subject-specific words. Therefore, to assess the quality of the lexical units our

model discovers, we test whether the induced lexical units correspond to these subject-specific

vocabulary. In particular, we employ the top 20 highest TFIDF scoring words as the target

words to be learned for each lecture. We compare the coverage achieved by our model to that

obtained by the baseline [146] and by the state-of-the-art system on this task [190].

Since each lexical unit induced by our model is abstracted as a sequence of PLUs, we adopt

the following procedure to identify the word label for each lexical unit. Specifically, for each

discovered lexical unit of each lecture, we first determine the reference transcription of each

speech segment that is associated with the lexical unit. To find the reference transcription of

a speech segment, we search the forced-aligned word transcriptions of the lecture to find the

word ws that has the closest starting time to that of the speech segment. Similarly, we look

for the word we, whose ending time is the closest to that of the speech segment. The word

sequence spanning from ws to we is then assigned as the reference transcription to the speech

segment. Fig. 3.3 shows two examples of speech segments along with their corresponding

reference transcriptions. Having found the reference transcription for each segment associated

with the lexical unit, we then choose the word or the phrase that appears most frequently as the

label. Lexical units with no majority word or phrase are not assigned with any labels.
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Figure 3.4. The negative log posterior probability of the latent variables d and o as a function of iteration obtained

by the Full50 system for each lecture.

Phone segmentation Besides the coverage of high TFIDF words, we also evaluate our model

on the task of phone segmentation for the six lectures. We use a speech recognizer to produce

phone forced alignments for each lecture. The phone segmentation embedded in the forced

alignments is then treated as the gold standard to which we compare the segmentation our

model generates. We follow the suggestion of [165] and use a 20-ms tolerance window to

compute the F1 score of the phone segmentation discovered by our model. Because the seg-

mentations of the -AM and -NC systems are identical to those obtained by the initialization

systems, we only compare the F1 scores of the full systems and those achieved by the -AM

systems.

� 3.6 Results and Analysis

Before presenting the model’s performance on the tasks of coverage of target words and phone

segmentation, we briefly discuss some qualitative behaviors of the model.

Training convergence Figs. 3.4-3.6 show the negative log posterior probability of the sam-

pled parses d and edit operations o (except for the Full50-NC system) for each lecture as a

function of iteration generated by Full50, Full50-AM, and Full50-NC. Given that each lecture

consists of roughly only one hour of speech data, we can see that the Full50(-AM, -NC) sys-

tems all converge fairly quickly within just a couple hundreds of iterations. The FullDP(-AM,

-NC) systems also demonstrate similar convergence behaviors. In particular, the negative log

posterior probability of d and o for the FullDP system is shown in Fig. 3.7. In the this sec-

tion, we report the performance of each system using the corresponding sample from the 200th
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Figure 3.5. The negative log posterior probability of the latent variables d and o as a function of iteration obtained

by the Full50-AM system for each lecture.
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Figure 3.6. The negative log posterior probability of the latent variables d as a function of iteration obtained by the

Full50-NC system for each lecture.
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Figure 3.7. The negative log posterior probability of the latent variables d and o as a function of iteration obtained

by the FullDP model for each lecture.
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Figure 3.8. The parse our model generates for the sentence “and MIT’s open university and,” an utterance excerpted

from the economics lecture.

iteration.

Analysis of the discovered word units Unlike previous methods for discovering lexical units

from acoustic signals [146, 190, 75], which can only find isolated speech segments scattered

throughout utterances in a dataset, our model aims to learn the continuous sequence of words

underlying each sentence. We show the word sequence, the syllable sequence, and the top-

layer PLUs that the FullDP system learns for the sentence “and MIT’s open university and,”

extracted from the economics lecture, in Fig. 3.8. The phone labels of the top-layer PLUs are

listed for illustration. Fig. 3.8 shows that our model successfully recognizes the word “and”

at the beginning and the end of the sentence as two word tokens, while it generates a single

lexical unit for the phrase “open university” and maps two sub-word lexical units to the word

“MIT’s.” The parse shown in Fig. 3.8 reveals the first observation we make about our model’s

learning behavior: the model learns lexical units that correspond to sub-words, single words,

and multi-word phrases.

We list a subset of the lexical units discovered by the FullDP system for the economics

lecture in Table 3.3. Each of the lexical units is represented by its underlying syllabic structures,

which are denoted in [·] and shown in the second column. The transcription and the number of

speech segments, |Word|, that are associated with each lexical unit are also shown in the first

and the third columns of the table. For lexical units that correspond to sub-words, we label the

phone sequences for the sub-words and list some examples of the words in the dataset that our

model parses using these sub-word lexical units. Table 3.3 shows that the discovered lexical

units with high frequencies, or large |Word|s, are usually sub-words that can be used to parse

many different words. As the frequency decreases, the corresponding lexical unit starts to map

to single words and eventually multi-word phrases.
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Transcription Discovered lexical units |Word|

/iy l iy/ (really, willy, billion) [35] [31 4] 68

/ah fp m/ (<um>, company) [105 46 8] [14] 51

/f ao r m/ (form, informing) [81] [39 139 8] 49

/w ah n/ (one, want, wonderful) [172] [79 71] 49

/ey sh ax n/ (innovation, imagina-

tion)
[6 7 30] [49] 43

/ ae n d/ (and, end, attend) [37] [12 67] 41

/f l ae t/ (flat, flatten) [81] [28 16 21] 39

/ih z/ (this, is, it’s) [47 59] 33

the world [35 40 102] [38 91] 31

/ax bcl ax l/ (able, cable, incredible) [34 18] [38 91] 18

/aw n dh/ (down, how, download) [11] [95 8] 16

/s cl t eh r/ (this era, first era) [70 110 3] [25 5] 15

/s iy/ (c, seen, seeing) [59] [41] 14

together [15 26 25] [27 99] 13

china [19 7] [151 2] 10

discovered [26] [70 110 3] [9 99] [31] 9

people [126 20] [15 14] [39 38] 9

you know [37 25] [27 48 91] 8

globalization [106 48] [18 31] [147 13] [6 7 30] 7

individual [49 146] [34 99] [154] [54 7] [35 48] 7

because [37] [15 50] [106 27 13] 7

two thousand [19 20 25] [52] [9] [13 173] 6

global [160] [106 48] [38 18] [38 91] 6

convergen(ce/ed) [7 30] [54] [18 29] [45 7 30] 5

powerful [50 57 145] [145] [81 39 38] 5

collaboration [50 137] [28 16] [18 31 43] [6 7 30] 5

new form of [1 35] [39 139 8] [48 91] 5

quiet [50 106] [172 24] [50 106 43] 4

Continued on next page
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Table 3.3 – continued from previous page
Transcription Discovered lexical units |Word|

southwest airlines
[70 59] [48 91] [106 32] [70 110 3] [5

40 79 2]
4

open university
[48 91] [4 67] [25 8 99 29] [44 22] [103

4]
4

for multiple forms [39 139 8] [38 91] [106 98] [39 139 8] 4

field [154] [54] [52] [25] [35 48] 4

miles away [13 173] [1 2] [70 59 103] [40 32] 4

the world is [99 35 40 139] [38 91] [47 13] 3

steam engines [70 110 3] [41] [67 6] [54 20 30 1] 3

it seems to be
[47 59] [41] [70 59 103] [67] [4] [99

77]
3

and she said [37 12] [54 7] [70 59 103] 3

the new york [34 99] [158 71] [25 5] [19 57 95] 3

first chapter [10 29 23] [7 30] [11 21] [5] 2

the arab muslim world
[28 32] [41] [67] [25 35] [1 27] [13

173] [8 139] [38 91]
2

platform
[34 18] [27 21] [11 21] [137 16 21 105

139]
2

Table 3.3: A subset of the lexical units that the FullDP system discovers for the economics

lecture. The number of independent speech segments that are associated with each lexical unit

is denoted as |Word| and shown in the last column.

At first glance, Fig. 3.8 and Table 3.3 seem to suggest that our model is not capturing the

right lexical structures because it learns many sub-word and multi-word lexical units. However,

a closer look at the data reveals that this learning behavior is contingent on the frequencies of the

observed acoustic patterns. Take the fifth lexical unit [6 7 30] in Table 3.3 that corresponds to

the sound sequence /ey sh ax n/ as an example. Many words that contain this sound sequence are

observed in the data, such as conversation, reservation, innovation, and foundation. However,

most of these words only appear in the lecture a few times. For example, the frequencies of
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the four words are only 2, 3, 4, and 2 times respectively. Therefore, from the model’s point of

view, it only sees recurrent acoustic patterns that map to the sound sequence /ey sh ax n/, but

does not receive enough evidence for each of the words individually, which causes the model

to pick up just /ey sh ax n/ as a word. Nonetheless, our model does acquire single-word lexical

units for words that appear frequently. For example, two other words that also contain the

sound sequence /ey sh ax n/ are globalization and collaboration, which occur 25 and 21 times

respectively in the lecture. As shown in Table 3.3, our model is able to properly recognize and

create a lexical unit for each of the two words.

Our analysis so far suggests that pattern frequency is the key to our model learning lexical

units. However, a more careful examination of the frequencies of the multi-word phrases that

our model captures discloses that there may be one more important factor that affects the learn-

ing behavior of our model, which is the length of the repeated acoustic patterns. For example,

although the phrase open university only appears 5 times in the lecture, our model still captures

the pattern and learns a lexical unit for it. The driving force behind this learning behavior may

be that lexical units mapping to multi-word phrases tend to have a strong parsing power, which

we roughly define as how much data a lexical unit can explain. For instance, a sub-word lexical

unit should have a weaker parsing power than a multi-word lexical unit because the portion

of an utterance it can parse is usually smaller than that which can be parsed by a multi-word

lexical unit. Since our model has the tendency to acquire lexical units with a strong parsing

power, the model can learn long repeated acoustic patterns even when the patterns only appear

infrequently.

To be more concrete, imagine that our model needs to parse the following sequence of top-

layer PLUs for the sentence, “open university” from the economics lecture, which, for clarity,

is denoted by standard phone units: /ow p ax n y uw n ax v er s ax dx iy/. Assume that the

model has already seen the same sequence of PLUs once and cached the rule: Word → /ow

p ax n y uw n ax v er s ax dx iy/. Also, assume that the model has learned and reused the

following sub-word lexical units 200 times each: Word→ /ow p/, Word→ /ax n/, Word→ /y

uw/, Word → /n ax v er/, Word → /s ax dx iy/. The two parsing choices that our model has

are: 1) h1, reuse the multi-word lexical unit and 2) h0, reuse the four sub-word lexical units.

For simplicity, we omit the Words → Word grammar rule in the AG for parsing, exclude the

possibility of generating parses from the base PCFG, and focus on reusing the rules cached

by the AG. Nevertheless, the logic behind the explanation remains the same when the parses

from the PCFG are taken into account. The conditional posterior probabilities p(h1| · · · ) and

p(h0| · · · ) our model assigns to the two hypotheses are shown as follows.
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p(h1| · · · ) ∼
C−i(Word→ /ow p ax n y uw n ax v er s ax dx iy/)

C−i(Word)
=

1

10, 000
= 10−4 (3.36)

p(h0| · · · ) ∼
C−i(Word→ /ow p/)

C−i(Word)
C−i(Word→ /ax n/)

C−i(Word)
C−i(Word→ /y uw/)

C−i(Word)
(3.37)

× C−i(Word→ /n ax v er/)
C−i(Word)

C−i(Word→ /s ax dx iy/)
C−i(Word)

= (
200

10, 000
)
5

= 3.2−9

where we approximate the number of word tokens that our model produces for other sentences

in the lecture, C−i(Word), to be 10, 000 (in fact, our model generates a total of 10, 578 word

tokens for the economics lecture; therefore, 10, 000 is a quite close approximation). By com-

paring Eq. 3.36 and Eq. 3.37, we can see that because of the weak parsing power possessed by

the sub-word lexical units, the model needs to utilize multiple sub-word lexical units to parse

the sentence. Since the product in Eq. 3.37 involves many items, the posterior probability for

h0 drops quickly. On the contrary, as the multi-word lexical unit has a strong parsing power and

can explain the sentence all by itself, the posterior probability for h1 involves only one item and

is much higher than that for h0. The large difference between p(h1| · · · ) and p(h0| · · · ) drives

the model to reuse the multi-word lexical unit even though the model has only seen the same

sequence once before.

This analysis can also help us understand why our model requires more examples to learn

lexical units for single words. The derivation of the analysis remains the same except that for

single words, the product in Eq. 3.37 will involve fewer items, such as two, and thus yield a

higher p(h0| · · · ) ∼ 4 × 10−4. In this case, unless the model has already seen the same word

at least four times before and thus generates a p(h1| · · · ) ∼ 4× 10−4, the model would prefer

h0 and reuse sub-word lexical units to parse the word. We will discuss this learning preference

over structure reuse in more detail later in this section.

Lastly, to complete the discussion of our model’s learning behavior for discovering lexical

units with different granularities, we analyze the word sequence the FullDP system generates

for each sentence of each lecture, and compute the proportions of the discovered lexical units

that map to sub-words, single words, and multi-word phrases. The results, presented in Fig. 3.9,

show that while a large portion of the discovered word tokens correspond to single words, many

of the lexical units represent sub-words or multi-word phrases, which matches with our previous

observation.
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Figure 3.9. The proportions of the word tokens the FullDP system generates for each lecture that map to sub-words,

single words, and multi-words.

Analysis of the discovered syllable units Table 3.4 lists a subset of the syllable structures that

the FullDP system discovers for the economics lecture. Each of the syllable units is denoted

by its underlying PLU sequence. The phone transcription and the number of speech segments

associated with each syllable structure, |Syl|, are also shown in the table. For the transcription,

we use () to indicate optional phones and | to specify various valid phone transcriptions. For

example, the transcription /(ax|ah) s cl t|k/ in the third line of Table 3.4 indicates that the

syllable unit 70 110 3 maps to a fricative /s/, followed by a stop /cl t/ or /cl k/, and some times

the sequence of /s cl t/ or /s cl k/ is preceded by a vowel /ax/ or /ah/.

The definition of the notation used for the phone transcriptions reveals one observation we

make from the discovered syllable structures: a syllable unit may correspond to various sound

sequences. However, as shown in Table 3.4, the set of pronunciations that a syllable unit maps

to usually consists of similarly sounding patterns. Besides the syllable unit 70, 110, 3 discussed

previously, the syllable unit 11 21 in line six of Table 3.4 is shown to mostly map to /ae cl p/, /ae

cl t/, and /ae cl k/, which are sound sequences consisting of the vowel /ae/, followed by a stop

consonant. Secondly, Table 3.4 also shows that the discovered syllable units may not always

match the standard definition of a syllable. Nonetheless, even though these learned syllable-

like units do not perfectly map to standard ones, they often map to structures that are highly

reusable for constructing different word types, as shown by the number of speech segments that

are associated with each of the discovered syllable-like structures.
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Transcription Discovered syllabic units |Syl|

37 587

/(iy) s eh/ 70 59 103 348

/(ax|ah) s cl t|k/ 70 110 3 346

/s|z ax|ih/ 13 173 294

/(ah) l (vcl d|cl t)/ 38 91 205

/ae cl p|t|k)/ 11 21 201

/n|m/ 67 195

/f/ 81 168

/ih/ 154 167

/ow|uh cl/ 48 91 166

/n vcl|cl/ 54 161

/iy/ 41 137

/ey sh ax/ 6 7 30 126

/ae n (dcl)/ 12 67 105

/(d) ax v/ 34 99 98

/th|f/ 52 88

/(f) ao r m/ 39 139 8 74

/g l ow/ 106 48 62

/ax gcl g (eh)/ 15 26 25 62

/v er|bcl ax r/ 18 29 62

/ih (z|s)/ 47 59 51

/m ao/ 8 139 50

/ow/ 35 48 48

/f el|ao/ 81 39 38 44

/t|k ax gcl/ 34 18 33

/bcl el/ 18 98 31

/p l/ 137 32 26

/cl ch/ 19 7 20

/dh ah w er l dcl/ 99 35 40 139 18

/eh r l ay/ 5 40 79 2 15

Continued on next page
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Table 3.4 – continued from previous page

Transcription Discovered syllabic units |Syl|
/y uw/ 147 115 8

/k ah z/ 106 27 13 7

Table 3.4: A subset of the syllabic units that the FullDP system infers from the economics

lecture. The value |Syl| specifies the number of speech segments that are labeled with each

syllable structure.
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Figure 3.11. The distribution of the number of top-layer PLUs underlying a discovered syllable structure.

Table 3.3 and Table 3.4 also illustrate that our model discovers lexical units that are com-

posed of syllable units, and learns syllable units that are composed of top-layer PLUs. This
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Figure 3.12. The bottom-layer PLUs ~v and the top-layer PLUs u as well as the syllable structures that the FullDP

system discovers for three spoken examples of the word globalization. The phonetic and syllabic structures are

denoted with phone transcriptions for clarity.
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Figure 3.13. The bottom-layer PLUs ~v and the top-layer PLUs u as well as the syllable structures that the FullDP

system discovers for three spoken examples of the word collaboration. The phonetic and syllabic structures are

denoted with phone transcriptions for clarity.

observation suggests that the model is indeed inferring the latent linguistic structures based on

the given grammar. To gain more insight, we plot the distribution of the number of syllable

units contained in each discovered lexical unit in Fig. 3.10 and the distribution of the counts of

PLUs underlying the syllabic structures in Fig. 3.11. From Fig. 3.10, we can see that most of

the lexical units consist of two or more syllables. As indicated in Table 3.3, the lexical units

containing fewer than two syllables tend to correspond to sub-words, and those that comprise

more syllabic units map to single words or multi-word phrases. Similarly, Fig. 3.11 shows that

most of the discovered syllable units contain more than two PLUs, which usually correspond

to a combination of vowels and consonants as shown in Table 3.4.

Analysis of the discovered hierarchical parses Fig. 3.12-3.13 present the hierarchical syllabic

and phonetic structures that the FullDP system discovers for the two words globalization and
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collaboration, which are frequently used in the economics lecture. We extract three parse

examples for each word from sentences that contain either of them and denote the structures

with phone transcriptions for clarity. We now analyze other learning behaviors of our model

using these examples.

First, from Fig. 3.12, we can see that the model infers a different sequence of bottom-layer

PLUs for each spoken instance of globalization. The differences between the three bottom-

layer PLU sequences are highlighted by PLUs in red. While the bottom-layer PLUs vary,

Fig. 3.12 shows that the noisy-channel model is able to normalize the variations and generate

a consistent sequence of top-layer PLUs (106 48 18 31 147 13 6 7 30) for all three instances.

Similarly, as shown in Fig. 3.13, distinct bottom-layer PLUs are induced for the three examples

of collaboration2. Once again, the noisy-channel model unifies the differences and produces a

unique top-layer PLU representation for the word. This observation demonstrates the effective-

ness of the noisy-channel model for capturing phonetic variations. Without the noisy-channel

model, the PLU sequences encoding different spoken examples of the same word may vary and

are unable to be clustered together.

Note that our model indeed infers a bottom-layer PLU for the consonant /n/ at the end of

globalization and collaboration for each of the instances. However, we find that the acoustic

realizations of the consonant /n/ in these instances vary a lot due to the specific contexts within

which the two words are spoken. These variations prevents our model from learning a consis-

tent representation for the consonant /n/. As a result, our model acquires the lexical clusters,

indicated by (·) in Fig. 3.12 and Fig. 3.13, which correspond to a portion of the word global-

ization and a part of the word collaboration respectively. Nevertheless, based on the procedure

described in Section 3.5.3 for finding the word label of each discovered lexical unit, we still

assign the reference transcriptions globalization and collaboration to the two discovered lexical

clusters. This observation shows that while the noisy-channel model is able to remove many

phonetic variations in the speech data, there is still room for improvement. In Section 3.7, we

will briefly discuss how we can enhance the quality of the noisy-channel model.

The syllabic structures underlying globalization and collaboration discovered by the model

are indicated by the square brackets in Fig. 3.12 and Fig. 3.13. As discussed earlier, even

though the discovered syllabic units do not always match the standard definition of a syllable,
2Note that our model does generate identical sequences of bottom-layer PLUs for different spoken tokens of the

same word. Whether our model produces the same sequences of bottom-layer PLUs depends on how acoustically

similar the spoken tokens are. We utilize the examples in Fig. 3.12 and Fig. 3.13 to illustrate the phonetic variations

often observed in the data and to make more insightful analyses on the learning behavior of our model.
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Figure 3.14. More examples of the reuse of the syllabic structure [6, 7, 30].

they often map to structures that are highly reusable. For example, the sound sequence /ey sh

ax/ that appears at the end of both globalization and collaboration is captured by the induced

syllabic unit [6, 7, 30] and applied to form both of the words. In addition to globazliation and

collaboration, the syllable structure [6, 7, 30] is also reused to parse many other words in the

economics lecture, and we show some of the examples in detail in Fig. 3.14.

Structure reuse is particularly encouraged in our model because of the Pitman-Yor Pro-

cesses (PYPs) we employ in the adaptor grammar. More specifically, unlike PCFGs, in which

the rules used to rewrite nonterminals are selected independently at random from the rule

set, the PYPs allow the expansion of a nonterminal symbol to depend on how the symbol

has been rewritten in other parses. Therefore, when the adaptor grammar caches the rule

Syllable → 6, 7, 30, it increases the probability of choosing this rule to rewrite Syllable in

other utterances. Furthermore, given the rich-gets-richer clustering property exhibited by the

PYPs, the more frequently a rule is used to parse a nonterminal, the more likely it is going to be

chosen again. This self-reinforcing behavior of a PYP can be seen from the conditional prior

that the PYP assign to a rule r. Take the rule Syllable→ 6, 7, 30 for example. The conditional

prior probability of picking this cached rule to expand a nonterminal Syllable is:

p(Syllable→ 6, 7, 30|d−i, aSyllable, bSyllable) =
C+
−i(Syllable→ 6, 7, 30)− aSyllable

C+
−i(Syllable) + bSyllable

(3.38)

where C+
−i(w) is the sum of C−i(w) and the count of w in sentence i, excluding the w associ-

ated with the nonterminal being reanalyzed. Eq. 3.38 explicitly expresses the rich-gets-richer

phenomenon: the larger C+
−i(r) is, the higher prior probability the rule receives.

Moreover, the tendency for structure reuse also stimulates the learning of the noisy-channel

model, which is illustrated by the substitution of PLU 30 for PLU 54 shown in the last example

of collaboration in Fig. 3.13. Given the bottom-layer PLU 54, the preference of using [6, 7, 30]

for parsing the word forces the noisy-channel model to use the rule 30 → 54 and infers the

top-layer PLU 30. Without this driving force from the higher-level of the model, the learning

of the noisy-channel module would be fairly unconstrained, which may prevent the module
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Lecture topic Full50 -AM -NC FullDP -AM -NC
P&G Zhang

2008 2013

Economics 12 4 2 12 9 6 11 14
Signal processing 16 16 5 20 19 14 15 19

Clustering 18 17 9 17 18 13 16 17

Speaker adaptation 14 14 8 19 17 13 13 19
Physics 20 14 12 20 18 16 17 18

Linear algebra 18 16 11 19 17 7 17 16

Table 3.5. The number of the 20 target words discovered by each system described in Section 3.5 and by the

baseline (P&G, 2008) [146] and by the state-of-the-art system (Zhang, 2013) [190]. The best performance achieved

for each lecture is highlighted in bold.

from picking up any useful edit operations. This interaction between the noisy-channel model

and the adaptor grammar shows the strength of the proposed joint learning framework.

Quantitative assessments Table 3.5 summarizes the coverage of the top 20 TFIDF scoring

words achieved by each of the systems described in Section 3.5 for each lecture. The coverage

obtained by the baseline [146] and by the state-of-the-art system [190] are also listed. We

highlight the best performance attained for each lecture in bold. From Table 3.5 we can see

that the FullDP and Full50 systems consistently outperform the baseline. When compared to

the state-of-the-art system, the two full models also perform better for most of the lectures.

Note that the difference between the baseline system and the state-of-the-art system is that the

latter employs Gaussian posteriorgrams to represent the speech data [191], which have proven

to be a more robust speech representation. Although our full systems are only trained on the

basic MFCC features, they still discover more lexical units that correspond to the target words

for most of the six lectures. We show the full comparison between the coverage over the

target words achieved by the FullDP system and by the baseline framework for each lecture

in Table 3.6. The red color highlights the words that are found by our model but missed by

the baseline, and the blue color denotes the reverse scenario. The black color shows the words

that are detected by both systems, while the underlines mark the words that are discovered by

neither systems. We can see that the FullDP system consistently finds more target words than

the baseline for all the six lectures.

The comparison between the full systems and their -AM counterparts further reveals the

effectiveness of the full model. In particular, as shown in Table 3.5, the Full50 system performs
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Economics
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Physics

Linear

algebra

flat frequency cluster speaker electric matrix

globalization vocal distortion adaptation zero row

collaboration wave data model sphere zero

india transform algorithm vector charge pivot

era fourier metric parameter plate equation
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connect tongue merge mean inside substitution
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Table 3.6. The full comparison between the FullDP system and the baseline system for the coverage of the top 20

words with the highest TFIDF scores. The words in black are found by both our model and the baseline. We use

underlines to specify words that are learned by neither our model nor the baseline. Finally, the red color denotes

words that are discovered by our model but not by the baseline, while the blue color indicates the reverse case.

at least as well as the Full50-AM system for all the lectures; similarly, the FullDP system also

surpasses FullDP-AM for almost every lecture. As described in Section 3.5, the -AM systems

are identical to the full systems except that they do not contain an acoustic model and thus do

not resegment and relabel the speech data during learning. In other words, the advantage the

full models have over the -AM systems is that they can refine the bottom-layer PLUs using

the information from the higher-level syllabic and lexical structures. This finer performance
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Lecture topic Full50 -AM FullDP -AM

Economics 74.4 74.6 74.6 75.0

Signal processing 76.2 76.0 76.0 76.3

Clustering 76.6 76.6 77.0 76.9

Speaker adaptation 76.5 76.9 76.7 76.9

Physics 75.9 74.9 75.7 75.8

Linear algebra 75.5 73.8 75.5 75.7

Table 3.7. The F1 scores for the phone segmentation task obtained by the full systems and the corresponding -AM

systems. Note that since the -AM systems do not resegment the speech data, the F1 scores of the -AM models are

the same as those computed by using the segmentations produced by HHMM and DPHMM. The numbers in bold

highlight the suboptimal segmentation performance that the initialization system of Full50 achieves compared to

that obtained by the initialization system of FullDP.

achieved by the full systems demonstrates the strength of the proposed joint learning framework

and exemplifies the synergies of phonetic and lexical learning observed in our model. Finally,

by comparing the full systems and the -AM systems to their -NC counterparts, we can see that

the noisy-channel model plays a crucial role in the success of inducing lexical units directly

from speech data. This observation resonates with Fig. 3.12 and Fig. 3.13. More specifically,

the results in Table 3.5 further confirm that without the noisy-channel module, the model would

not be able to merge different spoken tokens of the same word into one word cluster.

More evidence on the synergies between phonetic and lexical unit learning Table 3.7

presents the F1 scores attained by the full systems and the -AM systems on the phone seg-

mentation task. Since the -AM systems do not resegment the speech data, the performance of

each of the -AM systems is measured by using the segmentation produced by the corresponding

initialization systems: the HHMM for Full50-AM and the DPHMM for FullDP-AM.

Let us first take a look at the F1 scores obtained by the -AM systems. From the two -AM

columns, we can see that the two initialization systems achieve roughly the same segmentation

performance for the first four lectures, with the largest performance gap being only 0.4%. Ex-

cept that they both utilize the boundary elimination method described in Section 2.6 to constrain

the hypothesis space for the boundary variables, the two systems are trained independently.

Given that the HHMM and the DPHMM are separately trained, this narrow performance gap

indicates that the two systems may have already found the optimal segmentation in the hypoth-

esis space. Since our model also looks for the best segmentation in the same hypothesis space,

by initializing the boundary variables around the optimum, our model should simply maintain
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the segmentation. In particular, as shown in Table 3.7, the full systems also achieve about

the same performance as the -AM systems for the first four lectures, with the overall largest

performance difference being bounded by 0.4%.

However, what’s more interesting is when the initialization system gets stuck at a local opti-

mum. By comparing the performance of the two -AM systems for the last two lectures, we can

see that the initialization of Full50 converges to local optimums for the two lectures, which are

highlighted in bold in Table 3.7. Nonetheless, as shown in Table 3.7, the Full50 system is able

to improve the given initial segmentation and reach a similar performance to that accomplished

by the FullDP and the initialization of the FullDP systems. This observation indicates that the

full model can leverage its knowledge acquired from the higher-level structures in the speech

data to refine the segmentation. The superior performance of the Full50 system than that of the

Full50-AM system further demonstrates the synergies between the lexical and phonetic unit

learning enabled by our model design.

� 3.7 Chapter Conclusion

In this chapter, we present a probabilistic framework for inferring hierarchical linguistic struc-

tures from acoustic signals. Our approach is formulated as an integration of adaptor grammars,

a noisy-channel model, and an acoustic model. By encoding words as sequences of syllables

and representing syllables as sequences of phonetic units in the parsing grammar, our model is

able to jointly discover lexical, syllabic, and phonetic units directly from speech data.

In particular, when tested on lecture recordings, our model demonstrates its capability of

discovering frequent subject-specific keywords and acquiring syllabic structures that are highly

reusable for constructing different word types. Moreover, by comparing the model to its le-

sioned counterpart that does not contain a noisy-channel model, we find that modeling phonetic

variability plays a critical role in successfully inferring lexical units from speech. A more care-

ful examination on the learning behavior of our model also reveals that it is the proposed joint

learning framework that allows the noisy-channel model to capture phonetic variations. Finally,

a comparison between the full framework and one without the acoustic model further shows that

the strength of the proposed approach comes from the synergies our model stimulates between

lexical and phonetic unit acquisition.

The noisy-channel model employed in our framework has demonstrated its ability to nor-

malize phonetic variations. However, the large number of edit operations, |L|2 + |L| + 1,

associated with each phonetic unit has also hindered efficient computation for the first two in-
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ference steps described in Section 3.4. Furthermore, the design of the noisy-channel model

ignores potentially useful information, such as the context of a phone unit, which can be lever-

aged to better capture phonetic variability. A potential future research direction is therefore

to develop a noisy-channel model that can make better use of available knowledge to learn

phonetic variations while keeping the computation for inference efficient.

We employ the simplest grammar to induce the linguistic structures embedded in speech

data. However, there is a wide collection of grammars that can be utilized for this task. For

example, by defining a Collocation nonterminal to be a sequence of words, or more specifically,

by adding the following rule to our grammar,

Sentence→ Collocation+

Collocation→Word+

we can learn the collocation relationships among the discovered lexical units. Furthermore, we

can also exploit the grammar shown below to infer the morphological structures in a language

from speech data.

Sentence→Word+

Word→ Prefix Stem Suffix

Prefix→ PLU+

Stem→ PLU+

Suffix→ PLU+

These grammars can all be easily integrated into our framework for learning rich linguistic

structures from speech data. Even though the experimental results presented in this chapter are

only preliminary, we believe there is great potential for research in this direction.



Chapter 4

One-shot Learning of Spoken Words

� 4.1 Chapter Overview

One-shot learning is an ability to acquire and generalize new concepts from one or just a few

examples [15, 186]. In this chapter, we propose a computational model for one-shot learning

tasks on spoken words and investigate the importance of compositionality in speech for these

one-shot learning tasks. To test our hypothesis of the importance of compositionality, we uti-

lize and modify the unsupervised model introduced in Chapter 2 to discover a set of phone-like

acoustic units from raw speech data. The automatically inferred acoustic units are then ap-

plied to two one-shot learning tasks: classification and generation of novel spoken words. By

comparing our model to humans and baseline systems, which do not exploit any compositional

structures in speech, we find that learning acoustic units plays a key role in achieving good

performance on the two one-shot learning tasks examined in this chapter.

In Section 4.2, we review some one-shot learning tasks studied in other research fields, as

well as two instances of one-shot challenges faced by modern Automatic Speech Recognition

systems (ASRs). In Section 4.3, we then present an unsupervised model, which is a slight

variation of the model introduced in Section 2.4, for discovering the compositional structure

in speech. We explain in detail the inference algorithm that is used to train the unsupervised

model in Section 4.4. Two one-shot learning tasks are examined in this chapter: one-shot

classification, and one-shot generation of spoken words. We describe the experimental setup

for the two tasks in Section 4.5, and present the experimental results in Section 4.6. Finally, we

conclude this chapter in Section 4.7.

� 4.2 Related Work

Recently, the concept of one-shot learning has attracted wide interest in various research dis-

ciplines, and many computational models have been proposed for one-shot learning challenges

105
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in different contexts [39, 38, 185, 164, 102, 104]. The authors of [104] propose a hierarchical

Bayesian model for one-shot classification, and one-shot generation of handwritten characters

in the Omniglot corpus [103, 164]. The model exploits the compositionality and the causality

embedded in written alphabets across 50 languages. More specifically, the model discovers

primitive structures in characters, such as strokes and sub-strokes, along with their spatial re-

lationships, which are shared and re-used across different alphabets. The authors demonstrate

that the acquired knowledge in these primitive structures can then be transferred to learn new

types of characters, for example, alphabets of a new language. On a task of classifying novel

characters based on only one example, the hierarchical Bayesian model is shown to achieve

human-level behavior. Furthermore, by generating samples from their model, it is demonstrated

that the model can produce handwritten samples that are confusable with those generated by

a human in a visual Turing test [30, 29]. In this chapter, we adopt this idea of compositional-

ity, and build an unsupervised model to discover the primitive structures in speech, which are

applied to one-shot learning tasks with spoken words.

While the notion of one-shot learning is relatively unexplored for ASR, the problem of

out-of-vocabulary (OOV) detection is closely related, which involves detecting new words in

speech that are missing from the recognizer’s vocabulary. Without the capability of detecting

OOV words, speech recognizers may erroneously substitute OOV words with similarly sound-

ing in-vocabulary words. Furthermore, these substitution errors may propagate and affect the

recognition performance on words surrounding OOV words. In modern ASR systems, the OOV

problem is sometimes addressed by adding sub-word units to the recognizers’ vocabulary, al-

lowing new words to be recognized as sequences of sub-word units [6, 155, 156, 145, 10].

Similar to our approach, the OOV detectors represent words as sub-word sequences, which are

shared and re-used across spoken words in a language; however, the sub-word units employed

in most OOV detectors are induced from a pre-defined phonetic unit set [6, 145]. In contrast,

our model induces a set of phone-like units directly from raw speech in an unsupervised man-

ner, resembling how an infant tries to learn the basic sound structures in the speech of his or

her native language. Finally, while modern ASR systems must deal with the OOV problem, it

is not clear how their performance compares to human performance. Designing experiments

that can quantitatively evaluate human ability to detect new vocabulary in continuous speech is

a research direction that is worth further exploration.

Another instance of one-shot learning in ASR tasks is query-by-example, whereby systems

are given an example of a spoken token and search through a speech corpus for spoken docu-

ments that also contain the query word [129, 121, 67, 183, 191, 192, 16, 139, 70]. There are



Sec. 4.3. Model 107

two prominent research approaches taken to solve the STD problem [122]. The first approach

is a more supervised method, in which both the given query example and the spoken documents

are transcribed into word or phone sequences by a speech recognizer, on which text-matching

techniques can be applied to retrieve documents that contain the keyword [129, 121, 67, 183].

As discussed earlier, although this type of approach exploits the compositionality embedded

in speech and represents words as sequences of phones, the sub-word units used in these sys-

tems are usually pre-defined, which is different from the unsupervised approach we take. On

the other hand, the second main approach to solving the STD problem is based on similarity

matching between the spoken query and documents in the feature space, which requires no

supervised training [191, 192, 16, 139]. While these approaches are unsupervised and do not

rely on any prior knowledge in a language, these methods make no use of the compositional

structure in speech. As demonstrated later in this chapter, by exploiting the principle of com-

positionality, our model can achieve significantly better performance on one-shot classification

tasks than baseline systems that ignore the compositional structure in speech.

Finally, there has been computational work on the problem of unsupervised learning of sub-

word units in the field of cognitive science [181, 40, 41, 24]. However, most of these models

cannot be directly applied to any task that uses raw speech as input data. More clearly, these

models usually assume that the phonetic boundaries in speech are known and that the speech

data are already converted to a low-dimensional space such as the first and second formant of

vowel sounds. In contrast, our model infers sub-word segmentation and sub-word categories

from a feature representation that more closely resembles raw speech data.

� 4.3 Model

In this section, we present our unsupervised model for discovering the compositional structure

in speech data. Although often not acknowledged explicitly, the notion of compositionality is

ubiquitous in ASR. Take the acoustic model in an ASR system as an example. The acoustic

model generally consists of a set of 3-state Hidden Markov Models (HMMs) that represent the

phonetic units in a language [87]. These phonetic units can be regarded as the primitive struc-

tures of speech in a language, and the HMMs modeling these phonetic units can be recursively

concatenated to form larger HMMs to model word pronunciations. Our model builds upon this

basic HMM structure to acquire a phone-like representation of a language from speech data.

In Section 2.4, we present a Dirichlet process mixture model with hidden Markov models

as the mixtures to discover acoustic units in speech. The DPHMM model discovers acoustic
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units by exploiting the unigram statistics of the discovered clusters. More specifically, as shown

in the first term of Eq. 2.1, to assign a cluster label to a speech segment, the DPHMM model

considers how often it has observed samples from each cluster, and utilizes a pseudo count for

a new cluster as its prior belief of how likely a segment belongs to each cluster.

However, there is more information than the unigram statistics of the acoustic units to be

learned and to be exploited for learning. For example, as pointed out in [60], contextual infor-

mation of clusters can help improve the word segmentation performance of unsegmented phone

sequences. Therefore, in this section, we present a Bayesian Hierarchical Hidden Markov

Model (HHMM) for the task of acoustic unit discovery, which leverages its hierarchical struc-

ture to learn not only the unigram distribution of the acoustic units, but also the bigram transi-

tion probabilities between the discovered units.

� 4.3.1 Bayesian Hierarchical Hidden Markov Model

The hierarchical hidden Markov model consists of two layers: a top layer of states representing

the acoustic units to be discovered and a bottom layer of 3-state HMMs, which model the

feature dynamics of each acoustic unit. In other words, we use a regular HMM to capture

the transition probabilities between the discovered acoustic units (i.e., a phone bigram), and

associate each state with a 3-state HMM to model the emission probability of each acoustic

unit. An illustration of the proposed HHMM with three acoustic units is shown in Fig. 4.1, in

which we use θi, for 1 ≤ i ≤ 3, to denote an acoustic unit and θi,j , for 1 ≤ j ≤ 3, to denote

the 3 sub-states of the HMM associated with the ith acoustic unit.

To formalize the proposed hierarchical hidden Markov model, we review some notation

used for the DPHMM model in Section 2.4, and introduce new variables for the hierarchical

hidden Markov model. In the model description presented below, we assume there are K

states in the top layer of the HHMM. Note that we slightly change the index variables used in

Section 2.4 for clarity.

Variable Review

• xt ∈ R39: The MFCC features of the training utterances, which are the only observed

data in our model. Note that we use xt to denote the tth speech feature frame in a

sentence, and xi,t to denote the tth feature frame in the ith segment of an utterance.

• bt ∈ 0, 1: The boundary variable associated with each feature vector, which indicates a

speech segment boundary between xt and xt+1 if bt = 1, and vice versa.
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Figure 4.1. An example of the proposed hierarchical hidden Markov model with three discovered acoustic units.

Note that we omit the start and the end states of an HMM for simplicity, the top layer HMM is used to model

the transition between acoustic units, and the bottom layer HMMs are used to model the feature dynamics of each

acoustic unit.

• st: The sub-state within a 3-state HMM that xt is assigned to.

• mt: The Gaussian mixture component that is used to generate xt.

• ci, 1 ≤ ci ≤ K: The cluster label of the ith speech segment in an utterance. Note that

in the framework of HHMMs, ci not only denotes the acoustic unit that a segment is

assigned to, but also denotes the id of the state that represents the acoustic unit in the top

layer of an HHMM.

• θk: The 3-state HMM associated with state k at the top layer of an HHMM.

• θ0: The prior distribution of θk.

Additional Model Variables for HHMM

• φk ∈ RK : The transition probability of state k in the top layer of an HHMM, which

contains the transition probabilities from acoustic unit k to other acoustic units. We use

φk,j to indicate the probability of transitioning from the kth to the jth acoustic unit.

• β ∈ RK : The prior distribution of φk, which can be thought of as the unigram distribution

of the acoustic units. We use β to tie all φk’s together to enforce sharing unigram statistics

of the acoustic units for learning bigram transition statistics between the acoustic units.

We further impose a symmetric Dirichlet prior distribution, Dir(γ), on β.
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Figure 4.2. The proposed hierarchical hidden Markov model for acoustic unit discovery forN units in an utterance.

The shaded circles denote the observed feature vectors, the squares denote the parameters of the priors used in our

model, and the unshaded circles are the latent variables of our model.

• π ∈ RK : The probability distribution of the initial state for the top layer of an HHMM,

which is equivalent to the probability of choosing each acoustic unit as the starting unit

in an utterance. We use a symmetric Dirichlet distribution, Dir(η), as the prior of π.

The graphical representation of the proposed hierarchical hidden Markov model for acous-

tic unit discovery is shown in Fig. 4.2. In the next section, we describe the generative process

implied by the HHMM model.

� 4.3.2 Generative Process

The generative process for an utterance that has N speech segments can be written as follows.

Note that we assume we know the number of segments in an utterance in this example only for

clarity. This number is actually not available to our model and needs to be inferred from data.

We explain how to infer the number of segments in an utterance in the next section.

To generate an utterance, we first sample the model parameters, as follows.

1. Generate a sample for the initial state probability.

π ∼ Dir(η)

2. Instantiate the prior distribution β of the transition probabilities.

β ∼ Dir(γ)
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3. Sample the transition probability distribution for each acoustic unit, or each state in the

top layer of an HHMM. For 1 ≤ k ≤ K,

φk ∼ Dir(αβ)

4. Parameterize each of the 3-state HMMs that are associated with the acoustic units. For

1 ≤ k ≤ K,

θk ∼ θ0

The value α in Eq. 3 is the concentration parameter of the distribution from which φk are

drawn, which indicates how similar φk are to their prior β. To be more clear, the parameter of a

Dirichlet distribution can be viewed as pseudo counts of samples from each category before the

model observes any data. Therefore, the value of αβ of the Dirichlet distribution in Eq. 3 can

be regarded as our prior belief in observing each acoustic cluster following the kth acoustic

unit in data. As a result, if we increase the value of α, then we increase the pseudo counts for

each category proportional to the prior β, forcing samples of φk to be more similar to the prior

β. On the other hand, if the value of α decreases, then our belief in the prior β also decreases,

and thus we rely more on the real observations in the data for generating samples of φk.

After the model parameters are sampled, we can generate an utterance with N segments as

follows.

1. Choose the initial acoustic unit for the utterance.

c1 ∼ π

2. For 2 ≤ i ≤ N , select the label of the ith acoustic unit.

ci ∼ φci−1

3. For 1 ≤ i ≤ N , generate the speech features for each segment from θci .

xi,1, . . . , xi,di ∼ θci

The duration of each segment, di, is determined by the number of steps taken to traverse

from the beginning to the end of the HMM that the segment is assigned to. Fig. 4.3 illustrates the

latent variables in a training example, and how the model parameters π, φk, and θk correspond

to the training example.
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[k] [ae] [t] [ax] [k] [ay] [t][ax]

a cat, a kite

!i

ci 17 17 22 15 63 6310

x1,d

!17 !2 !15 !63 !17 !2 !10 !63

"17,2 "2,15 "15,63 "63,17 "17,2 "2,10 "10,63#17

x1,1 x7,dx7,1... x4,dx4,1 ... ...... ... ...

xi,t

1 4 7

Figure 4.3. An illustration of a typical training example for our model, the latent variables embedded in the

utterance, and the model to be learned. Note that only speech data (xi,t) is given to the model; the text a cat, a

kite and the pronunciation are only for illustration. The segment boundaries, indicated by the red bars, the segment

cluster labels ci, as well as the model parameters π, φ, and θ all need to be inferred from data.

� 4.3.3 Comparison to Alternative Models

The HMM-based model presented in [182] is similar to the proposed HHMM model in this

section. The major difference is that in the model of [182], the emission probability of each state

in the top layer HMM is modeled by a Gaussian Mixture Model (GMM), while in our proposed

HHMM, the emission probability of each state is modeled by a 3-state HMM. The design of

our model topology allows the states in the top layer HMM to represent units that are more like

phones, while as shown in [182], the states in the model of [182] tend to correspond to units

smaller than a phone. The benefit of learning more phone-like units is that, for example, we can

directly substitute expert-defined standard phone sets used in tasks such as speech recognition

with the induced acoustic units, and hence reduce the degree of human supervision in those

tasks. Even though learning sub-units smaller than phones can potentially achieve the same

goals, a mechanism for merging the sub-units into more phone-like units, or new frameworks

for completing those tasks based on sub-units, must be developed. These two problems are

beyond the scope of this thesis; however, we believe that the two problems are both research

directions worth further investigation.

Extension of Hierarchical Hidden Markov Model to a Nonparametric Model

A Bayesian nonparametric extension of the hidden Markov model is Hierarchical Dirichlet

Process Hidden Markov Model (HDPHMM) [177, 7], in which a Hierarchical Dirichlet Process

(HDP) prior is imposed on the states of the HMM. The HDPHMM has provided a powerful

framework for inferring state complexity from data. By applying the same idea to our model, we
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can construct the nonparametric counterpart of the HHMM model by imposing an HDP prior

on the top layer HMM and having the model automatically infer the number of acoustic units

to be discovered for a dataset. While the HDPHMM framework provides a general framework

for inferring the data complexity, we decided to use the parametric version of the model for

computational efficiency. By setting the number of states in the parametric HHMM to be larger

than the expected number of clusters, the finite model can be regarded as a close approximation

to the nonparametric model. The inference scheme of setting an upper bound K on the number

of clusters that a Dirichlet process finds is referred to as the degreeK weak limit approximation

to the Dirichlet process [72], which has been exploited in the inference algorithms of other

nonparametric models and shown to work well [46, 85].

Finally, the model described in [180] for acoustic unit segmentation in speech is also based

on an HDPHMM. However, similar to [182], the emission probability of each state is modeled

by a GMM. This model structure design is different from that of our model, which utilizes an

HMM to capture the temporal dynamics of an acoustic unit in the feature space.

� 4.4 Inference

In this section, we describe the inference procedure for learning the generative model presented

in Section 4.3. The inference procedure consists of three parts: 1) Initialize of the model

parameters π, β, φk, and θk; 2) Infer the acoustic unit label ci for each segment in an utterance;

3) Generate new samples for the model parameters. We construct a Gibbs sampler to learn the

model, which is initialized and alternates between the last two steps as follows.

� 4.4.1 Initialization of the Model Parameters π, β, φk, and θk

To initialize the Gibbs sampler, we obtain samples for the model parameters π, β, φk and θk
from their corresponding prior.

π ∼ Dir(η) (4.1)

β ∼ Dir(γ) (4.2)

φk ∼ Dir(αβ) k = 1, . . . ,K (4.3)

θk ∼ θ0 k = 1, . . . ,K
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� 4.4.2 Sample Speech Segmentation bt and Segment Labels ci

Conditioning on the model parameters, we can construct and generate samples from the poste-

rior distribution of the latent labels of speech segments ci. However, to construct the conditional

posterior distribution, we must integrate out the unknown segmentation within each utterance,

which includes the number of segments N , and the location of the segment boundaries. To

overcome these two challenges, we employ and modify the message-passing algorithm de-

signed for hidden semi-Markov models [133, 85], and present the modified algorithm for the

HHMM model in this section. Based on the message values, we can efficiently compute the

posterior probability of each possible segmentation for an utterance as well as the posterior

probability of the cluster label of each segment.

Message-passing Algorithm for HHMM

We adopt the notation used in [85] and define B and B∗ as follows.

Bt(k) , p(xt+1:T |C(xt) = k, bt = 1) (4.4)

=
K∑
j=1

p(C(xt+1) = j|C(xt) = k)B∗t (j) (4.5)

=

K∑
j=1

φk,jB
∗
t (j) (4.6)

B∗t (k) , p(xt+1:T |C(xt+1) = k) (4.7)

=

T−t∑
d=1

p(xt+1:t+d|C(xt+1) = k)Bt+d(k) (4.8)

BT (k) , 1 k = 1, . . . ,K (4.9)

B0(0) =

K∑
k=1

πkB
∗
1(k) (4.10)

where we use xt1:t2 as an abbreviation of xt1 , . . . , xt2 , and T to denote the total number of

feature frames in an utterance. The function C(xt) maps xt to the cluster label of the segment
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that xt belongs to. As shown in Eq. 4.4, Bt(k) is defined to be the marginal probability of

xt+1:T , with all possible segmentations for xt+1:T integrated out, given that xt is a segment

boundary and the speech segment that includes xt is an observation of the kth acoustic unit. The

value of B∗t (k) contains the marginal probability of xt+1:T given that the segment starting with

xt+1 has a cluster label k. We compute the value ofB∗t (k) by considering all possible durations

of the segment starting with xt+1 and multiplying the likelihood of xt+1:t+d being generated

by the kth acoustic unit with Bt+d(k) that stands for the marginal probability of the features

after this segment given C(xt+d) = k. Given the definitions shown in Eq. 4.4 and Eq. 4.7, we

can implement this backwards message-passing algorithm using dynamic programming, which

allows us to compute the marginal probabilities efficiently. The initialization condition of this

backwards message-passing algorithm is specified in Eq. 4.9.

Construct Posterior Distributions of Segmentation and Segment Labels

With the values of B and B∗ computed, we can sample the segmentation of an utterance and

the cluster labels of the segments recursively starting from the beginning of an utterance. As

a quick summary, we use the values stored in Bt(k) to sample the cluster label of the segment

starting at t+1. Given the cluster label, j = C(xt+1), we exploit the probability carried inBt(j)

to sample the duration d of the segment that starts with xt+1. After this step, the segmentation

and cluster labels for feature vectors x1 : xt+d are determined; we can then recursively use

the information carried in Bt+d(j) and repeat the procedure to sample the segment label for

the next segment. This procedure is repeated until the last segment in the utterance is sampled.

We refer to this procedure as the forwards sampling step. We take sampling the first segment

boundary and segment label as an example and show how to construct the posterior distributions

of segment labels and segment duration in detail. The complete forwards sampling algorithm

is presented in Alg. 4.4.1.

To construct the posterior probabilities of the cluster label for the segment that starts with

x1, we normalize the K items that contribute to B0(0) in Eq. 4.10 as follows.

p(C(x1) = k|x1:T , π, β, φ1, . . . φk, θ1, . . . θk) =
πkB

∗
1(k)

B0(0)
(4.11)

The cluster label of the first segment c1 can thus be sampled from the normalized distri-

bution shown in Eq. 4.11. Given the cluster label, the duration of the first segment d can be

sampled from the following normalized distribution, which is composed of entries of Eq. 4.8.
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Algorithm 4.4.1 Forwards sampling segment boundaries, bt, and segment labels, ci
1: i← 0

2: t← 0

3: ci ← 0

4: while t < T do
5: ci+1 ← SampleClusterLabelFromBt(ci) % See explanation in Eq. 4.11.
6: t← SampleBoundaryFromB∗t (ci+1) % See explanation in Eq. 4.12.
7: i← i+ 1

8: end while

p(d|c1, x1:T , π, β, φ1, . . . φk, θ1, . . . θk) =
p(x1:d|C(x1) = c1)Bd(c1)

B∗1(c1)
(4.12)

=
p(x1:d|θc1)Bd(c1)

B∗1(c1)
(4.13)

where p(x1:d|θc1) is the likelihood of the speech segment x1:d being generated by the HMM θc1 ,

which can be computed using the forward-backward algorithm. At this point, we have found

the first segment, which consists of features x1, · · · , xd, along with the acoustic unit label c1.

By conditioning on c1, we can compose the posterior distribution of c2, the cluster label of the

second segment, using Eq. 4.11 with πk replaced by φc1,k, and construct the posterior duration

of the second segment as in Eq. 4.12. The sampling procedure alternates between the two

steps until a sample for the label of the last segment is generated. Finally, to further improve

the efficiency of the computation of B and B∗, we exploit the idea of boundary elimination

described in Section 2.5.2 and compute Bt and B∗t only for t whose associated feature vector

xt is proposed as a potential boundary by the boundary elimination algorithm.

Sample Other Latent Variables Associated with Speech Segments

After sampling the cluster label for each speech segment, we can further generate samples for

the state id st, and mixture id mt, for each feature vector in a speech segment. This part of the

inference can be carried out with the procedure presented in Section 2.5.

� 4.4.3 Sample Model Parameters π, β, φk, and θk

Once the samples of ci are obtained, the conditional posterior distribution of π, φk, and β can

be derived based on the counts of ci. By conditioning on the state id and the mixture id of each
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feature vector, the HMM parameters θk can be updated as in Section 2.5. Therefore, in this

section, we focus on deriving the posterior distributions of π, β, and φk.

To update the prior distribution of π, we define Ik to be the number of times that acoustic

unit k appears at the beginning of an utterance in the training data. More formally,

Ik =
D∑
i=1

δ(c1 = k), (4.14)

where D is the total number of training utterances in the corpus, and δ(·) stands for the discrete

Kronecker delta. After gathering this count from the data, we can update the prior distribution

of π and generate a sample from its posterior distribution.

π ∼ Dir(η + I1, η + I2, . . . , η + IK) (4.15)

Since φk and β are tied through a hierarchical structure, the derivation of the correspond-

ing posterior distributions is done through a recursive procedure. We define Nk to be a K-

dimensional vector, where the jth entry of Nk is the number of times the bigram pair (ci =

k, ci+1 = j) is observed in the entire corpus based on the sampling results of the previous

inference step. More precisely,

Nk,j =
D∑
i=1

Ni−1∑
n=1

δ(c(i)n , c
(i)
n+1 = k, j),

whereNi is the number of segments in the ith utterance inferred by the Gibbs sampler. In order

to update the prior of β, we need to compute the pseudo count of each acoustic unit appearing

as the second term in all bigram tokens, which can be obtained as follows.

Mj =
K∑
k=1

Nk,j∑
i=1

δ(ν <
αβj

i+ αβj
)

where αβj
i+αβj

is the probability of generating the acoustic unit j as the second term in a bigram

from the prior. For every acoustic unit j that appears as the second term in a bigram, we sample

a random variable ν uniformly between 0 and 1 to test whether it is generated from the prior. If

it is, then we increase the pseudo countMj . With the numbersNk andMj computed, samples

for β and φk can be generated recursively as shown in Eq. 4.16 and Eq. 4.17.
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β ∼ Dir(γ +M1, . . . , γ +MK) (4.16)

φk ∼ Dir(αβ1 +Nk,1, . . . , αβK +Nk,K) 1 ≤ k ≤ K (4.17)

� 4.5 Experimental Setup

Two experiments are designed to validate the hypothesis proposed in this chapter: learning

compositional structure is important for one-shot learning of spoken words. The experiments

simulate the one-shot learning challenge in two contexts: classification and generation of new

spoken words. In this section, we explain the experimental setup for the two tasks in detail as

well as describe the training setup for our model and the training corpora used for the experi-

ments.

� 4.5.1 Corpus of Japanese News Article Sentences

The corpus of Japanese News Article Sentences (JNAS) [73] consists of speech recordings

and the corresponding orthographic transcriptions of 153 male and 153 female speakers read-

ing excerpts from the Mainichi Newspaper, and 503 phonetically-balanced (PB) sentences that

were chosen by the Interpreting Telephony Research Laboratorie of Advanced Telecommu-

nications Research Institute International in Kyoto. One hundred and fifty five news articles

were selected, and each one of the 155 articles was read by one male and one female speaker.

Each speaker also read 50 PB sentences. The speech data were recorded by two types of mi-

crophones: a Sennheiser HMD410/HMD25-1 or the equivalent head-set microphone, and a

desk-top microphone. The data were sampled at a 16 kHz sampling rate, and each sample was

quantized into 16 bits. For training the models for the experiments reported in this section,

we randomly chose a 10-hour subset of read news articles recorded by using the Sennheiser

microphone, which consists of roughly half male and half female speech. There are 150 male

talkers and 149 female talkers in this 10-hour subset.

� 4.5.2 Wall Street Journal Speech Corpus

The Wall Street Journal (WSJ) speech corpus contains read speech of articles drawn from the

Wall Street Journal text corpus [51]. An equal number of male and female speakers were chosen

to record the corpus for diversity of voice quality and dialect. Two microphones were used for

recording: a close-talking Sennheiser HMD414, and a secondary microphone. The speech data
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were sampled at 16 kHz and saved as sequences of 16-bit data samples. For training the models,

we used a subset of the WSJ corpus, which consists of roughly 12 hours of speech spoken by

26 female and 14 male talkers.

� 4.5.3 Hyperparameters and Training Details

η γ α K µ0 κ0 α0 β0

〈1〉K 〈50〉K 〈1〉K 100 µd 5 3 3/λd

Table 4.1. The values of the hyperparameters of the HHMM model, where µd and λd are the dth entry of the mean

and the diagonal of the inverse covariance matrix of training data. We use 〈a〉K to denote a K-dimensional vector,

whose entries are all a.

Table 4.1 lists the hyperparameters used for training the HHMM models, in which η, γ

and α are the hyperparameters of the prior distributions of π, β, and φk as shown in Eq. 4.1,

Eq. 4.2, and Eq. 4.3. We use 〈a〉K to denote a K-dimensional vector, whose entries are all

a. The number of states K, at the top layer of the HHMMs trained for the experiments, is

set to 100, which exceeds the size of monophone sets that are usually defined for English

and Japanese. For example, 61 unique phones are defined for the TIMIT corpus [52], and

these 61 phones are commonly reduced to 48 classes in various experiments reported in the

literature [115, 89, 167, 161]. As shown in [142], there are only 16 consonants and 5 vowels

defined for the Japanese language. We recall from Section 2.5 that α0, β0, µ0, and κ0 are

components of θ0, which are the hyperparameters of the prior normal-Gamma distributions

for the Gaussian mixtures of each state of the bottom layer 3-state HMMs. We use µd and

λd to denote the dth entry of the mean, and the diagonal of the inverse covariance matrix, of

the Gaussian distribution learned from the training data. Finally, we let the Gibbs sampler

described in Section 4.4 alternate between the last two inference steps for 10,000 iterations to

learn all the models reported in this section.

� 4.5.4 Classification Task

In the classification task, human subjects and several classifiers, which are built upon the HH-

MMs, as well as a baseline method, are asked to classify novel spoken Japanese words based

on just one example for each of the novel words. More specifically, for each classification trial,

20 Japanese words, which are matched for word length in Japanese characters, are given to a

human subject or a classifier. After listening to the 20 Japanese words, the human subject or
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1 ダンチョウ danchyou

2 サンミャク sanmyaku

3 トランクス torankusu

4 チョウカン chyoukan

5 キョクトウ kyokutou

6 シュッソウ shyuzou

7 ジョウクウ jyoukuo

8 ロッキード rokiido

9 アイジョウ aijyou

10 エリツィン erichin

11 ジョウヘキ jyouheki

12 コガイシャ kogaishya

13 コウキュウ koukyuu

14 ヒキノバサ hikinobase

15 ホリングス horingusu

16 セレモニー seremonii

17 ボウケイシ boukeishi

18 ジョウチョ jyouchyo

19 ジカンテキ jikanteki

20 ノゾマシイ nozomashii

Table 4.2. The stimuli of length 5, along with their approximated pronunciations, used in the classification task for

the mismatched gender condition.

the classifier is required to match a target word, spoken by a different speaker, to one of the 20

templates.

There are two test conditions: 1) matched speaker gender for the target word and the tem-

plates and 2) different speaker gender for the target word and the templates. For the matched

gender condition, we select 20 words for each word length between 3 and 7 Japanese characters

for each gender. Two samples for each of the selected 20 words are extracted from the JNAS

corpus and divided into group A and group B. We then create 20 classification trials by using

each token in group A as the target words and tokens in group B as the templates. Likewise, by

swapping tokens in group A and group B, we can create another 20 classification trials; there-

fore, for each gender and each word length, there are 40 classification tests in total. For the
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Figure 4.4. A snapshot of the classification trial presented to the participants on Amazon Mechanical Turk. The

blue boxes highlight the clips that had not been listened to by the participant.

mismatched gender condition, a similar strategy is applied to create classification trials except

that word lengths from 3 to 12 are considered. Table 4.2 shows the 20 selected Japanese words,

along with their approximated pronunciations, of length 5 used in the classification trials for

the mismatched gender condition.

In the rest of this section, we depict the classification tasks presented to human subjects on

Amazon Mechanical Turk (AMT). Also, we explain how the classifiers are built on the HHMM

models, as well as describe the baseline system based on Dynamic Time Warping (DTW).

Humans

All participants for the experiments reported in this chapter were recruited via AMT from adults

in the USA. Analyses were restricted to native English speakers that do not know any Japanese.

Before the classification experiment, participants needed to pass an instruction quiz [22], and

there was a practice trial with English words for clarity. Fifty-nine human subjects participated

in the classification task in total.

Each of the participants classified new Japanese words in a sequence of displays designed to

minimize memory demands. A snapshot of the classification trial presented to the participants

on AMT is shown in Fig. 4.4. Participants could listen to the 20 templates and the target word

by clicking the buttons, which they could do more than once to reduce the memory demand.

Once the participants found the matched template for the target word, they could click the

radio button of the template and submit their response. However, responses were not accepted

until all buttons had been tried to prevent the participants from cheating. The clips that had

not been listened to before a participant attempted to submit a job would be highlighted by
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Figure 4.5. A snapshot of the corrective feedback shown to the participants for the classification trial.

blue boxes as demonstrated in Fig. 4.4. Corrective feedback was shown after each response,

as shown in Fig. 4.5. Finally, each participant was assigned to one of the two test conditions

with matched (5 trials) or different (10 trials) gender. To ensure that learning was indeed one-

shot, participants never heard the same template and target words twice and completed only

one randomly selected trial for one particular test condition and a specific word length.

Hierarchical Hidden Markov Model Classifiers

Two HHMMs are trained for the classification task. One model is trained on the WSJ subset

to simulate an English talker, and the other model is trained on the JNAS subset with all oc-

currences of the template and target words excluded. The second model can be viewed as a

Japanese speaking child learning words from his/her parents; therefore, we allow the talkers of

the template and target words to overlap the speakers in the 10-hour subset of the JNAS corpus.

In fact, for both matched and mismatched gender conditions, all talkers of the template and tar-

get words also appear in the 10-hour subset, and each talker contributes to roughly 0.35% of

data in the 10-hour data set.

As in the human experiment, for every trial, the model selects one of the 20 template words

that best matches the target word. We implement a Bayesian classifier to accomplish the selec-

tion process. The Bayesian classifier is defined as follows.

argmax
i=1...20

p(X(G)|X(i)) = argmax
i=1...20

∫
C(i)

p(X(G)|C(i))p(C(i)|X(i)) dC(i), (4.18)

where X(G) and X(i) are the sequences of Mel-Frequency Cepstral Coefficients (MFCCs) rep-

resenting the target word and each of the template words respectively [23]. More specifically,
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the spoken target and template words are each converted to a series of 25 ms 13-dimensional

MFCCs and their first- and second-order time derivatives at a 10 ms analysis rate. The variable

C(i) denotes all possible unique acoustic unit sequences that underly X(i). The first term in

the integral can be interpreted as the likelihood of the sequence of acoustic units contained in

C(i) generating the observed feature vectors X(G), and the second term denotes the posterior

probability of parsing X(i) into the sequence of acoustic units C(i). Since it is computation-

ally expensive to compute the integral of Eq. 4.18, we approximate the integral with just the

L = 10 most likely acoustic unit sequences C(i)[1], . . . , C(i)[L] that the HHMM model gener-

ates for X(i) as in Eq. 4.19.

argmax
i=1...20

p(X(G)|X(i)) = argmax
i=1...20

∫
C(i)

p(X(G)|C(i))p(C(i)|X(i)) dC(i) (4.19)

≈ argmax
i=1...20

L∑
l=1

p(X(G)|C(i)[l])p(C(i)[l]|X(i))

≈ argmax
i=1...20

L∑
l=1

p(X(G)|C(i)[l])
p(X(i)|C(i)[l])p(C(i)[l])∑L
j=1 p(X

(i)|C(i)[j])p(C(i)[j])︸ ︷︷ ︸
(a)

It is straightforward to apply the inferred HHMM model parameters π and φk to compute

p(C(i)[l]). Assume that C(i)[l] = c
(i)[l]
1 , c

(i)[l]
2 , . . . , c

(i)[l]
N . The value of p(C(i)[l]) can thus be

computed as

p(C(i)[l]) = π
c
(i)[l]
1

N−1∏
j=1

φ
c
(i)[l]
j ,c

(i)[l]
j+1

. (4.20)

To compute p(X(i)|C(i)[l]), we concatenate the 3-state HMMs associated with the acous-

tic units in C(i)[l] to form a large HMM and use the forward-backward algorithm to obtain

the likelihood of observing X(i) given C(i)[l]. Finally, as in [104], we find marginally better

performance by using Eq. 4.21 instead of Eq. 4.18,

argmax
i=1...20

p(X(G)|X(i)) = argmax
i=1...20

p(X(G)|X(i))
p(X(i)|X(G))

p(X(i))
. (4.21)

Both sides of Eq. 4.21 are equivalent if inference is exact, but due to the approximations, we

include p(X(i)|X(G))

p(X(i))
to regularize the classifier. The value of p(X(i)|X(G)) can be computed

by using Eq. 4.19-(a) with the roles of X(i) and X(G) swapped, and the value of p(X(i)) is

approximated as follows.
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Algorithm 4.5.1 Dynamic Time Warping for Two Speech Feature Sequences X(1) and X(2)

1: % Let X(1) = x
(1)
1 , . . . , x

(1)
N1

2: % Let X(2) = x
(2)
1 , . . . , x

(2)
N2

3: Dmin := array[N1 + 1][N2 + 1] % Initialize a 2-dimensional array
4: Dmin[0][0] = 0

5: for i = 1, . . . , N1 do
6: Dmin[i][0] =∞
7: end for
8: for i = 1, . . . , N2 do
9: Dmin[0][i] =∞

10: end for
11: for i = 1, . . . , N1 do
12: for j = 1, . . . , N2 do
13: d = cos(x

(1)
i , x

(2)
j ) % Cosine distance between x(1)i and x(2)j

14: Dmin[i][j] = d+min(Dmin[i− 1][j], Dmin[i][j − 1], Dmin[i− 1][j − 1])

15: end for
16: end for
17: return Dmin(N1, N2)

p(X(i)) ∼
L∑
l=1

p(X(i), C(i)[l])

=

L∑
l=1

p(X(i)|C(i)[l])p(C(i)[l])

Dynamic Time Warping

We compare the HHMM classifier against a DTW-based classifier, which is the baseline for the

classification experiment. DTW is a classic algorithm that is widely used to measure similarity

between two sequences of speech features [163, 162, 138, 135, 168]. It requires no learning, and

the sequences are compared by computing an optimal non-linear warping path and measuring

the distance between the aligned sequences given the optimal warping path. More specifically,

for our classification task, the DTW-based classifier selects the best matching template with the

target word by using the following rule.
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i∗ = argmax
i=1...20

D(X(G), X(i)) (4.22)

where D(X(G), X(i)) denotes the cost of the optimal warping path between the features of

X(G) and X(i), which can be computed using the dynamic programming algorithm shown in

Alg. 4.5.1.

� 4.5.5 Generation Task

Humans generalize in many other ways beyond classification. The other one-shot learning

task we investigate in this chapter is generation. Can English speakers generate compelling

new examples of Japanese words after hearing just one example of a Japanese word? Can the

models do the same? Here we describe the experimental design for testing human subjects and

several models on the task of one-shot spoken word generation.

In each generation trial, the human subjects and the HHMM models listen to a male Japanese

word example. The human participants and the models are then asked to generate or synthesize

the given word. The male Japanese word examples are the same as those used in the classifi-

cation experiment for the different gender condition. The ultimate evaluation is to run a Turing

test on these generated or synthesized words [30, 29], in which other human subjects, who are

referred to as human judges in the rest of the section, are asked to distinguish between human-

generated and model-synthesized speech tokens. However, since synthesizing natural speech

is still a difficult technical challenge [189], and since the HHMM models are not tailored for

the purpose of speech synthesis, we develop another evaluation method for the generation task.

As a result, performance is measured by asking human judges to classify the generated and

the synthesized examples into the intended class as in the classification task. The classification

accuracy rate can then be an indicator of exemplar quality.

Humans

A snapshot of the generation task displayed to the participants on AMT is shown in Fig. 4.6.

Ten participants were recruited for this task. Each participant was assigned a different word

length (3 to 12), and then must complete twenty trials of recording using a computer micro-

phone. Participants were allowed to re-record until they were satisfied with the quality. This

procedure collected one sample per stimulus used in the classification task for the mismatched

gender condition. Therefore, there were two hundred spoken samples collected from the human

subjects in total.
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Figure 4.6. A snapshot of the generation trial displayed to the participants on Amazon Mechanical Turk.

Hierarchical Hidden Markov Models for Speech Synthesis

The two HHMM models that are used to build the Bayesian classifiers in the classification

experiment are also utilized to synthesize speech for the generation task. We refer to these two

models as the Japanese HHMM and the English HHMM, as they are trained on the JNAS and

WSJ corpora respectively. For the generation task, both models listen to the same new Japanese

words as the human subjects, and then synthesize new examples. To synthesize speech, the

models first parse each given Japanese word example, denoted as X(i), into a sequence of

acoustic units Ĉ(i) as follows.

Ĉ(i) = argmax
C(i)

p(C(i)|X(i))

= argmax
C(i)

p(X(i)|C(i))p(C(i)) (4.23)

where the first term p(X(i)|C(i)) in Eq. 4.23 can be computed by using the forward-backward

algorithm, and the second term can be computed as in Eq. 4.20. The entire decoding task for

finding the most likely Ĉ(i) can also be solved via the forward-backward algorithm. With Ĉ(i)

decoded, we can then concatenate the 3-state HMMs associated with each acoustic unit in Ĉ(i)

to form a whole-word HMM for the Japanese word sample X(i) and forward generate MFCC

features from this whole-word HMM.

While it is easy to forward sample MFCC features from the whole-word HMM, we adopt

the procedure used by most HMM-based speech synthesis systems [178, 189], and generate

the mean vector of the most weighted Gaussian mixture component for each sub-state in the

whole-word HMM. Furthermore, HMM-based synthesis systems usually have a duration model

for explicitly modeling the length of each acoustic unit [187]. Since this information is missing
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from our HHMM model, we force the synthesized speech to have the same duration as the

given example. In particular, assume that Ĉ(i) = c
(i)
1 , . . . , c

(i)
N . For each c(i)j , for 1 ≤ j ≤ N ,

we count the number of frames in X(i) that are mapped to c(i)j and generate samples from θ
c
(i)
j

evenly from the 3 sub-states of θ
c
(i)
j

. Finally, to improve the quality of the speech, we extract

the fundamental frequency information from the given spoken word example by using [1].

After the information of the fundamental frequency is combined with the generated MFCCs,

the features are inverted to audio by the speech processing tool provided in [32].

Last but not least, to more directly study the role of the learned units, we include several

lesioned HHMMs, referred to as the one-unit model and the unit-replacement models. The

one-unit model is trained on the JNAS corpus with only one acoustic unit allowed to be learned

during training, providing the model with a rather limited notion of compositionality. Finally,

several unit-replacement models are adapted from the Japanese HHMM, English HHMM, and

the one-unit model. To synthesize speech, the unit-replacement models take the inferred unit

sequence Ĉ(i) and perturb the units by randomly replacing a subset with other units. After

the first unit is replaced, additional units are also replaced until a 25% or 50% noise level is

exceeded, as measured by the fraction of replaced feature frames in X(i).

Evaluation Procedure

To evaluate the quality of the human-generated and the machine-synthesized speech tokens, 30

participants are recruited on AMT to classify a mix of speech clips produced by both the human

subjects and the HHMM models. The trials appear in the same way as in the classification task,

where the top button plays a human-generated or a machine-synthesized target word. The

other 20 buttons play the original Japanese recordings, matched for word length within a trial

as in the classification experiments. Since the synthesized examples are based on male clips,

only the female clips are used as the 20 templates. There is one practice trial (in English)

followed by 50 trials with the target example drawn uniformly from the set of all generated

or synthesized samples across conditions. Since the example sounds vary in quality and some

are hardly speech-like, participants are warned that the sound quality varies, may be very poor,

or may sound machine generated. Also, the instructions and practice trial are changed from

the classification task to include a degraded rather than a clear target word clip. All clips are

normalized for volume.
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� 4.6 Results and Analysis

� 4.6.1 Classification

Unit (%) Matched gender Mismatched gender

Humans 2.6 2.9

Japanese HHMM 7.5 21.8

English HHMM 16.8 34.5

DTW 19.8 43.0

Table 4.3. One-shot classification error rates. The table shows the means of the classification error rates across

different word lengths for each test condition (matched or mismatched gender) and for each learner (human subjects,

HHMM classifiers, or DTW classifier).

The one-shot classification error rates made by the human subjects, HHMM Bayesian clas-

sifiers, and the DTW classifier are shown in Table 4.3. The table shows the means of the clas-

sification error rates across different word lengths within each test condition. Human subjects

made fewer than 3% errors for both matched gender and mismatched gender test conditions,

which is the best performance achieved by all learners (human subjects, the HHMM classifiers,

and the DTW classifier).

While the best performing model still generates a 5% higher classification error rate than

human subjects, both the Japanese HHMM and the English HHMM beat the DTW baseline in

the two test conditions. Particularly, the English HHMM is trained on a corpus that mismatches

the target and template Japanese speech used in the task in language, speakers and recording

conditions. Even though the English HHMM needs to deal with all these corpus mismatch

problems that the DTW baseline does not encounter mostly, the English HHMM still outper-

forms the DTW baseline. The better performance achieved by the English HHMM in a tougher

learning condition demonstrates that discovering the basic structures in speech helps the model

generalize to learn new words in one-shot classification tasks. Furthermore, the performance

obtained by the English HHMM also suggests that the acoustic units inferred from an English

corpus can be utilized to learn new words in Japanese. This observation shows that knowledge

about basic acoustic units learned for one language can be transferred to learn another language,

especially for the language pair of English and Japanese, where the phone set of the former is

roughly a super set of the latter [142, 141].

The gap between human and machine performance is much larger for the HHMM trained

on English than the model trained on Japanese, which could be a product of many factors
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including mismatches in the WSJ corpus and the JNAS corpus as discussed earlier. While the

English-trained model may be more representative of the human participants, the Japanese-

trained model is more representative of everyday word learning scenarios, like a child learning

words spoken by a familiar figure.

The performance of all models degrades on the mismatched gender test condition, which

is not fully unexpected given the simple MFCC feature representation that is used for train-

ing. The inferior performance for the mismatched gender condition indicates that the HHMMs

might have learned different sets of acoustic units for different genders, which could be miti-

gated by using more robust feature representations for training the HHMMs. Even though there

is still a small performance gap between the best HHMM and the human subjects, the consis-

tent superior performance of the HHMMs compared to DTW evidently supports the hypothesis

that compositionality is an important facilitator of one-shot learning.

� 4.6.2 Generation

Several participants commented that the classification task on the generated speech samples

was too long or too difficult. Participants spent from 19 to 87 minutes on the task, and there

was correlation between accuracy and time (R=0.58, p<0.001). In a conservative attempt to

eliminate guessing, two participants were removed for listening to the target word fewer than

twice on average per trial (6 times was the experiment average). Note that this removal made

little difference in the pattern of results, which is shown in Fig. 4.7. The x-axis of Fig. 4.7

indicates the fraction of the feature vectors that are replaced by the unit-replacement model

during the synthesis process, and the y-axis shows the classification accuracy rate by using

the generated or synthesized samples as the target words in the classification task. A higher

classification accuracy rate indicates a better quality of the generated or synthesized speech

tokens.

Overall, English speakers achieve an average classification accuracy rate of 76.8%. The

best HHMM is trained on the JNAS corpus and achieves an accuracy rate of 57.6%. The

one-unit model sets the baseline at 17%, and performance of both the Japanese HHMM and

the English HHMM decrease towards this baseline as more units are randomly replaced. As

with the classification experiment, the Japanese HHMM is superior to the English HHMM and

synthesizes Japanese words that are more similar to the given Japanese words in the one-shot

generation task.

The high performance achieved by the human subjects suggests that even naive learners

can generate compelling new examples of a foreign word successfully, at least in the case
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Figure 4.7. Percent of synthesized examples that human judges classified into the correct spoken word category.

Error bars are 95% binomial proportion confidence intervals based on the normal approximation.

of Japanese where the Japanese phone set is approximately a subset of the English phone

set [142, 141]. The two full HHMMs do not perform as well as humans do. However, given

the fact that the one-unit and unit-replacement models only differ from the full HHMMs by

their impoverished unit structure, the better results achieved by the full HHMM models still

highlight the importance of unit learning in the one-shot generation task.

Replication

A number of participants commented on the task difficulty. Since human and machine voices

were intermixed as the target words in the classification task, it is possible that some participants

just gave up on trying to interpret any of the machine generated speech. We investigate this

possibility by running another batch of experiments, in which each trial consists of speech

tokens generated or synthesized by only one system. More specifically, forty-five participants

were recruited and assigned to one of three conditions: speech generated by humans, by the

Japanese HHMM, or by the English HHMM. Three participants were removed for knowing

some Japanese, and three more were removed by the earlier guessing criterion. The results

largely confirm the previous numbers. The human-generated speech scores an accuracy rate of

80.8% on average; also, the Japanese HHMM and the English HHMM score 60% and 27.3%.

The previous numbers are 76.8%, 57.6%, and 34.1%, respectively.
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� 4.7 Chapter Conclusion

Although the topic of one-shot learning has attracted much interest in research fields such as

cognitive science and computer vision, there have not yet been many computational models

that have been developed for one-shot learning tasks for speech. In this chapter, we presented a

Bayesian Hierarchical Hidden Markov Model (HHMM) that infers the compositional structure

in speech of a language for one-shot learning tasks. We compare several learners that are built

on HHMMs with human subjects on one-shot classification and one-shot generation of new

Japanese words.

The experimental results show that humans are very accurate classifiers, and they can pro-

duce compelling examples of Japanese words, even with no experience speaking Japanese. The

best performing HHMM is trained on the corpus of Japanese News Article Sentences, and it

comes within 5% of human performance on the task of one-shot classification. While facing

many challenges resulting from corpus mismatch, the HHMM trained on the Wall Street Jour-

nal corpus still outperforms the DTW baseline, which does not take advantage of the composi-

tional structure in speech, for the one-shot classification task. The better performance achieved

by the English HHMM compared to the DTW baseline also demonstrates that the phonological

knowledge the model acquires from an English data set can be transferred across languages

to learn new Japanese words. Furthermore, while the HHMMs do not produce Japanese sam-

ples that are as accurate as those generated by human subjects, the one-unit model and the

unit-replacement model that are designed to dismiss the compositional structure in speech all

deteriorate the quality of the synthesized Japanese speech, which further supports the impor-

tance of compositionality for one-shot learning as suggested in previous work [104, 102].
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Chapter 5

Joint Learning of Acoustic Units

and Word Pronunciations

� 5.1 Chapter Overview

For creating an Automatic Speech Recognition (ASR) system for a new language, the usual

requirements are: first, a large speech corpus with word-level annotations; second, a pro-

nunciation dictionary that essentially defines a phonetic inventory for the language as well

as word-level pronunciations, and third, optional additional text data that can be used to train

the language model. Given these data and some decision about the signal representation, e.g.,

Mel-Frequency Cepstral Coefficients (MFCCs) [23] with various derivatives, as well as the na-

ture of the acoustic and language models such as 3-state HMMs, and n-grams, iterative training

methods can be used to effectively learn the model parameters for the acoustic and language

models. Although the details of the components have changed through the years, this basic

ASR formulation was well established by the late 1980’s, and has not really changed much.

One of the interesting aspects of this formulation is the inherent dependence on the dictio-

nary, which defines both the phonetic inventory of a language, and the pronunciations of all

the words in the vocabulary. The dictionary is arguably the cornerstone of a speech recognizer

as it provides the essential transduction from sounds to words. Unfortunately, the dependency

on this resource is a significant impediment to the development of speech recognizers for new

languages, since the creation of a pronunciation lexicon requires a lot of expert knowledge and

remains a highly inefficient process.

The existence of an expert-defined dictionary in the midst of stochastic speech recognition

models is somewhat ironic, and it is worth asking why it continues to receive special status after

all these years. Why can we not learn the inventory of sounds of a language and associated word

pronunciations automatically from data, much as we learn the acoustic model parameters? Can

133
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we apply the acoustic unit discovery model presented in Chapter 2 to find word pronunciations,

and eventually develop a fully data-driven training paradigm for ASR systems?

In this chapter, we propose an unsupervised alternative – requiring no language-specific

knowledge – to the conventional manual approach for creating pronunciation dictionaries. We

present a hierarchical Bayesian model, which jointly discovers the phonetic inventory and the

Letter-to-Sound (L2S) mapping rules in a language using only transcribed data. When tested

on a corpus of spontaneous queries, the results demonstrate the superiority of the proposed joint

learning scheme over its sequential counterpart, in which the latent phonetic inventory and L2S

mappings are learned separately. Furthermore, the recognizers built with the automatically

induced lexicon consistently outperform grapheme-based recognizers, and even approach the

performance of recognition systems trained using conventional supervised procedures.

We organize the rest of this chapter as follows. In Section 5.2, previous work in learn-

ing word pronunciations and training ASR systems without lexicons is briefly reviewed. In

Section 5.3, we formulate the problem, present the proposed model, and define the generative

process implied by our approach. The inference algorithm is discussed in detail in Section 5.4.

We describe the experimental setup and the procedure for building a speech recognizer out of

our model in Section 5.5. The experimental results and the induced lexicon are analyzed in

Section 5.6. Finally, we draw conclusions in Section 5.7.

� 5.2 Related Work

Various algorithms for learning sub-word based pronunciations were proposed in [113, 49, 4,

144]. In these approaches, spoken samples of a word are gathered, and usually only one single

pronunciation for the word is derived based on the acoustic evidence observed in the spoken

samples. The major difference between our work and these previous works is that our model

learns word pronunciations in the context of letter sequences. Specifically, our model learns

letter pronunciations first and then concatenates the pronunciation of each letter in a word to

form the word pronunciation. The advantage of our approach is that pronunciation knowledge

learned for a particular letter in some arbitrary word can subsequently be used to help learn the

letter’s pronunciation in other words. This property allows our model to potentially learn better

pronunciations for less frequent words.

Our work is closely related to automatically deriving phonetic units, which first received

attention in the late 1980’s [56, 113]. However, it did not receive significant attention again

until the mid to late 2000’s, when the authors of [50, 169] began investigating the use of self-



Sec. 5.3. Model 135

organizing units for keyword spotting and other tasks for languages with limited linguistic

resources. Others who have explored the unsupervised space include [182, 74, 111]. More

recently, the author of [58] defined a series of increasingly unsupervised learning challenges

for speech processing that progressively reduce the amount of linguistic resources available

for training. The work reported in this chapter represents the first step away from normal

supervised training, where the phonetic units and pronunciation dictionary are not available,

but parallel annotated speech data is. The framework proposed in this chapter is deployed

based on the DPHMM introduced in Chapter 2. Particularly, in addition to just learning a

set of phonetic units as the DPHMM, the model introduced in this chapter further learns the

connection between the written form and the spoken form of a language.

Finally, the concept of creating a speech recognizer for a language with only orthograph-

ically annotated speech data has also been explored previously by means of graphemes. This

approach has been shown to be effective for alphabetic languages with relatively straightfor-

ward grapheme to phoneme transformations and does not require any unsupervised learning of

units or pronunciations [91, 173]. As we explain in later sections, grapheme-based systems can

actually be regarded as a special case of our model; therefore, we expect our model to have

greater flexibilities for capturing pronunciation rules of graphemes.

� 5.3 Model

The goal of our model is to induce a word pronunciation lexicon from spoken utterances and

their corresponding word transcriptions. No other language-specific knowledge is assumed to

be available, including the phonetic inventory of the language. To achieve the goal, our model

needs to solve the following two tasks:

• Discover the phonetic inventory.

• Reveal the latent mapping between the letters and the discovered phonetic units.

We propose a hierarchical Bayesian model for jointly discovering the two latent structures

from an annotated speech corpus. Before presenting our model, we first describe the key latent

and observed variables of the problem.

Letter (lmi ) We use lmi to denote the ith letter observed in the word transcription of the

mth training sample. To be sure, a training sample involves a speech utterance and its cor-

responding text transcription. The letter sequence composed of lmi and its context, namely
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lmi−κ, · · · , lmi−1, lmi , lmi+1, · · · , lmi+κ, is denoted as ~lmi,κ. Although lmi is referred to as a letter in

this paper, it can represent any character observed in the text data, including space and sym-

bols indicating sentence boundaries. The set of unique characters observed in the data set is

denoted as G. For notation simplicity, we use Lκ to denote the set of letter sequences of length

2κ+ 1 that appear in the dataset and use ~lκ to denote the elements in Lκ. Finally, P(~lκ) is used

to represent the parent of ~lκ, which is a substring of ~lκ with the first and the last characters

truncated.

Number of Mapped Acoustic Units (nmi ) Each letter lmi in the transcriptions is assumed to

be mapped to a certain number of phonetic units. For example, the letter x in the word fox

is mapped to 2 phonetic units /k/ and /s/, while the letter e in the word lake is mapped to 0

phonetic units. We denote this number as nmi , and limit its value to be 0, 1 or 2 in our model.

The value of nmi is always unobserved and needs to be inferred by the model.

Identity of the Acoustic Unit (cmi,p) For each phonetic unit that lmi maps to, we use cmi,p, for

1 ≤ p ≤ nmi , to denote the identity of the phonetic unit. Note that the phonetic inventory

that describes the data set is unknown to our model, and the identities of the phonetic units are

associated with the acoustic units discovered automatically by our model.

Speech Feature xmt The observed speech data in our problem are converted to a series of 25

ms 13-dimensional MFCCs [23] and their first- and second-order time derivatives at a 10 ms

analysis rate. We use xmt ∈ R39 to denote the tth feature frame of the mth utterance.

� 5.3.1 Generative Process

We present the generative process for a single training sample (i.e., a speech utterance and its

corresponding text transcription); to keep notation simple, we discard the index variable m in

this section.

For each li in the transcription, the model generates ni, given ~li,κ, from the 3-dimensional

categorical distribution φ~li,κ(ni). Note that for every unique ~li,κ letter sequence, there is an

associated φ~li,κ(ni) distribution, which captures the fact that the number of phonetic units a

letter maps to may depend on its context. In our model, we impose a Dirichlet distribution prior

Dir(η) on φ~li,κ(ni).

If ni = 0, li is not mapped to any acoustic units and the generative process stops for li;

otherwise, for 1 ≤ p ≤ ni, the model generates ci,p from:

ci,p ∼ π~li,κ,ni,p (5.1)
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where π~li,κ,ni,p is a K-dimensional categorical distribution, whose outcomes correspond to the

phonetic units discovered by the model from the given speech data. Eq. 5.1 shows that for each

combination of~li,κ, ni and p, there is an unique categorical distribution. An important property

of these categorical distributions is that they are coupled together such that their outcomes point

to a consistent set of phonetic units. In order to enforce the coupling, we construct π~li,κ,ni,p
through a hierarchical process.

β ∼ Dir(γ) (5.2)

π~li,κ,ni,p ∼ Dir(ακβ) for κ = 0 (5.3)

π~li,κ,ni,p ∼ Dir(ακπ~li,κ−1,ni,p
) for κ ≥ 1 (5.4)

To interpret Eq. 5.2 to Eq. 5.4, we envision that the observed speech data are generated by a

K-component mixture model, of which the components correspond to the phonetic units in the

language. As a result, β in Eq. 5.2 can be viewed as the mixture weight over the components,

which indicates how likely we are to observe each acoustic unit in the data overall. By adopting

this point of view, we can also regard the mapping between li and the phonetic units as a mixture

model, where πli,ni,p
1 represents how probable li is mapped to each phonetic unit, given ni

and p. We apply a Dirichlet distribution prior parametrized by α0β to πli,ni,p, as shown in

Eq. 5.3. With this parameterization, the mean of πli,ni,p is the global mixture weight β, and

α0 controls how similar πli,ni,p is to the mean. More specifically, for large α0 � K, the

Dirichlet distribution is highly peaked around the mean; in contrast, for α0 � K, the mean

lies in a valley. The parameters of a Dirichlet distribution can also be viewed as pseudo-counts

for each category. Eq. 5.4 shows that the prior for π~li,κ,ni,p is seeded by pseudo-counts that

are proportional to the mapping weights over the phonetic units of li in a shorter context. In

other words, the mapping distribution of li in a shorter context can be thought of as a back-off

distribution of li’s mapping weights in a longer context.

Each component of theK-dimensional mixture model is linked to a 3-state Hidden Markov

Model (HMM). TheseK HMMs are used to model the phonetic units in the language [76]. The

emission probability of each HMM state is modeled by a diagonal Gaussian Mixture Model

(GMM). We use θc to represent the set of parameters that define the cth HMM, which includes

the state transition probability and the GMM parameters of each state emission distribution.

The conjugate prior of θc is denoted as H(θ0). More specifically, H(θ0) includes a Dirichlet

prior for the transition probability of each state, and a Dirichlet prior for each mixture weight
1An abbreviation of π~li,0,ni,p
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Figure 5.1. The graphical representation of the proposed hierarchical Bayesian model. The shaded circle denotes

the observed text and speech data, and the squares denote the hyperparameters of the priors in our model. See

Section 5.3 for a detailed explanation of the generative process of our model.

of the three GMMs, and a normal-Gamma distribution for the mean and precision of each

Gaussian mixture in the 3-state HMM.

Finally, to finish the generative process, for each ci,p we use the corresponding HMM θci,p

to generate the observed speech data xt, and the generative process of the HMM determines

the duration, di,p, of the speech segment. The complete generative model, with κ set to 2, is

depicted in Fig. 5.1;M is the total number of transcribed utterances in the corpus, and Lm is the

number of letters in utterance m. The shaded circles denote the observed data, and the squares

denote the hyperparameters of the priors used in our model. Lastly, the unshaded circles denote

the latent variables of our model, for which we derive inference algorithms in the next section.

� 5.4 Inference

We employ Gibbs sampling [55] to approximate the posterior distribution of the latent vari-

ables in our model. In the following sections, we first present a message-passing algorithm for

block-sampling ni and ci,p, and then describe how we leverage acoustic cues to accelerate the

computation of the message-passing algorithm. Note that the block-sampling algorithm for ni
and ci,p can be parallelized across utterances. Finally, we briefly describe how we use a voice

activity detector to train an initial silence model, and discuss the inference procedures for φ~lκ ,
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π~lκ,n,p, β, θc.

� 5.4.1 Block-sampling ni and ci,p

To understand the message-passing algorithm in this study, it is helpful to think of our model

as a simplified Hidden Semi-Markov Model (HSMM), in which the letters represent the states

and the speech features are the observations. However, unlike in a regular HSMM, where the

state sequence is hidden, in our case, the state sequence is fixed to be the given letter sequence.

With this point of view, we can modify the message-passing algorithms of [132] and [85] to

compute the posterior information required for block-sampling ni and ci,p.

Let L(xt) be a function that returns the index of the letter from which xt is generated; also,

let Ft = 1 be a tag indicating that a new phone segment starts at t+1. Given the constraint that

0 ≤ ni ≤ 2, for 0 ≤ i ≤ Lm and 0 ≤ t ≤ Tm, the backwards messages Bt(i) and B∗t (i) for

the mth training sample can be defined and computed as in Eq. 5.5 and Eq. 5.7. Note that for

clarity we discard the index variable m in the derivation of the algorithm.

Bt(i) , p(xt+1:T |L(xt) = i, Ft = 1)

=

min{L,i+1+U}∑
j=i+1

B∗t (j)

j−1∏
k=i+1

p(nk = 0|~li,κ)

=

min{L,i+1+U}∑
j=i+1

B∗t (j)

j−1∏
k=i+1

φ~li,κ(0) (5.5)

B∗t (i) , p(xt+1:T |L(xt+1) = i, Ft = 1)

=

T−t∑
d=1

p(xt+1:t+d|~li,κ)Bt+d(i) (5.6)

=

T−t∑
d=1

{
K∑

ci,1=1

φ~li,κ(1)π~li,κ,1,1(ci,1)p(xt+1:t+d|θci,1)

+
d−1∑
v=1

K∑
ci,1

K∑
ci,2

φ~li,κ(2)π~li,κ,2,1(ci,1)π~li,κ,2,2(ci,2)

× p(xt+1:t+v|θci,1)p(xt+v+1:t+d|θci,2)}Bt+d(i) (5.7)

We use xt1:t2 to denote the segment consisting of xt1 , · · · , xt2 . Our inference algorithm

only allows up to U letters to emit 0 acoustic units in a row. The value of U is set to 2 for our
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Algorithm 5.4.1 Block-sample ni and ci,p from Bt(i) and B∗t (i)

1: i← 0

2: t← 0

3: while i < L ∧ t < T do
4: nexti ← SampleFromBt(i)

5: if nexti > i+ 1 then
6: for k = i+ 1 to k = nexti − 1 do
7: nk ← 0

8: end for
9: end if

10: d, ni, 〈ci,p〉, v ← SampleFromB∗t (nexti)

11: t← t+ d

12: i← nexti

13: end while

experiments. Bt(i) represents the total probability of all possible alignments between xt+1:T

and li:L. B∗t (i) contains the probability of all the alignments between xt+1:T and li+1:L that map

xt+1 to li particularly. This alignment constraint between xt+1 and li is explicitly shown in the

first term of Eq. 5.6, which represents how likely the speech segment xt+1:t+d is generated by li
given li’s context. This likelihood is simply the marginal probability of p(xt+1:t+d, ni, ci,p|~li,κ)
with ni and ci,p integrated out, which can be expanded and computed as shown in the last three

rows of Eq. 5.7. The index v specifies where the phone boundary is between the two acoustic

units that li is aligned with when ni = 2. Eq. 5.8 to Eq. 5.10 are the boundary conditions

of the message passing algorithm. B0(0) carries the total probably of all possible alignments

between l1:L and x1:T . Eq. 5.9 specifies that at most U letters at the end of a sentence can be

left unaligned with any speech features, while Eq. 5.10 indicates that all of the speech features

in an utterance must be assigned to a letter.

B0(0) =

min{L,U+1}∑
j=1

B∗0(j)

j−1∏
k=1

φ~li,κ(0) (5.8)
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BT (i) ,


1 if i = L∏L
j=i+1 φ~li,κ(0) if L− U ≤ i < L

0 if i < L− U

(5.9)

Bt(L) ,

1 if t = T

0 otherwise
(5.10)

Given Bt(i) and B∗t (i), ni and ci,p for each letter in the utterance can be sampled using

Alg. 5.4.1. The SampleFromBt(i) function in line 4 returns a random sample from the rela-

tive probability distribution composed by entries of the summation in Eq. 5.5. Line 5 to line 9

check whether li (and maybe li+1) is mapped to zero phonetic units. nexti points to the letter

that needs to be aligned with 1 or 2 phone segments starting from xt. The number of phonetic

units that lnexti maps to and the identities of the units are sampled in SampleFromB∗t (i). This

sub-routine generates a tuple of d, ni, 〈ci,p〉 as well as v (if ni = 2) from all the entries of the

summation shown in Eq. 5.7. Note that we use 〈ci,p〉 to denote that 〈ci,p〉 may consist of two

numbers, ci,1 and ci,2, when ni = 2.

� 5.4.2 Heuristic Phone Boundary Elimination

The variables d and v, in Eq. 5.7, enumerate through every frame index in a sentence, treating

each feature frame as a potential boundary between acoustic units. However, it is possible to

exploit acoustic cues to avoid checking feature frames that are unlikely to be phonetic bound-

aries. We follow the pre-segmentation method described in Section 2.6 to skip roughly 80% of

the feature frames and greatly speed up the computation of B∗t (i).

Another heuristic applied to our algorithm to reduce the search space for d and v is based

on the observation that the average duration of phonetic units is usually no longer than 300 ms.

Therefore, when computing B∗t (i), we only consider speech segments that are shorter than 300

ms to avoid aligning letters to speech segments that are too long to be phonetic units.

� 5.4.3 Voice Activity Detection for Initializing a Silence Model

Before training the model, we apply an unsupervised voice activity detector based on [176, 175]

to locate non-speech acoustic segments in the data. These non-speech segments are used to

train a silence model, or a background noise model, which seeds one of the phonetic units to

be discovered. In other words, we initialize one of the HMMs with the silence model instead
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of generating its parameters from the prior. This pre-processing step aims to prevent the model

from learning a large number of silence units as shown in Fig. 2.6.

� 5.4.4 Sampling φ~lκ, π~lκ,ni,p, β and θc

Sampling φ~lκ

To compute the posterior distribution of φ~lκ , we count how many times~lκ is mapped to 0, 1 and

2 phonetic units from nmi . More specifically, we define N~lκ(j) for 0 ≤ j ≤ 2 as follows:

N~lκ(j) =
M∑
m=1

Lm∑
i=1

δ(nmi , j)δ(
~lmi,κ,

~lκ)

where we use δ(·) to denote the discrete Kronecker delta. With N~lκ , we can simply sample a

new value for φ~lκ from the following distribution:

φ~lκ ∼ Dir(η +N~lκ)

Sampling π~lκ,n,p and β

The posterior distributions of π~lκ,n,p and β are constructed recursively due to the hierarchical

structure imposed on π~lκ,n,p and β. We start with gathering counts for updating the π variables

at the lowest level, i.e., π~l2,n,p given that κ is set to 2 in our model implementation, and then

sample pseudo-counts for the π variables at higher hierarchies as well as β. With the pseudo-

counts, a new β can be generated, which allows π~lκ,n,p to be re-sampled sequentially.

More specifically, we define C~l2,n,p(k) to be the number of times that ~l2 is mapped to n

units and the unit in position p is the kth phonetic unit. This value can be counted from the

current values of cmi,p as follows.

C~l2,n,p(k) =
M∑
m=1

Lm∑
i=1

δ(~li,2,~l2)δ(n
m
i , n)δ(c

m
i,p, k)

To derive the posterior distribution of π~l1,n,p analytically, we need to sample pseudo-counts

C~l1,n,p, which is defined as follows.

C~l1,n,p(k) =
∑
~l2∈U~l1

C~l2,n,p(k)∑
i=1

I[νi <
α2π~l1,n,p(k)

i+ α2π~l1,n,p(k)
] (5.11)
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We use U~l1 = {~l2|P(~l2) = ~l1} to denote the set of ~l2 whose parent is ~l1 and νi to represent

random variables sampled from a uniform distribution between 0 and 1. Eq. 5.11 can be ap-

plied recursively to compute C~l0,n,p(k) and C ,n,p(k), the pseudo-counts that are applied to the

conjugate priors of π~l0,n,p and β. With the pseudo-count variables computed, new values for β

and π~lκ,n,p can be sampled sequentially as shown in Eq. 5.12 to Eq. 5.14.

β ∼ Dir(γ + C ,n,p) (5.12)

π~lκ,n,p ∼ Dir(ακβ + C~lκ,n,p) for κ = 0 (5.13)

π~lκ,n,p ∼ Dir(ακπ~lκ−1,n,p
+ C~lκ,n,p) for κ ≥ 1 (5.14)

Sampling θc

Finally, after assigning the sub-word unit label ci,p to each speech segment, we block-sample

the state and mixture id for each feature frame within the speech segment using the HMM

associated with the sub-word label θci,p . From the state and mixture assignment of each feature

vector, we can collect relevant counts to update the priors for the transition matrix and the state

emission distributions of each HMM. New parameters of θc can then be generated from the

updated priors. See Section 2.5 for a more detailed description for sampling new values for the

HMM parameters.

� 5.5 Automatic Speech Recognition Experiments

To test the effectiveness of our model for joint learning phonetic units and word pronunciations

from an annotated speech corpus, we construct speech recognizers out of the training results

of our model. The performance of the recognizers is evaluated and compared against three

baselines: first, a grapheme-based speech recognizer; second, a recognizer built by using an

expert-crafted lexicon, which is referred to as an expert lexicon in the rest of the paper for

simplicity; and third, a recognizer built by discovering the phonetic units and L2S pronunciation

rules sequentially without using a lexicon. In this section, we provide a detailed description of

the experimental setup.

� 5.5.1 Jupiter Corpus

All the speech recognition experiments reported in this paper are performed on a weather query

dataset, which consists of narrow-band, conversational telephone speech [195]. We evaluate
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η γ α0 α1 α2 θ0 κ K

〈0.1〉3 〈10〉100 1 0.1 0.2 * 2 100

Table 5.1. The values of the hyperparameters of our model. We use 〈a〉D to denote a D-dimensional vector with

all entries being a. *We follow the procedure reported in Section 2.4 to set up the HMM prior θ0.

our model on this weather query corpus because previous work [125] also employed the same

dataset to investigate a stochastic lexicon learning scheme, which can be integrated into our

learning framework as shown later in this section. We follow the experimental setup of [125]

and split the corpus into a training set of 87,351 utterances, a dev set of 1,179 utterances and

a test set of 3,497 utterances. A subset of 10,000 utterances is randomly selected from the

training set. We use this subset of data for training our model to demonstrate that our model is

able to discover the phonetic composition and the pronunciation rules of a language even from

just a few hours of data.

� 5.5.2 Building a Recognizer from Our Model

The values of the hyperparameters of our model are listed in Table 5.1. We run the inference

procedure described in Section 5.4 for 10,000 times on the randomly selected 10,000 utter-

ances. The samples of φ~lκ and π~lκn,p from the last iteration are used to decode nmi and cmi,p for

each sentence in the entire training set by following the block-sampling algorithm described in

Section 5.4.1. Since cmi,p is the phonetic mapping of lmi , by concatenating the phonetic map-

ping of every letter in a word, we can obtain a pronunciation of the word represented in the

labels of discovered phonetic units. For example, assume that word w appears in sentence m

and consists of l3l4l5 (the sentence index m is ignored for simplicity). Also, assume that after

decoding, n3 = 1, n4 = 2 and n5 = 1. A pronunciation of w is then encoded by the sequence

of phonetic labels c3,1c4,1c4,2c5,1. By repeating this process for each word in every sentence for

the training set, a list of word pronunciations can be compiled and used as a stochastic lexicon

to build a speech recognizer.

In theory, the HMMs inferred by our model can be directly used as the acoustic model of

a monophone speech recognizer. However, if we regard the ci,p labels of each utterance as

the phone transcription of the sentence, then a new acoustic model can be easily re-trained on

the entire training data set. More conveniently, the phone boundaries corresponding to the ci,p
labels are the by-products of the block-sampling algorithm, which are indicated by the values

of d and v in line 10 of Alg. 5.4.1 and can be easily saved during the sampling procedure. Since

these data are readily available, we re-build a context-independent model on the entire data
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set. In this new acoustic model, a 3-state HMM is used to model each phonetic unit, and the

emission probability of each state is modeled by a 32-mixture GMM.

Finally, a trigram language model is built by using the word transcriptions in the full training

set. This language model is utilized in all speech recognition experiments reported in this paper.

The MIT SUMMIT speech recognition system [193] and the MIT Finite State Transducer (FST)

toolkit [68] are used to build all the recognizers used in this study. With the language model, the

lexicon and the context-independent acoustic model constructed by the methods described in

this section, we can build a speech recognizer from the learning output of the proposed model

without the need of a pre-defined phone inventory and any expert-crafted lexicons.

Pronunciation Mixture Model Retraining

The authors of [125] presented the Pronunciation Mixture Model (PMM) for composing stochas-

tic lexicons that outperform pronunciation dictionaries created by experts. Although the PMM

framework was designed to incorporate and augment expert lexicons, we found that it can be

adapted to polish the pronunciation list generated by our model. In particular, the training

procedure for PMMs includes three steps. First, train a L2S model from a manually specified

expert-pronunciation lexicon; second, generate a list of pronunciations for each word in the

dataset using the L2S model; and finally, use an acoustic model to re-weight the pronunciations

based on the acoustic scores of the spoken examples of each word.

To adapt this procedure for our purposes, we simply plug in the word pronunciations and

the acoustic model generated by our model. Once we obtain the re-weighted lexicon, we re-

generate forced phone alignments and retrain the acoustic model, which can be utilized to repeat

the PMM lexicon re-weighting procedure. For our experiments, we iterate through this model

refining process until the recognition performance converges.

Triphone Model

Conventionally, to train a context-dependent acoustic model, a list of questions based on the

linguistic properties of phonetic units is required for growing decision tree classifiers [188].

However, such language-specific knowledge is not available for our training framework; there-

fore, our strategy is to compile a question list that treats each phonetic unit as a unique linguistic

class. In other words, our approach to training a context-dependent acoustic model for the au-

tomatically discovered units is to let the decision trees grow fully based on acoustic evidence.
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� 5.5.3 Baseline Systems

We compare the recognizers trained by following the procedures described in Section 5.5.2

against three baselines. The first baseline is a grapheme-based speech recognizer. We follow

the procedure described in [91] and train a 3-state HMM for each grapheme, which we refer

to as the monophone grapheme model. Furthermore, we create a singleton question set [91],

in which each grapheme is listed as a question, to train a triphone grapheme model. Note that

to enforce better initial alignments between the graphemes and the speech data, we use a pre-

trained acoustic model to identify the non-speech segments at the beginning and the end of each

utterance before starting training the monophone grapheme model.

Our model jointly discovers the phonetic inventory and the L2S mapping rules from a set of

transcribed data. An alternative of our approach is to learn the two latent structures sequentially.

We use the DPHMM model described in Chapter 2 to learn a set of acoustic models from the

speech data and use these acoustic models to generate a phone transcription for each utterance.

The phone transcriptions along with the corresponding word transcriptions are fed as inputs

to the L2S model proposed in [11]. A stochastic lexicon can be learned by applying the L2S

model and the discovered acoustic models to PMM. This two-stage approach for training a

speech recognizer without an expert lexicon is referred to as the sequential model in this paper.

Finally, we compare our system against a recognizer trained from an oracle recognition

system. We build the oracle recognizer on the same weather query corpus by following the

procedure presented in [125]. This oracle recognizer is then applied to generate forced-aligned

phone transcriptions for the training utterances, from which we can build both monophone and

triphone acoustic models. Note that for training the triphone model, we compose a singleton

question list [91] that has every expert-defined phonetic unit as a question. We use this singleton

question list instead of a more sophisticated one to ensure that this baseline and our system dif-

fer only in the acoustic model and the lexicon used to generate the initial phone transcriptions.

We call this baseline the oracle baseline.

� 5.6 Results and Analysis

� 5.6.1 Analysis on the Discovered Letter-to-sound Mapping Rules

Before showing the recognition results, we analyze the learning behavior of our model in this

section. We are particularly interested in knowing whether the model infers any useful letter-to-

sound mapping rules from the dataset that correspond to our understanding of the relationship

between the written and spoken English. To gain some insight, we define and compute p(z|~lκ)
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from the learning output of our model as follows.

p(z|~lκ) =
K∑
c=1

p(z, c|~lκ)

=

K∑
c=1

p(c|~lκ)p(z|c) (5.15)

where z ∈ Z is a standard English phone, and Z represents the expert-defined phone inven-

tory used in this analysis. The set of 47 phones contained in Z is shown at the bottom of

Fig. 5.3. The probability p(z|~lκ) indicates how likely it is to map the center letter of ~lκ within

the specific context implied by ~lκ to the standard phone z. The value of p(z|~lκ) can be com-

puted by marginalizing over c = 1, · · · ,K for p(z, c|~lκ), which can be further decomposed

into p(c|~lκ)p(z|c) as shown in Eq. 5.15. The first term p(c|~lκ) is the probability of mapping

the letter sequence ~lκ to the automatically induced phonetic unit c, which can be calculated by

using the inferred model variables φ~lκ and π~lκ,n,p as follows.

p(c|~lκ) = {φ~lκ(1)π~lκ,1,1(c)︸ ︷︷ ︸
(a)

+φ~lκ(2)(π~lκ,2,1(c) + π~lκ,2,2(c)− π~lκ,2,1(c)π~lκ,2,2(c))︸ ︷︷ ︸
(b)

} (5.16)

where Eq. 5.16-(a) and Eq. 5.16-(b) stand for the probabilities of mapping the center letter of
~lκ to c when ~lκ is aligned with one and two units respectively.

The second term p(z|c) of Eq. 5.15 represents the likelihood of mapping the induced pho-

netic unit c to the standard English phone z. We compute p(z|c) by aligning the phonetic

transcriptions generated by our model (ci,p) to those produced by a speech recognizer (zj) and

calculate the overall overlap ratio between c and each standard phone unit. An example of cal-

culating p(z|c) for the discovered unit 54 is illustrated in Fig. 5.2, in which we assume that unit

54 only appears twice in the corpus. To compute p(z|54), we first examine the time-stamped

alignments between the model-inferred and recognizer-produced phone transcriptions and ex-

tract all instances that involve unit 54 as depicted in (i) and (ii) of Fig. 5.2-(a). The variable t

in Fig. 5.2-(a) specifies the time indices of the boundaries of unit 54 and the aligned English

phones. We compute the overlap ratio between unit 54 and each of the underlying English stan-

dard phones, and then normalize these overlap ratios to obtain p(z|54) as shown in Figs. 5.2-(a)

and (b).

To visualize the letter-to-sound mapping rules discovered by our model, we compute p(z|~l0)
using Eq. 5.16, which stands for the probability of mapping the letter l to the English phone z
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Figure 5.2. An illustration of the computation of p(z|c), the mapping probabilities between the automatically

induced units and the standard phones. The discovered unit 54 is used in this illustration. (a) shows two alignments

between the unit 54 and the standard phones. The variable t indicates the time indices of the boundaries of each

phonetic unit. (b) explains how to compute p(z|54) by normalizing the overlap ratios between unit 54 and all the

aligned standard phone units.
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Figure 5.3. Visualization of the letter-to-sound mapping for English produced my our model.

without considering any specific context. Based on the results, we pair each letter l with the

phone z that achieves the highest value of p(z|~l0) (and possibly with other phones that have
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Sound mapping of *−e−n

Figure 5.4. The probabilistic letter-to-sound mapping distribution our model learns for the letter e followed by the

letter n.

equally high probabilities) and compose the mapping matrix between the 26 English letters and

the 47 English phone. We present the matrix in Fig. 5.3 and discuss some observations.

First, the matrix seems to suggest that no letters are mapped to the releases of the stop

consonants, /b/, /d/, /g/, /p/, /t/, and /k/. However, this is not a surprising result because the

duration of a stop release tends to be shorter than that of a stop closure, which causes p(z|c) to

be much smaller for the release phone units than for the closure units /vcl/ and /cl/. Given that

we only align each letter to the phone that scores the highest p(z|~l0), the letters that encode the

stop sounds, b, d, g, p, t, k, and q, are mostly only mapped to the closure units in the mapping

matrix.

As shown in Fig. 5.3, the letters a, e, and u are mapped to not only vowels but also the

nasal sound /n/, which is quite unexpected. Nevertheless, with a more careful examination on

the alignments, we find that when the letters a, e, and u are followed by the letter n, our model

tends to align the letters a, e, u to both a vowel, which is usually reduced to a schwa, and the

following consonant /n/. This observation can be illustrated by the average phone mapping

distribution p(z|~l1) for z ∈ Z over the set of letter sequences ~l1 ∈ {∗ − e − n}, in which the

letter e is followed by the letter n. The distribution is presented in Fig. 5.4, from which we can

see that the letter e is usually mapped to the short vowel /ih/ and the consonant /n/.

In spite of these less expected mapping behaviors, many plausible letter-to-sound mappings

are shown in Fig. 5.3. For example, the letter w is accurately mapped to the semi-vowel /w/, and
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Sound mapping of *−c−e

Figure 5.5. The probabilistic letter-to-sound mapping distribution our model learns for the letter c followed by the

letter e.
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Sound mapping of *−c−o

Figure 5.6. The probabilistic letter-to-sound mapping distribution our model learns for the letter c followed by the

letter o.

the letter l is assigned to the back vowel /ow/, the semi-vowels /w/ and /l/, which are acoustically

similar. In addition, a closer look at the phone correspondence for the letter x demonstrates that

the model successfully captures that the letter x encodes two sounds: one fricative consonant /s/

and one stop consonant /cl (k)/. Furthermore, the mapping matrix also reveals that our model

precisely learns that the letter c can be pronounced as /s/ and /cl (k)/.
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Word Discovered pronunciation

Russia 28 17 34 47 70

Scotia 24 72 79 34 47 77

Shanghai 34 16 22 61 12 38

Champaign 34 16 91 35 26 2 22

Table 5.2. Examples of words that contain the sound /sh/. The /sh/ sound is encoded in many ways in English such

as the ss in Russia, the ti in Scotia, the sh in Shanghai, and the Ch in Champaign. Nevertheless, our model can

consistently map these encoding variations for /sh/ to an automatically discovered phonetic unit 34 that represents

the consonant /sh/.

To investigate the last observation further, we average p(z|~l1) over two sets of letter se-

quences, ~l1 ∈ {∗ − c − e} and ~l1 ∈ {∗ − c − o}, respectively to study the sound mapping

probabilistic distributions for the letter c within two different contexts. In the first context, the

letter c precedes the letter e, while in the second context, the letter c is followed by the letter

o. The two probabilistic distributions are shown in Fig. 5.5 and Fig. 5.6 respectively. From

Fig. 5.5, we can see that the model accurately infers the mapping between the letter c and the

sound /s/ when the letter c precedes the letter e. In addition, Fig. 5.6 shows that the model

correctly learns the pronunciation of c should be a stop sound when followed by the letter o.

Overall speaking, the letter-to-sound mapping rules our model infers do not always cor-

respond to those defined by experts. However, as shown by many mapping pairs in Fig. 5.3,

our model indeed discovers informative relationships between the written and spoken forms of

English in a fully unsupervised manner. More importantly, the comparison between Fig. 5.5

and Fig. 5.6 clearly shows the capability of our model in inducing context-dependent letter

pronunciations, which demonstrates the strength of the hierarchical design of our model.

� 5.6.2 Interpretation of the Discovered Pronunciations

As described in Section 5.5, the word pronunciations discovered by our model are represented

as sequences of automatically learned phonetic units. Unlike expert-defined phones, these in-

duced units are denoted by integers and tend to be difficult to interpret. Therefore, in this

section, we examine different ways to shed light on the word pronunciations our model learns

and try to gain intuition behind the inferred sequences of integers.

First, we present the word pronunciations that our model finds for Russia, Scotia, Shanghai,

and Champaign. One thing that these four words share in common is that they all contain the

/sh/ sound. However, all of the four words encode this sound in a different way. The letters
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Source Target

10 6 98 85 69 22 3 83 f l ih n tcl t

10 66 28 92 25 31 49 42 f er n ae n dcl d ow

27 47 7 22 9 19 28 37 3 34 kcl k ey m bcl b r ih dcl jh

Table 5.3. Training examples in the parallel corpus for building the translation system. The parallel corpus is

composed of automatically discovered word pronunciations and expert-defined pronunciations, which are treated as

sentences from the source and the target language respectively.

Word automatically-induced

pronunciation

Translated automatically-

induced pronunciation

Expert-defined —–

pronunciation

Jakarta
34 47 35 19 66 56 17 55
86 11 70

dcl jh ae kcl k aa r tcl t ax dcl jh ax kcl k aa r tcl t ax

Barbara 42 56 67 42 66 56 70 bcl b aa r bcl b r ax bcl b aa r bcl b r ax

Marseille 9 39 11 24 69 29 73 77 m aa r s ey ax m aa r s ey l

mountain 39 79 45 55 3 94 22 33 m ow n tcl t ax n m aw n tcl t ax n

Borneo 42 97 43 46 20 16 79 88 bcl b ao r n y ax l bcl b ao r n iy ow

flights 10 40 12 59 3 93 f l ay tcl t s f l ay tcl t s

Table 5.4. Automatically inferred word pronunciations and their translations denoted in expert-defined phonetic

units, which are generated by using a Moses translation system. The corresponding expert-defined pronunciation

for each word is listed in the right-most column.

corresponding to the /sh/ sound in each of the four words are highlighted in Table 5.2. In spite of

the variations observed in the spellings, our model consistently maps the different encodings for

/sh/ to the phonetic unit 34 as shown in Table 5.2. In addition, by comparing the pronunciations

associated with the letter s in both Scotia and Shanghai, we can see that our model is able to

infer different pronunciations for the two s’s that are in different contexts. The examples in

Table 5.2 show that our model can effectively handle irregularities that exist in the mapping

between the written system and the spoken system of a language.

Furthermore, in order to interpret the learned word pronunciations, we train a translation

system using Moses, an open source toolkit for statistical machine translation [94]. More

specifically, we exploit 10,000 word pronunciations discovered by our model (including mul-

tiple entries for a word) and the corresponding pronunciations defined by experts to create a

parallel corpus. We treat the automatically induced pronunciations as sentences in the source

language and the expert-defined pronunciations as sentences in the target language for training
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unit(%) Monophone

Our model 17.0

Oracle 13.8

Grapheme 32.7

Sequential model 31.4

Table 5.5. Word error rates generated by the four monophone recognizers described in Sec. 5.5.2 and Sec. 5.5.3 on

the weather query corpus.

the translation system. Some training examples in the parallel corpus are shown in Table 5.3.

We build a translation system with this parallel corpus by using the default setup described in

the project webpage of Moses 2.

With this translation system, we can convert the automatically discovered word pronunci-

ations to pronunciations that are labelled by expert-defined phone units, which are more com-

prehensible, and allows us to gain insights into the induced phone sequences. Some of the

translation results along with the corresponding expert-defined pronunciations are presented

in Table 5.4 (more translation examples can be found in Appendix A). While the translated

pronunciations do not always match the expert-defined ones perfectly, we can still see that the

inferred pronunciations indeed carry useful information annotating the underlying sound se-

quences of the words. With the intuitions drawn from Table 5.2 and Table 5.4, we now present

the performance of the speech recognizers built with the induced pronunciation dictionary.

� 5.6.3 Monophone Systems

Table 5.5 shows the Word Error Rates (WERs) produced by the four monophone recogniz-

ers described in Sec. 5.5.2 and Sec. 5.5.3. It can be seen that our model outperforms the

grapheme and the sequential model baselines significantly while approaching the performance

of the supervised oracle baseline. The improvement over the sequential baseline demonstrates

the strength of the proposed joint learning framework. More specifically, unlike the sequential

baseline, in which the acoustic units are discovered independently from the text data, our model

is able to exploit the L2S mapping constraints provided by the word transcriptions to cluster

speech segments.

By comparing our model to the grapheme baseline, we can see the advantage of modeling

the pronunciations of a letter using a mixture model, especially for a language like English
2Moses baseline: http://www.statmt.org/moses/?n=Moses.Baseline
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which has many pronunciation irregularities. However, even for languages with straightforward

pronunciation rules, the concept of modeling letter pronunciations using mixture models still

applies. The main difference is that the mixture weights for letters of languages with simple

pronunciation rules will be sparser and spikier. In other words, in theory, our model should

always perform comparable to, if not better than, grapheme recognizers.

Last but not least, the recognizer trained with the automatically induced lexicon performs

comparably to the recognizer initialized by an oracle recognition system, which demonstrates

the effectiveness of the proposed model for discovering the phonetic inventory and a pronunci-

ation lexicon from an annotated corpus. In the next section, we provide some insights into the

quality of the learned lexicon and into what could have caused the performance gap between

our model and the conventionally trained recognizer.

� 5.6.4 Pronunciation Entropy

The major difference between the recognizer that is trained by using our model and the rec-

ognizer that is seeded by an oracle recognition system is that the former uses an automatically

discovered lexicon, while the latter exploits an expert-defined pronunciation dictionary. In or-

der to quantify, as well as to gain insights into, the difference between these two lexicons, we

define the average pronunciation entropy Ĥ of a lexicon as follows.

Ĥ ≡ −1
|V |

∑
w∈V

∑
b∈B(w)

p(b) log p(b) (5.17)

where V denotes the vocabulary of a lexicon, B(w) represents the set of pronunciations of a

wordw and p(b) stands for the weight of a certain pronunciation b. Intuitively, we can regard Ĥ

as an indicator of how much pronunciation variation that each word in a lexicon has on average.

Table 5.6 shows that the Ĥ values of the lexicon induced by our model and the expert-defined

lexicon as well as their respective PMM-refined versions. Note that we build the PMM-refined

version of the expert-defined lexicon by following the L2P-PMM framework described in [125].

In Table 5.6, we can see that the automatically-discovered lexicon and its PMM-reweighted

versions have much higher Ĥ values than their expert-defined counterparts. These higher Ĥ

values imply that the lexicon induced by our model contains more pronunciation variation than

the expert-defined lexicon. Therefore, the lattices constructed during the decoding process for

our recognizer tend to be larger than those constructed for the oracle baseline. The larger lattices

imply less constrained search space, which could help explain the performance gap between the

two systems in Table 5.5 and Table 5.6.
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Our model PMM iterations

(Discovered lexicon) 0 1 2

Ĥ (bit) 4.58 3.47 3.03

WER (%) 17.0 16.6 15.9

Oracle PMM iterations

(Expert lexicon) 0 1 2

Ĥ (bit) 0.69 0.90 0.92

WER (%) 13.8 12.8 12.4

Table 5.6. The upper-half of the table shows the average pronunciation entropies, Ĥ , of the lexicons induced by

our model and refined by PMM as well as the WERs of the monophone recognizers built with the corresponding

lexicons for the weather query corpus. The definition of Ĥ can be found in Sec. 5.6.4. The first row of the lower-half

of the table lists the average pronunciation entropies, Ĥ , of the expert-defined lexicon and the lexicons generated

and weighted by the L2P-PMM framework described in [125]. The second row of the lower-half of the table shows

the WERs of the recognizers that are trained with the expert-lexicon and its PMM-refined versions.

pronunciations
pronunciation probabilities

Our model 1 PMM 2 PMM

93 56 87 39 19 0.125 - -

93 56 61 87 73 99 0.125 - -

11 56 61 87 73 99 0.125 0.400 0.419

93 20 75 87 17 27 52 0.125 0.125 0.124

55 93 56 61 87 73 84 19 0.125 0.220 0.210

93 26 61 87 49 0.125 0.128 0.140

63 83 86 87 73 53 19 0.125 - -

93 26 61 87 61 0.125 0.127 0.107

Table 5.7. Pronunciation lists of the word Burma produced by our model and refined by PMM after 1 and 2

iterations.

As shown in Table 5.6, even though the lexicon induced by our model is noisier than the

expert-defined dictionary, the PMM retraining framework consistently refines the induced lexi-

con and improves the performance of the recognizers. To the best of our knowledge, we are the

first to apply PMM to lexicons that are created by a fully unsupervised method. Therefore, in

this chapter, we provide further analysis on how PMM helps enhance the performance of our

model.
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Unit(%) Triphone

Our model 13.4

Oracle 10.0

Grapheme 15.7

Table 5.8. Word error rates of the triphone recognizers. The triphone recognizers are all built by using the phone

transcriptions generated by their best monohpone system. For the oracle initialized baseline and for our model, the

PMM-refined lexicons are used to build the triphone recognizers.

� 5.6.5 Pronunciation Refinement by PMM

We compare the pronunciation lists for the word Burma generated by our model and refined

iteratively by PMM in Table 5.7. The first column of Table 5.7 shows all the pronunciations

of Burma discovered by our model. While it is possible to assign probabilities proportional to

the decoding scores, we assign equal probabilities to all the learned pronunciations to create

the stochastic list. As demonstrated in the third and the fourth columns of Table 5.7, the PMM

framework is able to iteratively re-distribute the pronunciation weights and filter out less-likely

pronunciations, which effectively reduces both the size and the entropy of the stochastic lexicon

generated by our model. The benefits of using the PMM to refine the induced lexicon are

twofold. First, the search space constructed during the recognition decoding process with the

refined lexicon is more constrained, which is the main reason why the PMM is capable of

improving the performance of the monophone recognizer that is trained with the output of our

model. Secondly, and more importantly, the refined lexicon can greatly reduce the size of the

FST built for the triphone recognizer of our model. These two observations illustrate why the

PMM framework can be an useful tool for enhancing the lexicon discovered automatically by

our model.

� 5.6.6 Triphone Systems

The best monophone systems of the grapheme baseline, the oracle baseline and our model

are used to generate forced-aligned phone transcriptions, which are used to train the triphone

models described in Sec. 5.5.2 and Sec. 5.5.3. Table 5.8 shows the WERs of the triphone

recognition systems. Note that if a more conventional question list, for example, a list that

contains rules to classify phones into different broad classes, is used to build the oracle triphone

system [188], the WER can be reduced to 6.5%. However, as mentioned earlier, in order to gain

insights into the quality of the induced lexicon and the discovered phonetic set, we compare our
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model against an oracle triphone system that is built by using a singleton question set.

By comparing Table 5.5 and Table 5.8, we can see that the grapheme triphone improves

by a large margin compared to its monophone counterpart, which is consistent with the results

reported in [91]. However, even though the grapheme baseline achieves a great performance

gain with context-dependent acoustic models, the recognizer trained using the lexicon learned

by our model and subsequently refined by PMM still outperforms the grapheme baseline. The

consistently better performance our model achieves over the grapheme baseline demonstrates

the strength of modeling the pronunciation of each letter with a mixture model that is presented

in this chapter.

Last but not least, by comparing Table 5.5 and Table 5.8, it can be seen that the relative

performance gain achieved by our model is similar to that obtained by the oracle baseline. Both

Table 5.5 and Table 5.8 show that even without exploiting any language-specific knowledge

during training, our recognizer is able to perform comparably with the recognizer trained using

an expert lexicon. The ability of our model to obtain such similar performance further supports

the effectiveness of the joint learning framework proposed in this chapter for discovering the

phonetic inventory and the word pronunciations from simply an annotated speech corpus.

� 5.7 Chapter Conclusion

In this chapter, we present a hierarchical Bayesian model for simultaneously discovering acous-

tic units and learning word pronunciations from transcribed spoken utterances. Both mono-

phone and triphone recognizers can be built on the discovered acoustic units and the inferred

lexicon. When tested on an English corpus of spontaneous weather queries, the recognizers

trained with the proposed unsupervised method consistently outperform grapheme-based rec-

ognizers and approach the performance of recognizers trained with expert-defined lexicons.

Our work can be regarded as the first step towards untangling the dependence on expert-

defined lexicons for training ASR systems. We believe that automatic induction of the en-

coding paradigm between the written and spoken systems of a language is the key to greatly

increasing the multilingual capacity of speech recognizers. One interesting related research

problem, which is beyond the scope of this thesis, is the even more daunting task of learning

units and pronunciations from non-parallel text and speech data, which has similarities to a

decipherment task [58]. Since collecting non-parallel speech and text data of a language is

much easier than creating a transcribed speech corpus, the ability to acquire a pronunciation

dictionary from non-parallel data represents a tremendous potential for extending the speech
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recognition capacity to much more languages spoken in the world. With the recent success

of deciphering mysterious codes, lost languages, and learning a translation lexicon from non-

parallel data [93, 92, 157, 171, 26] using computational decryption methods, we believe that

unsupervised discovery of pronunciation lexicons from non-parallel speech and text data is a

promising research area.



Chapter 6

Conclusion

� 6.1 Summary

In this thesis, we pose the challenge of discovering linguistic structures from speech signals,

and investigate nonparametric Bayesian methods to tackle this challenge. The experimental

results demonstrate that by imposing a Dirichlet process prior on HMMs that are used to model

phonetic units, our DPHMM model can discover sub-word units that are highly correlated with

standard phones defined by experts. Some of the discovered units even carry useful contex-

tual information. Furthermore, by leveraging the intrinsic clustering property of Pitman-Yor

processes, which encourages parameter sharing, our integration of adaptor grammars, noisy-

channel model, and acoustic model is shown to be able to capture recurrent acoustic patterns

that correspond to frequent syllabic and lexical units. We are the first to apply adaptor gram-

mars to non-symbolic data, and the experimental results reveal that a noisy-channel model is

necessary for absorbing the confusability that often exists in non-symbolic input.

In addition to exploring computational models for inferring latent structures in speech sig-

nals, we also apply the induced structures to an essential task of the language acquisition pro-

cess: one-shot learning of spoken words. The experimental results indicate that learning the

fundamental representation of a language, i.e., the phonetic inventory, plays an important role

in recognizing and synthesizing new spoken words from just one or a few examples. Finally,

we go beyond just speech data and invent a framework that automatically discovers the connec-

tion between the written-form and the spoken-form of a language. We utilize this framework

to learn a fully data-driven pronunciation dictionary, which enables the development of well-

performing speech recognizers without any expert knowledge.

159
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� 6.2 Future Work

Several avenues of investigation arise from the work presented in this thesis. In addition to

those discussed at the end of each chapter, we describe some more future research directions

below.

� 6.2.1 A Data-driven approach to Formalizing Phonological Knowledge

Conventionally, researchers apply rule-based knowledge to define and study the phonological

properties of a language. In contrast, the DPHMM model proposed in Chapter 2 provides a fully

data-driven approach to formalizing these linguistic properties. This automatic approach im-

plies that we can bypass the need of arbitrarily deciding the phonemes, phones, and allophonic

variations of a language, and define these phonological structures by exploiting evidence from

speech data of the language. In particular, the DPHMM model can be used as a tool to help

linguists to study the phonology of a language. For example, we can first employ the DPHMM

model to learn an initial phone set that captures detailed context-dependent acoustic variations

in the individual phonetic units, and then have linguists refine or merge the distinct phonetic

units by listening to the associated speech segments. We envision that a hybrid technique

that combines knowledge-based and data-driven approaches would be the key to learning the

phonological structures for other languages in the world, especially for low-resource languages.

� 6.2.2 Integrating Prior Knowledge for Learning

The training of most of the models presented in this thesis is fairly unsupervised. More specifi-

cally, we do not impose any language-specific knowledge on the models; instead, we only rely

on the weak constraints implied by the model priors during learning. The rationale behind this

design is that language-specific knowledge is not always accessible; therefore, the learning of

the models should not depend on it. While language-specific knowledge may be difficult to

obtain, some universal rules are readily observed and available. Take universal phonetics as an

example. The vowels /i/, /a/, and /u/, and the stop consonants /p/, /t/, /k/, /b/, /d/, and /g/, as well

as the nasals /m/ and /n/ appear in a large number of spoken languages [100]. Another example

is that languages are known to systematically restrict the co-occurrence of consonants in their

onsets [8]. These restrictions can serve as learning constraints of, for example, the DPHMM

model and may help the model to discover more precise phonetic structures. The challenge of

this line of research lies in how to effectively encode these universal constraints as a part of the

model.
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In addition to universal linguistic knowledge, other simple data pre-processing may be used

to improve the quality of the models presented in this thesis. For example, as shown in Fig. 2.6,

the DPHMM model learns many units for silence, possibly due to the inconsistent behavior of

the Dirichlet process mixture models for learning the number of components from data [130].

To prevent the model from learning the silence units, a practical solution could be using a sim-

ple phonetic recognizer to detect speech and non-speech segments in the acoustic data before

training the DPHMM model.

� 6.2.3 Application to Other Languages

Most of the models proposed in this thesis do not assume prior linguistic knowledge. However,

the design of the word pronunciation learning model presented in Chapter 5 is largely inspired

by linguistic properties observed in English. For example, in order to accommodate the pro-

nunciation of the letter x, the maximal number of phonetic units that a letter can map to is set

to two. In addition, the number of phonetic units to be discovered is limited to 100, which is

roughly an upper bound of the size of the English phoneme set. Given the rationale behind the

model design, we envision that to apply this model to other languages, the model structure will

need to be modified slightly. For instance, to apply the model to tonal languages, by viewing

vowels with different tones as distinct phones, we may consider increasing the number of the

phonetic units to be discovered in the model.

� 6.2.4 Semi-supervised Pronunciation Lexicon Learning

Chapter 5 of this thesis suggests that a pure data-driven approach is viable for training ASR

systems. However, instead of regarding our approach as a replacement, we view it as a promis-

ing augmentation to the current supervised training procedure. For example, rather than create

a pronunciation dictionary for every word in a language, we can have the linguistic experts

only denote the pronunciations for a small set of frequently-used words in the language, and

use this compact lexicon as a starting point for training our model. By seeding our model with

some expert knowledge, we can guide the learning of our model better and potentially allow the

model to discover more accurate relationship between the written and spoken systems of the

language. We believe that a hybrid framework that combines expert-defined and automatically-

induced knowledge is the key to successfully developing speech recognizers for many more

languages in the world, especially for low-resource languages.
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� 6.2.5 Progressive Training

Compared to child-directed speech, which usually consists of short utterances and abundant

repeated words, the speech data that our models are trained on tend to contain longer sentences

and a larger vocabulary. This suggests that, compared to infants, our models are learning in

a relatively tougher condition. If a simpler subset of the training data for any of our models

can be automatically selected, we may be able to ground the learning of the model with this

smaller dataset first, and then gradually add in more complicated training samples to grow the

model. The advantage of this progressive training strategy is that it provides a strong learning

constraint to the model at the early training stage, which can potentially allow the model to

discover more accurate latent structures. The major difficulty for implementing this training

strategy is how to automate the data selection process.

� 6.2.6 Learning from More Sensory Data

The research presented in this thesis is mostly limited to speech data. However, during the

language acquisition process, human infants are exposed to much more sensory information

than simply the speech stream. One obvious example of other sensory inputs is the visual

stream. Recent research [81] has applied adaptor grammars to simultaneously segment words

from phoneme strings and learn the referents of some of the words, in which the visual stream

associated with each utterance (represented as a phoneme string) is mapped as a symbolic rep-

resentation. While promising results were obtained in [81], the input to the adaptor grammar

is once again highly abstracted. Therefore, one interesting question is whether we can develop

a system that learns from less processed data, similar to those employed in [158] for ground-

ing language acquisition from acoustic and video input. Can we discover linguistic structures

by leveraging information in the visual data? Can the synergies between speech and visual

segmentation help learn each other?

� 6.2.7 An Analysis-by-synthesis Approach to Augmenting Model Design

Far from the final word on one-shot learning of spoken words, we consider our investigation

to be a first step towards understanding how adults and children learn novel phonological se-

quences from just one example. We can envision many ways to further expand the scale of

our work. For example, rooted in the principles of compositionality and causality, the authors

of [104] take an analysis-by-synthesis approach to designing a generative model that achieves

a human-level performance on one-shot learning tasks for classifying and generating hand-
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written characters. Can the same approach be applied to design a computational model that

achieves human-level performance on one-shot learning tasks for spoken words? More specif-

ically, the term of analysis-by-synthesis in the speech community often refers to explicit mod-

eling of the articulatory process [65], which requires speech data augmented with articulatory

measurements from the speaker’s vocal tract [5]. Can this type of information be included as

part of a generative model? While we choose to build our model on a feature representation that

only implicitly reflects this type of information [9], we see the potential in taking the analysis-

by-synthesis approach to building models that more closely resemble the way humans produce

speech.
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Appendix A

Moses Translations of the

Discovered Word Pronunciations

In this appendix, we present more Moses translations of the word pronunciations that are dis-

covered by the lexicon induction model described in Chapter 5. As in Table 5.4, each entry

of the following table consists of 1) the automatically-induced word pronunciation, 2) the cor-

responding translation denoted in standard phone units, which is obtained by using the Moses

translation system described in 5.5, and 3) the expert-defined pronunciation.

Word automatically-induced

pronunciation

Translated

automatically-induced

pronunciation

Expert-defined —–

pronunciation

freeze 10 66 28 50 20 82 f r iy z f r iy z

greenland
19 28 20 80 45 15 46

25 22 81
gcl g r iy n l ax n gcl g r iy n l ax n dcl d

columbus
19 66 6 88 12 63 9 13

51 24 93
kcl k el ah m bcl b ax s

kcl k ax l ah m bcl b ax

s

night 22 75 15 29 59 3 86 n ay tcl t n ay tcl t

in 25 22 ax n ax n

rains 28 7 22 93 r ey n epi z r ey n z

find 31 18 12 46 f ay n f ay n dcl d

nice 33 58 62 57 24 10 n ay s epi n ay s

pegasus
35 86 29 59 13 37 10

69 24
pcl p ey gcl g ax s ax s pcl p eh gcl g ax s ax s

mountain 39 79 45 55 3 94 22 33 m aw n tcl t ax n m aw n tcl t ax n

Continued on next page
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Table A.1 – continued from previous page
Word automatically-induced

pronunciation

Translated

automatically-induced

pronunciation

Expert-defined —–

pronunciation

way 40 12 w ay w ey

bay 42 29 73 bcl b ey bcl b ey

accumulation
5 27 84 80 92 80 92 85

34 22 92

ax kcl k y uw m y ax l

ey sh ax n

ax kcl k y uw m y ax l

ey sh ax n

yesterday
50 16 89 27 44 27 13

25 29 97
y eh s tcl t er dcl d ey y eh s tcl t er dcl d ey

yesterday
50 16 93 34 44 27 25

29 97 38
y eh s tcl t er dcl d ey y eh s tcl t er dcl d ey

accumulation
59 60 84 80 92 80 91

85 34 22 38

ax kcl k y uw m y ax l

ey sh en

ax kcl k y uw m y ax l

ey sh en

asia 62 57 34 47 49 70 ey zh ax ey zh ax

vail 83 62 77 79 63 v ey l v ey l

not 83 75 11 35 n aa tcl n aa tcl t

heat 84 20 60 hh iy tcl t hh iy tcl t

hot 86 66 4 65 3 hh aa tcl t hh aa tcl t

soon 89 94 41 22 s uw n s uw n

san 93 94 29 77 22 s ae n s ae n

weather 96 98 74 64 30 w eh dh er w eh dh er

weather 98 74 64 30 54 w eh dh er w eh dh er

able 1 21 14 bcl b el ey bcl b ax l

daylight 1 29 91 76 15 59 dcl d ey l ay kcl dcl d ey l ay tcl t

marlborough
1 39 56 88 42 67 56 56

88
m aa r l bcl b aa r ow m aa r l bcl b r ow

seventy 10 26 99 26 62 33 99 s eh v ey n iy s eh v ax n t tcl iy

flights 10 40 12 59 3 93 f l ay tcl t s f l ay tcl t s

forecasted
10 6 43 55 3 47 16 24

37 93
f ao r kcl k ae s ax s

f ao r kcl k ae s t tcl ax

dcl

freeze 10 66 28 33 57 10 26 f r iy s f r iy z

Continued on next page
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Table A.1 – continued from previous page
Word automatically-induced

pronunciation

Translated

automatically-induced

pronunciation

Expert-defined —–

pronunciation

davis 13 73 64 51 93 dcl d ey dx ax s dcl d ey v ax s

mountain
14 83 49 79 63 3 86 83

22 38
m ow n tcl t ax n m aw n tcl t ax n

couple 19 14 86 35 40 5 kcl k s pcl p ax l kcl k ah pcl p ax l

precipitation
19 66 27 93 37 35 37

35 47 57 34 25 38

pcl p axr s ax pcl p ax

tcl t ey sh ax n

pcl p axr s ih pcl p ax

tcl t ey sh ax n

bermuda
19 67 67 9 50 80 73 13

16 70

bcl b er m y uw dcl d

iy ax

bcl b er m y uw dcl d

ax

need 22 50 20 60 n iy tcl n iy dcl

flights 24 6 76 59 73 55 10 f l ay tcl t s f l ay tcl t s

anytime 25 50 20 60 94 15 9 92 eh n iy tcl t ax m eh n iy tcl t ay m

carolina
27 47 2 77 15 15 4 2

33 58 70
kcl k ae n ax l ay n ax kcl k ae r ax l ay n ax

asai 29 73 89 94 16 70 ey s ax ey zh ax

find 31 18 12 46 f ay n f ay n dcl d

knox 33 15 19 72 72 n aa kcl k n aa kcl k s

shreveport
34 44 28 95 3 40 43 27

3 81
sh r iy s pcl p ao r tcl t sh r iy v pcl p ao r tcl t

george 34 80 43 67 27 34 dcl jh y ao r dcl jh dcl jh ao r dcl jh

plus 35 18 45 89 pcl p ax s pcl p l ah s

music 39 50 95 69 59 27 72 m y uw n ax kcl k m y uw z ax kcl k

baton 42 16 35 60 94 bcl b ae tcl t bcl b ae tcl en

old 43 97 1 ao l dx ow l dcl d

understand 5 46 27 89 95 25 22 ah n d er s tcl t ax n
ah n d er s tcl t ae n dcl

d

done 64 75 9 38 dcl d ax n dcl d ah n

were 68 98 85 w ih w er

couple 72 19 79 35 18 23 kcl k ae pcl p el kcl k ah pcl p ax l

Continued on next page
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Table A.1 – continued from previous page
Word automatically-induced

pronunciation

Translated

automatically-induced

pronunciation

Expert-defined —–

pronunciation

carolina
72 47 17 79 76 12 15

46 75 70
kcl k ae l ay n ax kcl k ae r l ay n ax

couple 72 86 79 35 6 88 kcl k ae pcl p el kcl k ah pcl p ax l

las 76 15 49 93 89 l ax s l aa s

pocatello
81 19 6 23 19 37 86 79

76 63 88 81

ax pcl p ow kcl k ax tcl

t eh l ow

pcl p ow kcl k ax tcl t

eh l ow

boise
83 42 43 85 62 10 36

97 81
bcl b oy s iy iy bcl b oy s iy

nebraska
83 91 42 28 17 16 93

72 16 81

m ax bcl b r ae s kcl k

ax

n ax bcl b r ae s kcl k

ax

marseille
9 39 56 27 93 69 29 73

70
m aa r s ey ax m aa r s ey

manitoba
9 77 92 35 60 94 23 42

87 70
m ae n tcl t ow bcl b ax

m ae n ax tcl t ow bcl b

ax

might 9 83 39 59 20 m ay n m ay dx

season 93 20 93 94 22 s iy s ax n s iy z ax n

forty 93 6 43 27 95 f ao r tcl t f ao r tcl t iy

san 93 94 29 77 22 s ae n s ae n

wear 96 43 28 71 w ao r w eh r

wind 96 98 85 25 22 w ih n w ih n dcl

diego
13 20 73 59 80 49 23

23
dcl d iy gcl g ow l dcl d iy ey gcl g ow

prague 19 66 56 63 45 19 86 pcl p r aa kcl k pcl p r aa gcl g

Table A.1: More examples of the automatically inferred word pronunciations and their trans-

lations denoted in expert-defined phonetic units, which are generated by using a Moses trans-

lation system. The corresponding expert-defined pronunciation for each word is listed in the

right-most column.
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