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World Language Map

® Roughly 7,000 living languages all around the world

- Only 2% are supported by automatic speech recognition (ASR) technology
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Discover Pronunciation Lexicon
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Challenges

® |atent phone sequence

® |atent letter to sound (L2S) mapping rules
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® Take context into account for learning L2S mapping rules
- More specific rules B ~ Dir(y)
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Graphical Model
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- Jupiter [Zue et dl, [EEE Trans. on Speech and Audio Processing, 2000]
- Conversational telephone weather information queries
- /2 hours of training data and 3.2 hours of test data

- A subset of 8 hours of the training data used for training our model

® Benchmark and baseline
- A speech recognizer trained with an expert-crafted lexicon (Supervised)

- A grapheme-based recognizer (Grapheme)

® A 3-gram language model is used for all experiments
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Results - Monophone Acoustic Model

® Word error rate (WER)

WER (%)
Grapheme 32.7
Our model 17.0
Supervised 13.8
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Results - Triphone Acoustic Model

® Word error rate (WER)

- Singleton questions are used to build the decision trees
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Results - Triphone Acoustic Model

® Word error rate (WER)

- Singleton questions are used to build the decision trees

WER (%)
Grapheme 15.7
Our model 13.4
Supervised 10.0
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® Grapheme recognizer
- Grapheme based speech recognition [Killer et al., Eurospeech 2003]

- A grapheme based speech recognizer for Russian [Stuker and Schultz, SPECOM
2004]
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Conclusion

® A joint learning framework for discovering pronunciation lexicon
and acoustic model

- Phonetic units are modeled by a HMM-based mixture model

- L2S mapping rules are captured by weights over mixtures

- 2S5 rules are tied together through a hierarchical structure
® Automatic speech recognition experiments

- Outperforms a grapheme-based speech recognizer

- Approaches the performance of a recognizer trained with an expert lexicon

® Apply the lexicon and phone units to existing ASR training methods

- Use our model as an initialization
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Sample n; and ¢,

® 7; and ¢;, denote an alignment between text and speech

® Sample a new alignment
- Compute the probabilities of all possible alignments
- Backward message passing with dynamic programming
- Forward block-sample new n; and ¢

- Similar to inference for hidden semi-Markov models
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation (b)

p(b)
93 56 87 39 19 0.125
93 56 61 87 7399 0.125
|1 56 61 877399 0.125
93207587 1727 52 0.125
559356 61 87 7384 19 0.125
9326 61 87 49 0.125
63 838687735319 0.125
9326 61 87 6 0.125

> pb)logp(h)

beB(w)

B(w): all pronunciations of a word
p(b): pronunciation probability
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation (b)

p(b)
93 56 87 39 19 0.125
93 56 61 87 7399 0.125
|1 56 61 877399 0.125
93207587 1727 52 0.125
559356 61 87 7384 19 0.125
9326 61 87 49 0.125
63 838687735319 0.125
9326 61 87 6 0.125

H = Tl Z p(b)logp(b)
wEeV beB(w)

B(w): all pronunciations of a word

p(b): pronunciation probability

V :vocabulary of the data
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation (b)

Average entropy (H)

p(b)
93 56 87 39 19 0.125
93 56 61 87 7399 0.125
|1 56 61 877399 0.125
93207587 1727 52 0.125
559356 61 87 7384 19 0.125
9326 61 87 49 0.125
63 838687735319 0.125
9326 61 87 6 0.125
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation (b)

p(b)
93568739 19 0.125
9356 61 877399 0.125
|1 56 61 877399 0.125
93207587 172752 0.125
55935661 87738419 0.125
9326 61 8749 0.125
63 838687735319 0.125
9326 61 87 6 0.125
Average entropy (H) 4.58
WER (%) 7.0
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation probabilities

pronunciation (b)

93568739 19

QOur mode| +| PMM*

+2 PMM*

935661 877399 0.125
1 5661877399 0.125
93207587 172752 0.125
55935661 87738419 0.125
9326 61 8749 0.125
63 838687735319 0.125

9326 61 87 6

Average entropy (H)

WER (%)

7.0

*Learning lexicon from speech using a pronunciation mixture model

[McGraw et al., 201 3]
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Refine Induced Lexicon

® Pronunciations of Burma

pronunciation probabilities

pronunciation (b)

Our model +1 PMM* +2 PMM*

93568739 19 0.125 - -
9356 61 877399 0.125 - -
|1 56 61 877399 0.125 0.400 0.419
93207587 172752 0.125 0.125 0.124
55935661 87738419 0.125 0.220 0.210
9326 61 8749 0.125 0.128 0.140
63 838687735319 0.125 - -
9326 61 87 6 0.125 0.127 0.107
Average entropy (H) 4.58

WER (%) 7.0

*Learning lexicon from speech using a pronunciation mixture model

[McGraw et al., 201 3]
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Pronunciations of Burma

Refine Induced Lexicon

pronunciation (b)

pronunciation probabilities

Our model + 1 PMM* +2 PMM*

93568739 19 0.125 - -

935661 877399 0.125 - -

156 61 877399 0.125 0.400 0419
93207587 172752 0.125 0.125 0.124
55935661 8/7384 19 0.125 0.220 0.210
932661 8749 0.125 0.128 0.140
63838687 /353 19 0.125 - -

932661 87 6l 0.125 0.127 0.107
Average entropy (H) 4.58 347 3.03
WER (%) 7.0 1 6.6 5.9

*Learning lexicon from speech using a pronunciation mixture model
[McGraw et al., 201 3]
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Position-dependent L2S

Rules

® TJake phone position into account

red sox

A

Ci ~ T«
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Rules

® TJake phone position into account

red sox
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56

T0x 2. |

C; ~ TTx22

Tx 2.2
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Position-dependent L2S

Rules

® TJake phone position into account

red sox

(2.1) A (2.2)

56

T0x 2. |

2

Tx 2.2
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