Joint Learning of Phonetic Units and Word Pronunciations for ASR

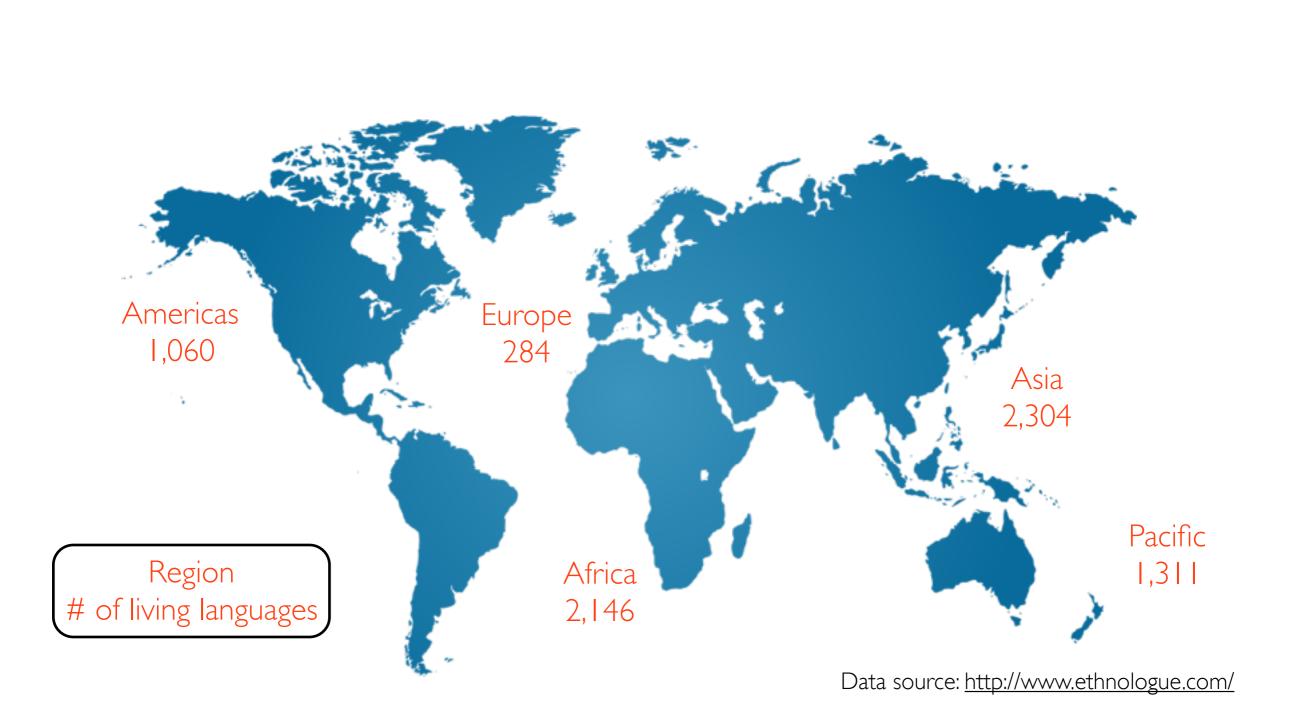
Chia-ying (Jackie) Lee, Yu Zhang and James Glass

Spoken Language Systems Group

MIT Computer Science and Artificial Intelligence Lab

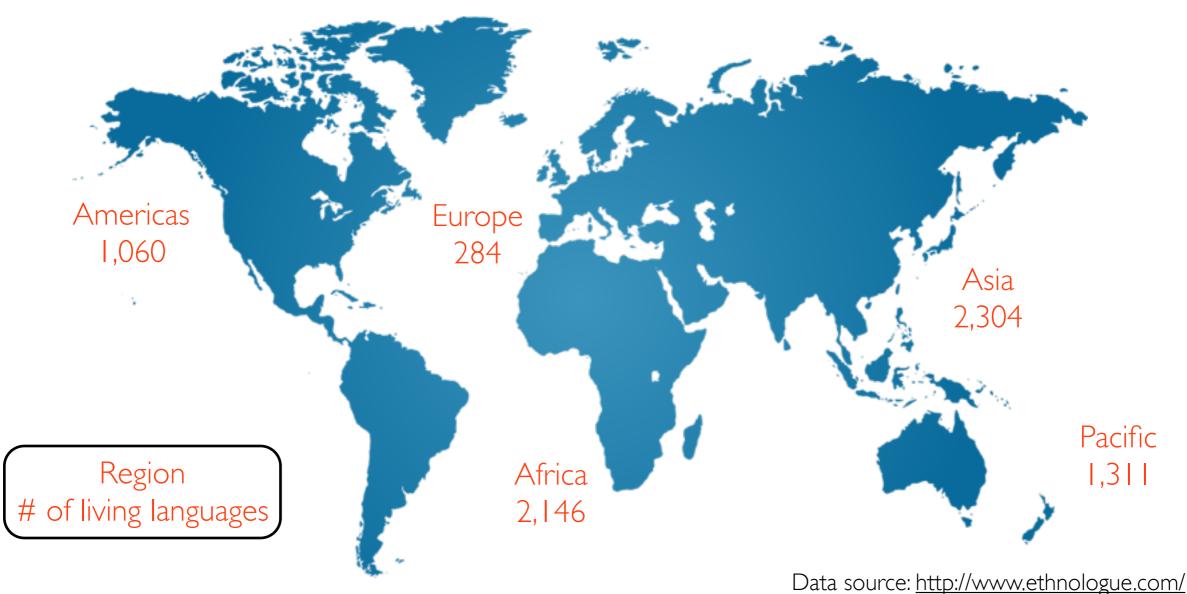
Cambridge, MA

World Language Map



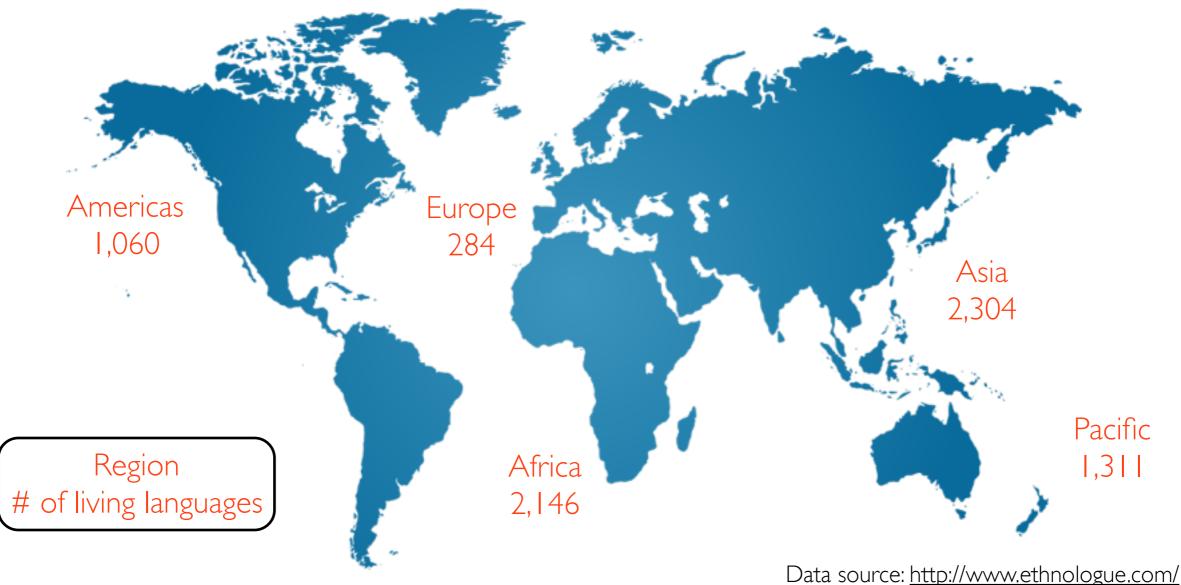
World Language Map

Roughly 7,000 living languages all around the world



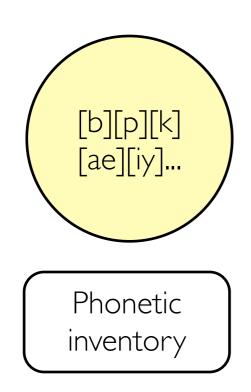
World Language Map

- Roughly 7,000 living languages all around the world
 - Only 2% are supported by automatic speech recognition (ASR) technology

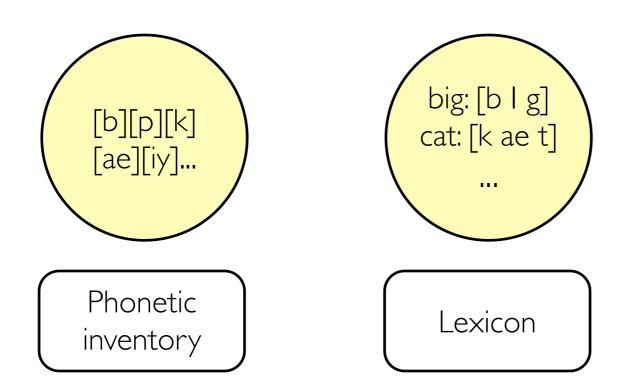


- Conventional ASR training is expensive
 - Requires a lot of expert knowledge

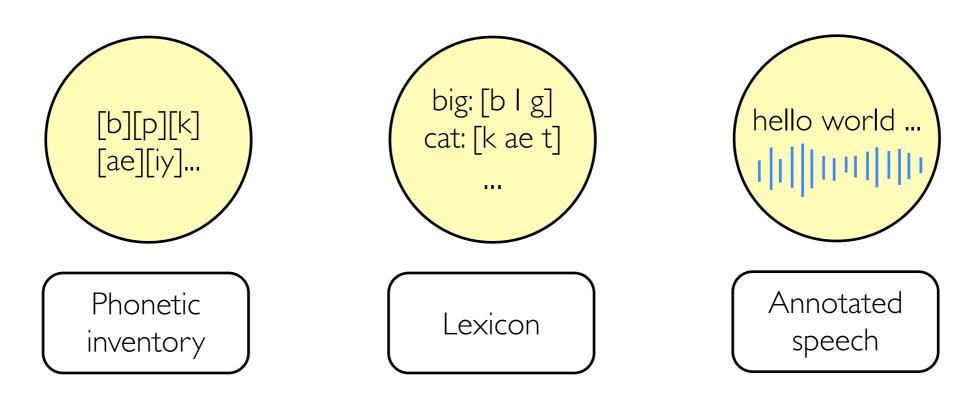
- Conventional ASR training is expensive
 - Requires a lot of expert knowledge



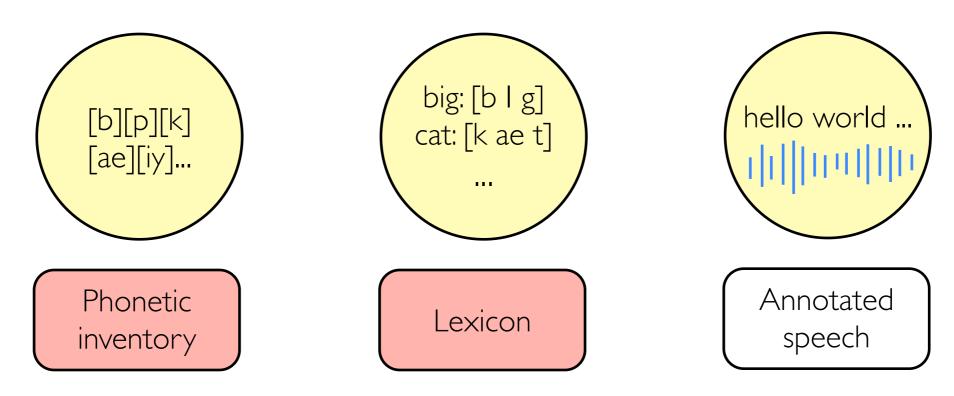
- Conventional ASR training is expensive
 - Requires a lot of expert knowledge



- Conventional ASR training is expensive
 - Requires a lot of expert knowledge

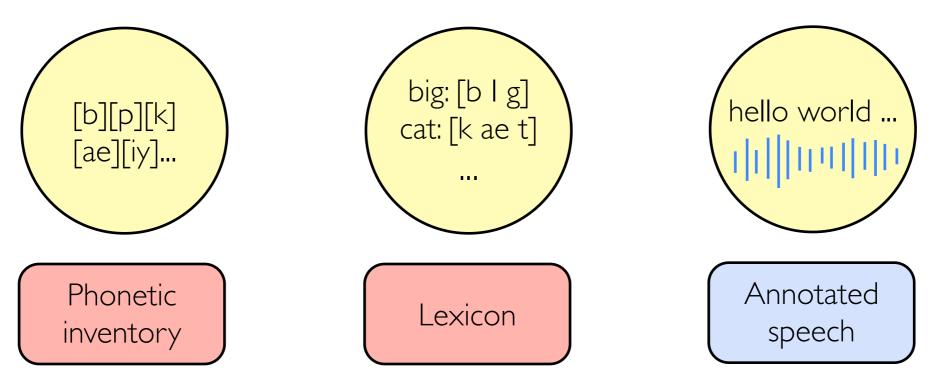


- Conventional ASR training is expensive
 - Requires a lot of expert knowledge



difficult to collect require linguistic expert knowledge

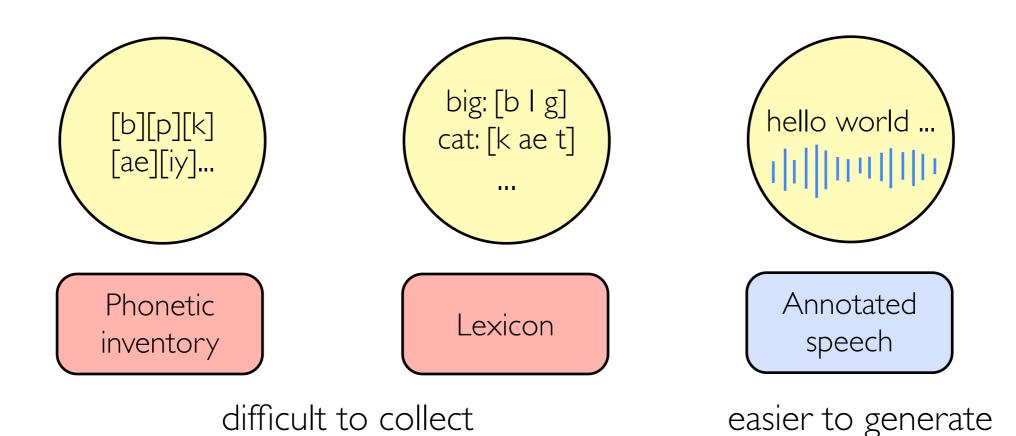
- Conventional ASR training is expensive
 - Requires a lot of expert knowledge



difficult to collect require linguistic expert knowledge

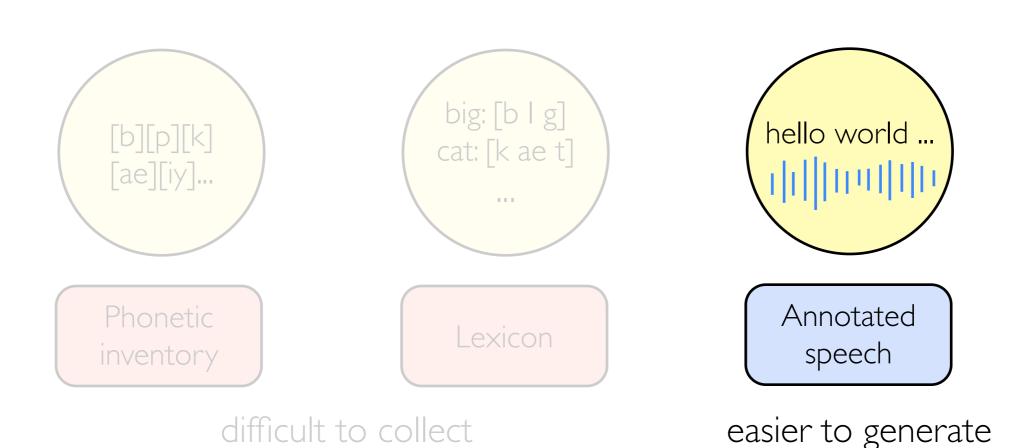
easier to generate by non-experts

require linguistic expert knowledge



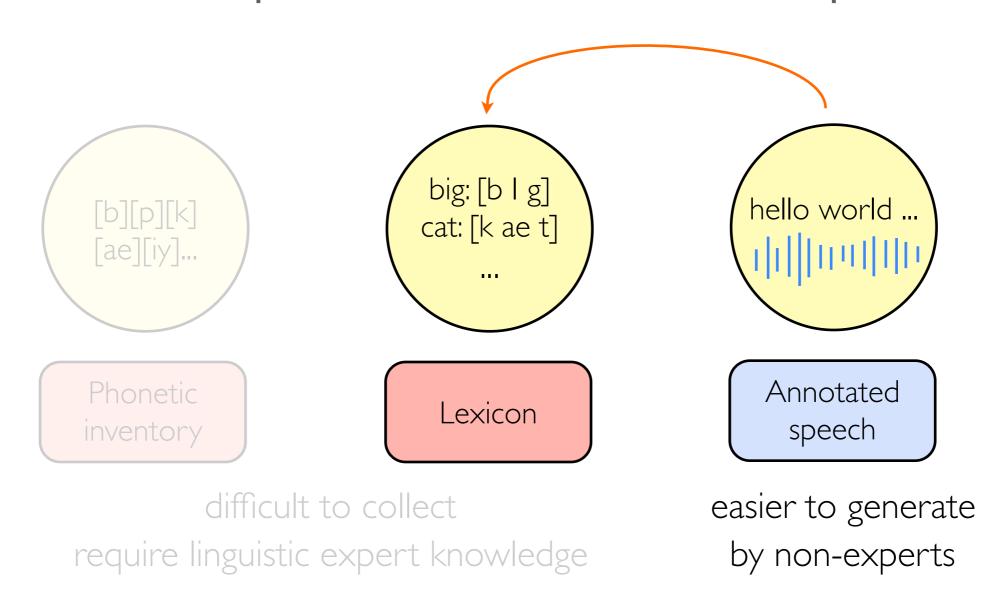
by non-experts

require linguistic expert knowledge

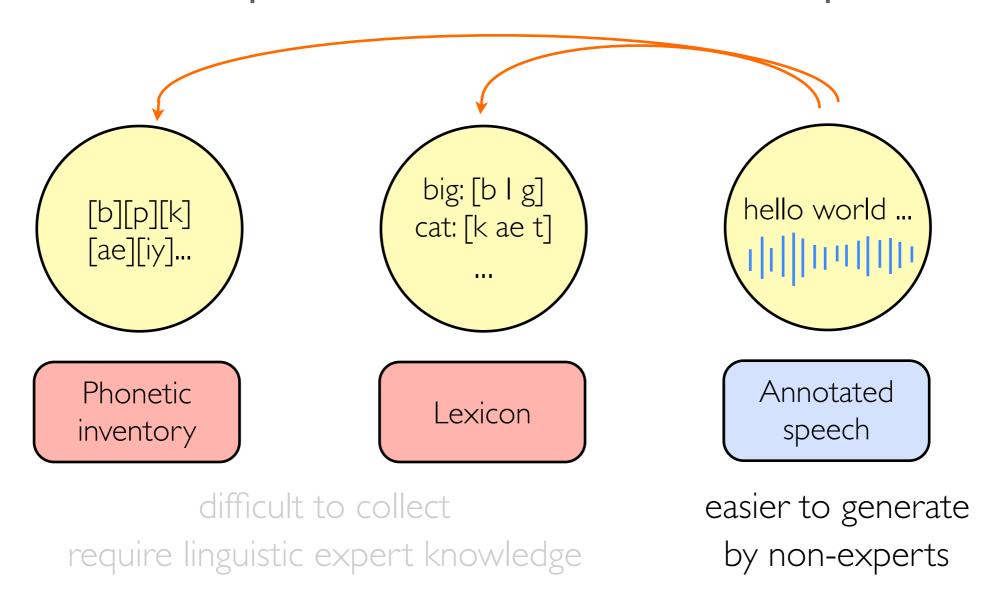


by non-experts

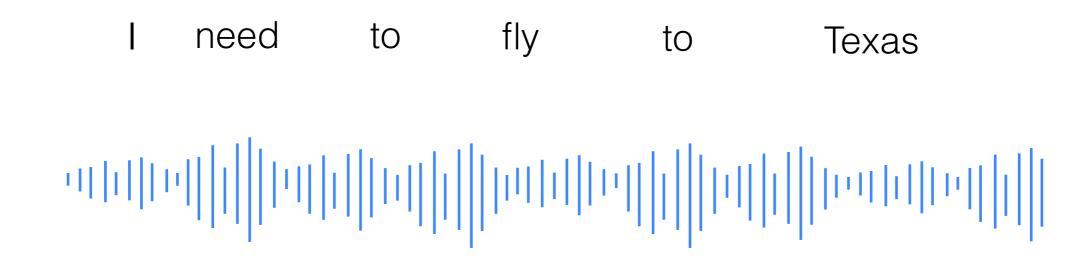
• Infer lexicon and phonetic units from transcribed speech



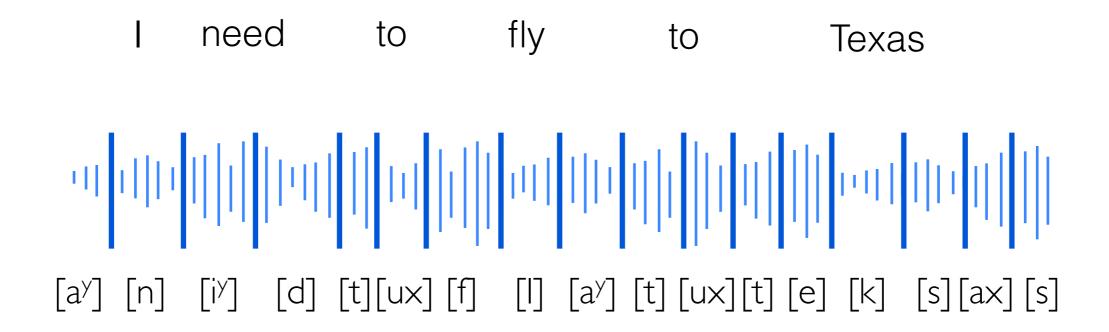
• Infer lexicon and phonetic units from transcribed speech



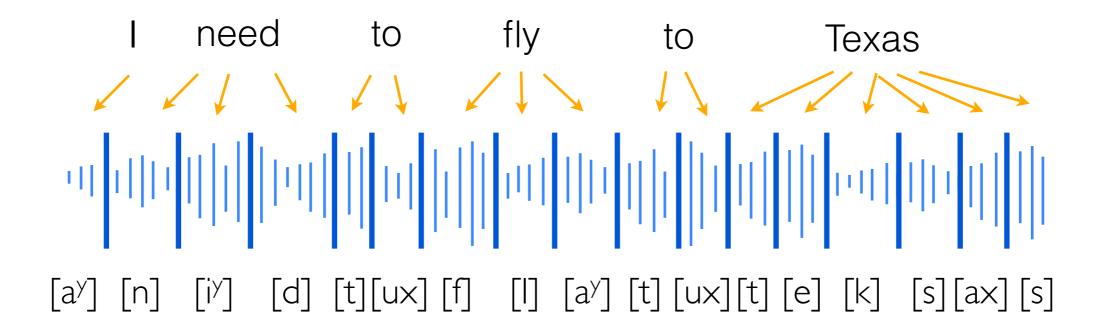
• Learn word pronunciations from transcribed speech



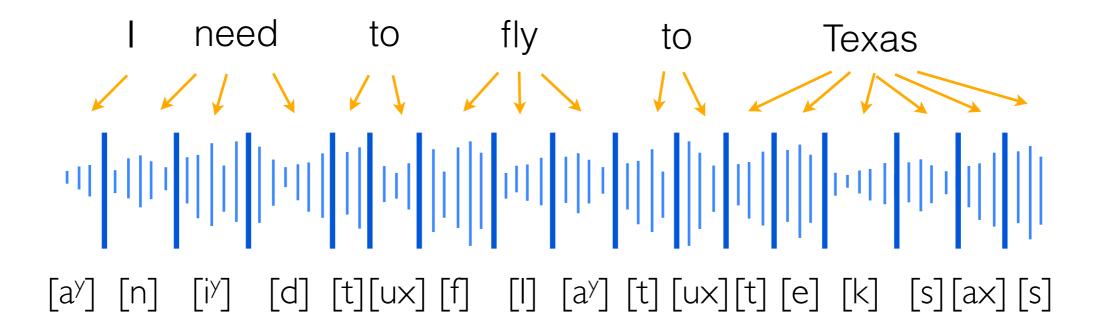
Learn word pronunciations from transcribed speech



• Learn word pronunciations from transcribed speech



• Learn word pronunciations from transcribed speech



1: [a^y]

need: $[n i^y d]$

to: [t ux]

fly: $[f \mid a^y]$

...

Without Linguistic Knowledge

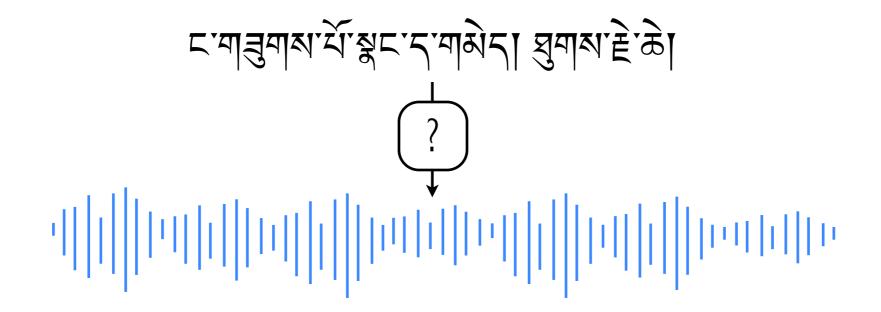
• Can we discover the word pronunciations?

Without Linguistic Knowledge

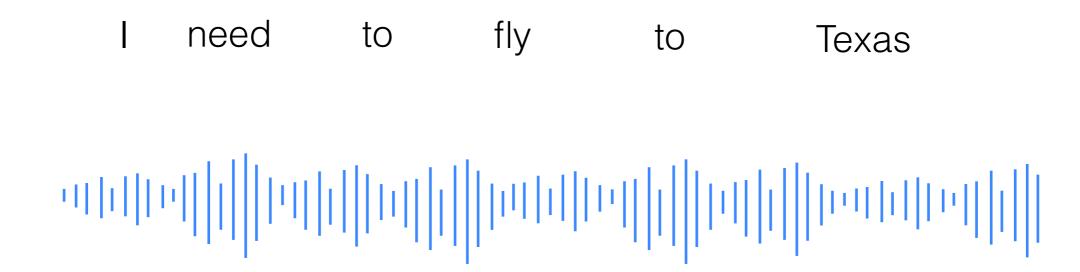
• Can we discover the word pronunciations?

Without Linguistic Knowledge

• Can we discover the word pronunciations?

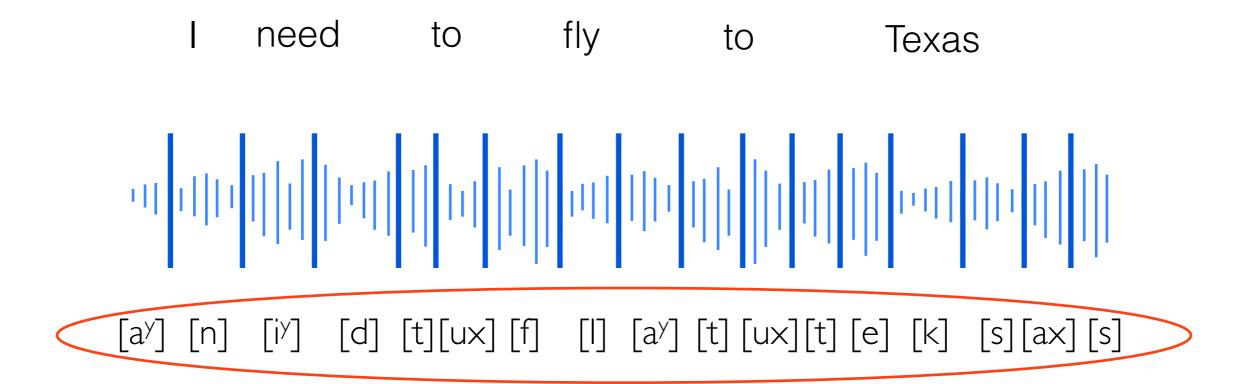


Challenges



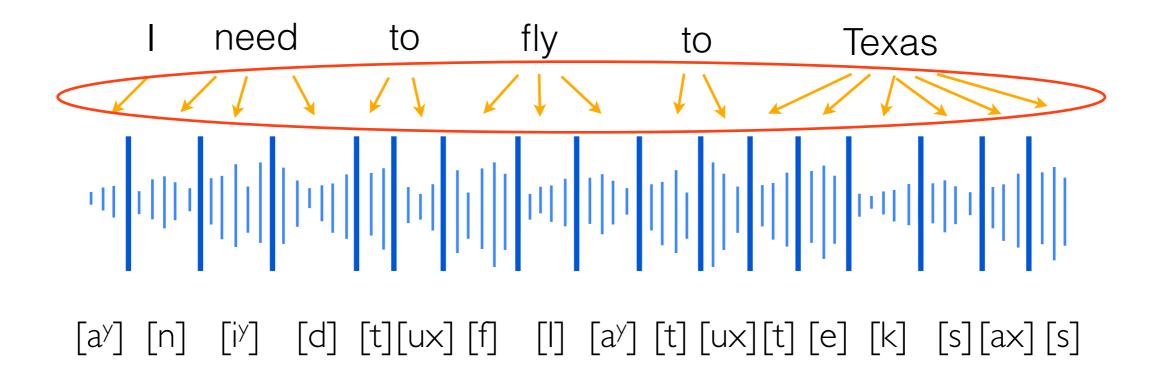
Challenges

Latent phone sequence



Challenges

- Latent phone sequence
- Latent letter to sound (L2S) mapping rules



Unknown phone sequence

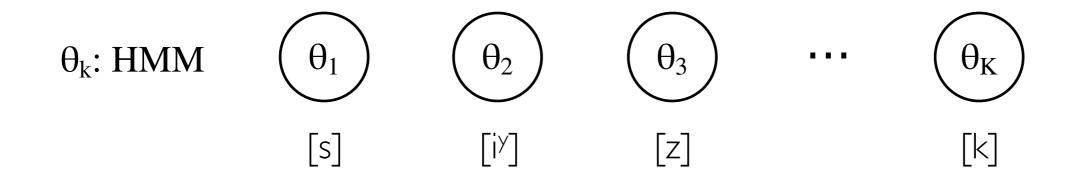
- Unknown phone sequence
 - Unknown phone inventory

Unknown phone sequence

- Unknown phone inventory
- HMM-based mixture model

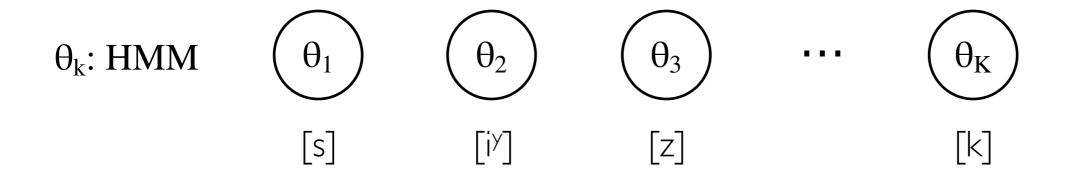
Unknown phone sequence

- Unknown phone inventory
- HMM-based mixture model



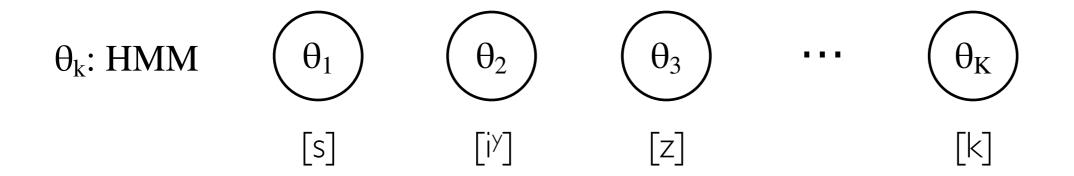
- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

- Unknown L2S rules
 - Weights over HMMs



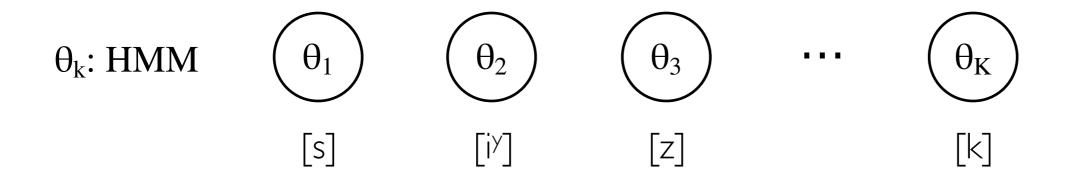
- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

- Unknown L2S rules
 - Weights over HMMs
 - Associated with each letter



- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

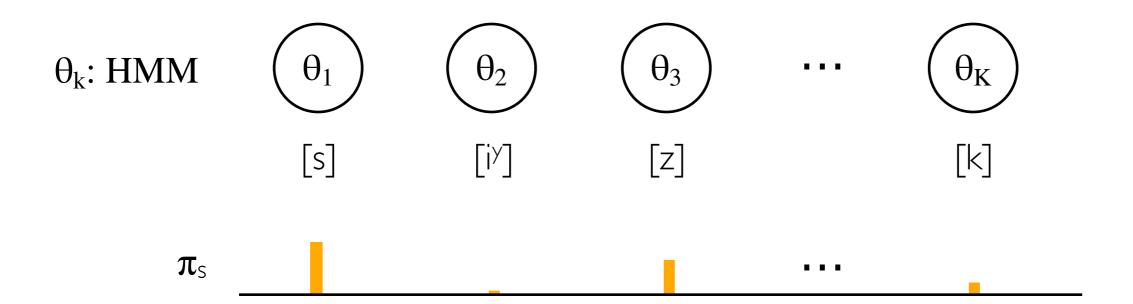
- Unknown L2S rules
 - Weights over HMMs
 - Associated with each letter



 π_{S}

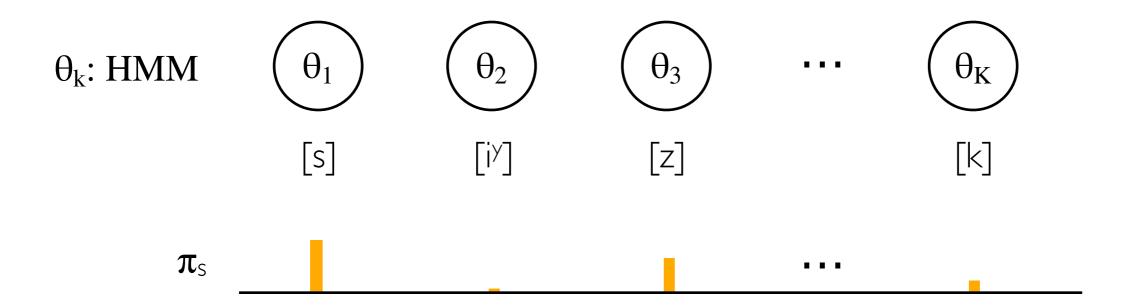
- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

- Unknown L2S rules
 - Weights over HMMs
 - Associated with each letter



- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

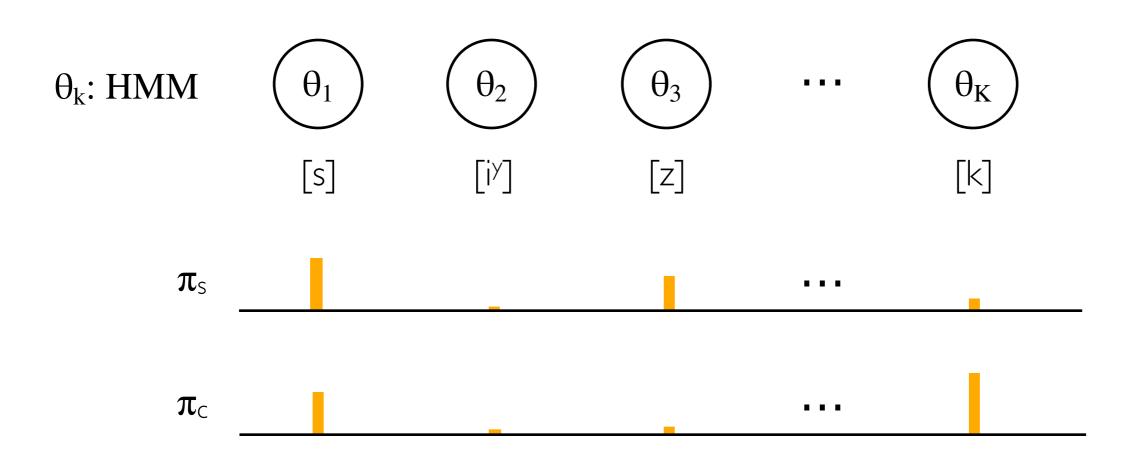
- Unknown L2S rules
 - Weights over HMMs
 - Associated with each letter



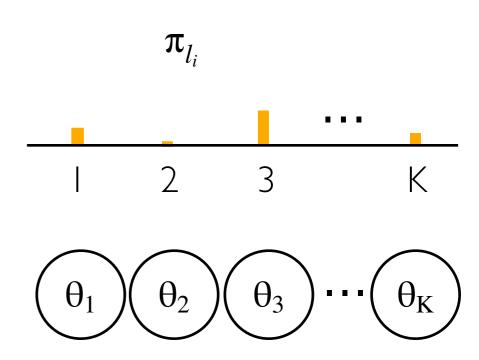
 π_{C}

- Unknown phone sequence
 - Unknown phone inventory
 - HMM-based mixture model

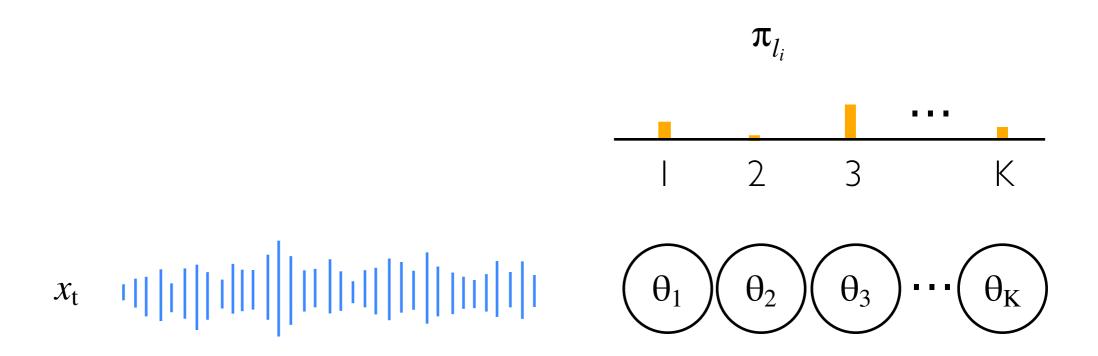
- Unknown L2S rules
 - Weights over HMMs
 - Associated with each letter

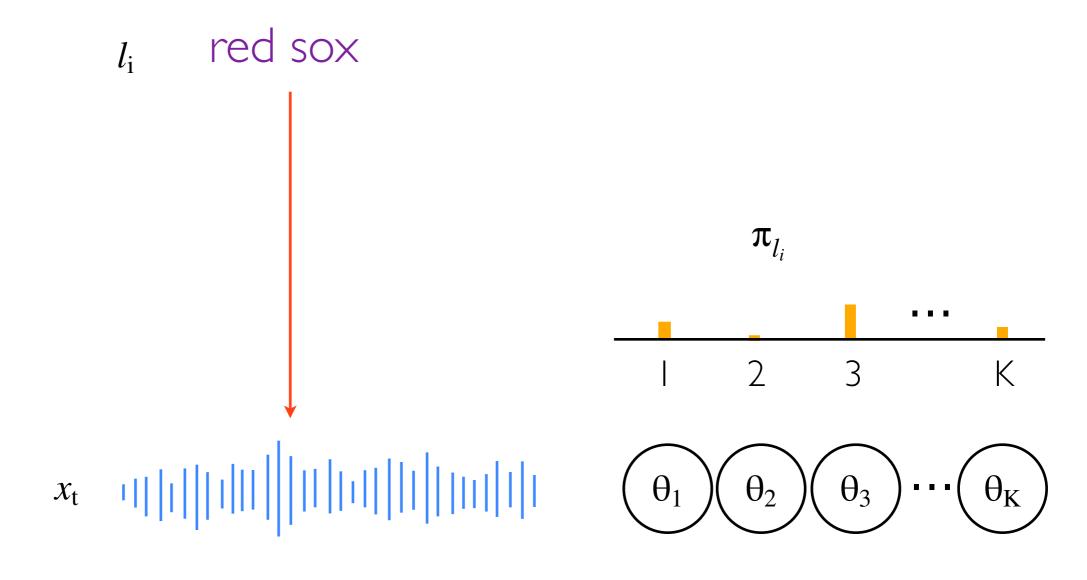


Generative Process



 $l_{\rm i}$ red sox



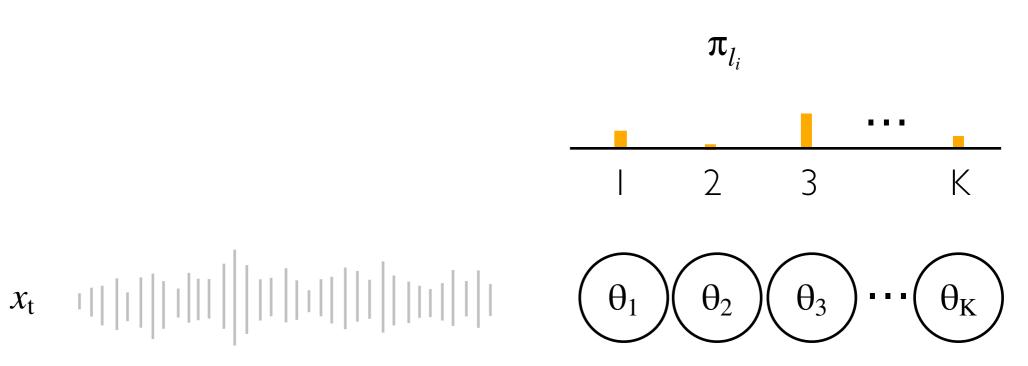


Step I

- Generate the number of phones that each letter maps to (n_i)

$$l_i$$
 red sox

 $n_{\rm i}$



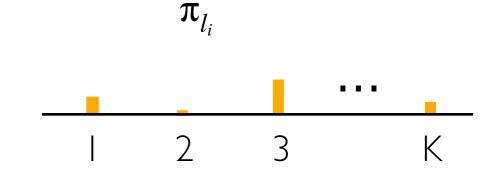
Step I

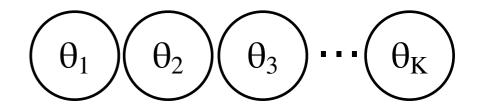
- Generate the number of phones that each letter maps to (n_i)

$$l_{i}$$
 red sox

 $n_{\rm i}$

$$n_{
m i}$$
 ~ $\phi_{l_{
m i}}$
3-dim categorical distribution





Step I

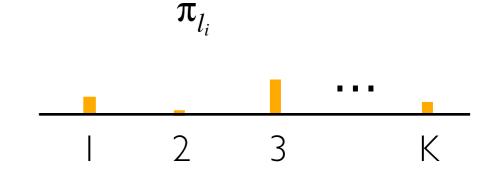
- Generate the number of phones that each letter maps to (n_i)

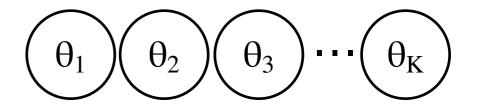
$$l_{\rm i}$$
 red sox

 $n_{\rm i}$

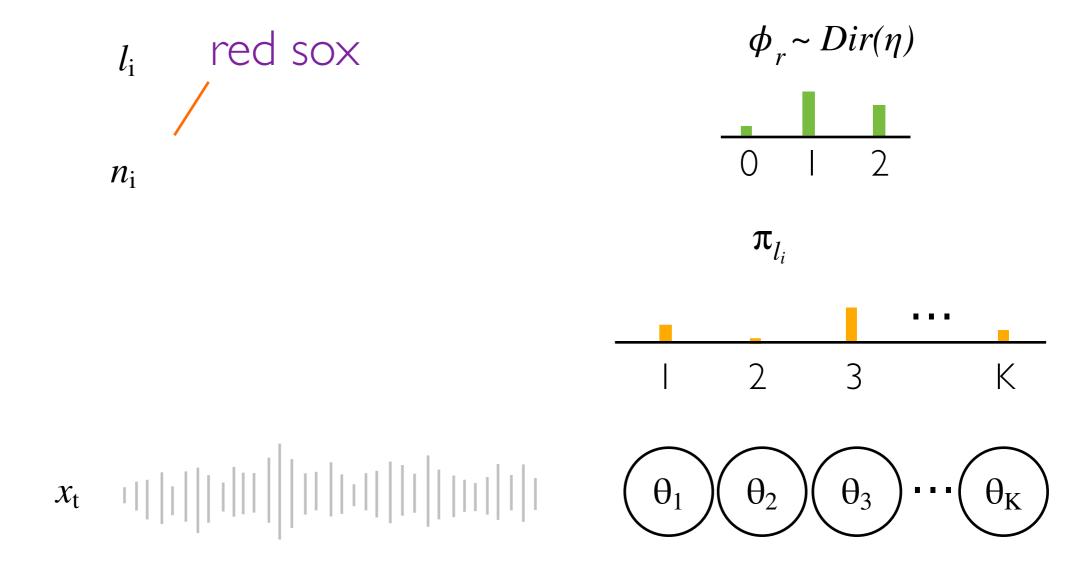
$$n_{\rm i} \sim \phi_{l_{\rm i}} \sim Dir(\eta)$$

3-dim categorical distribution

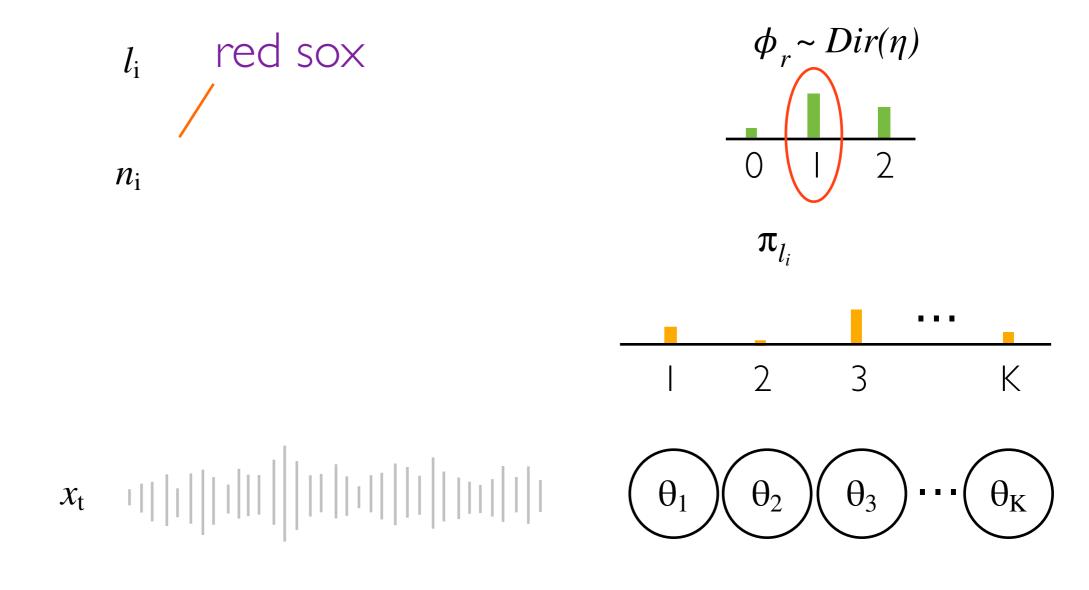




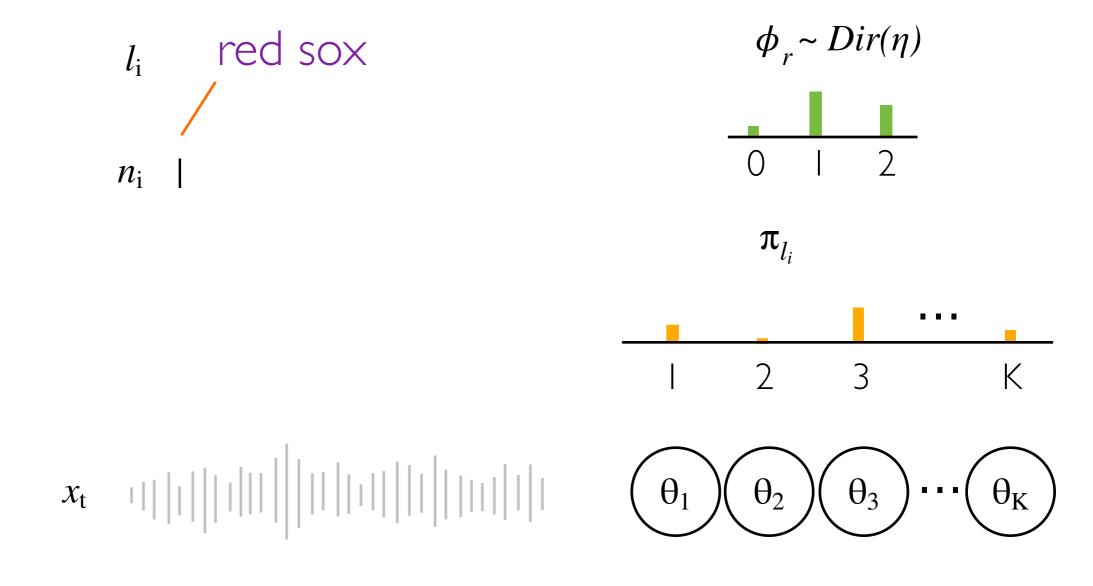
Step I



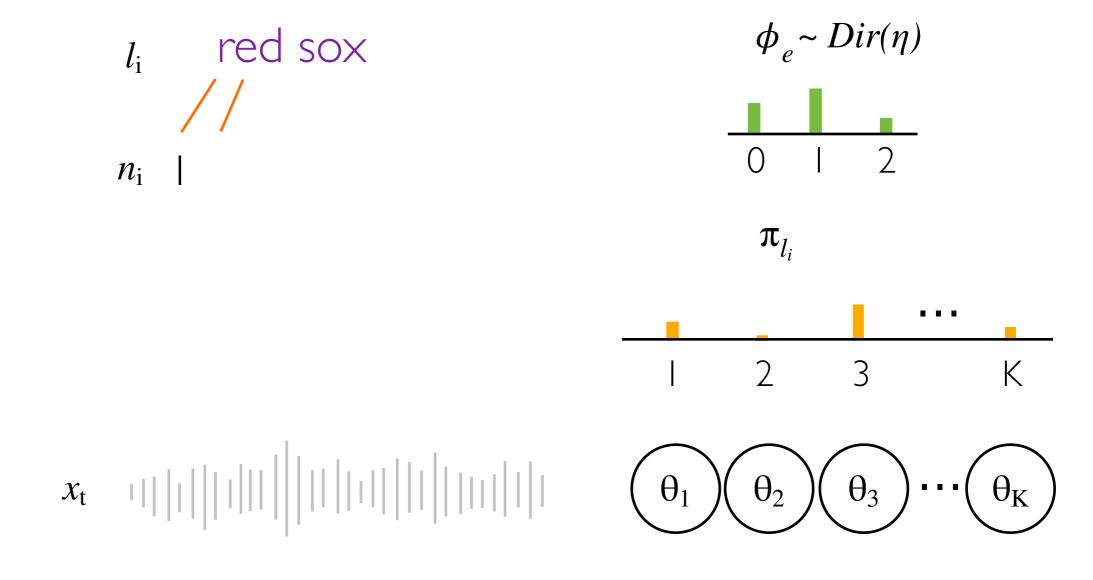
Step I



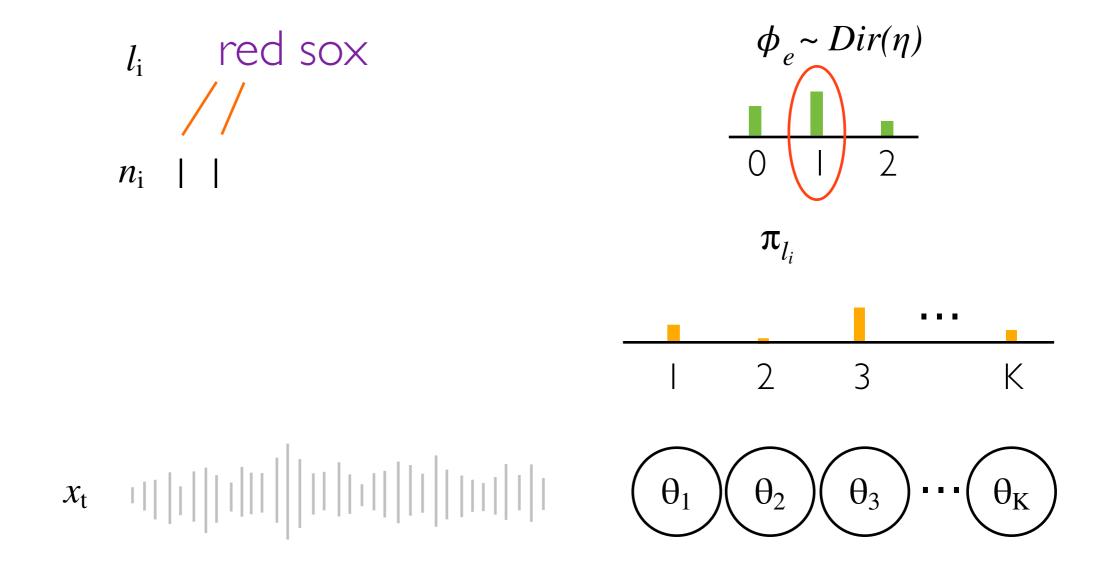
Step I



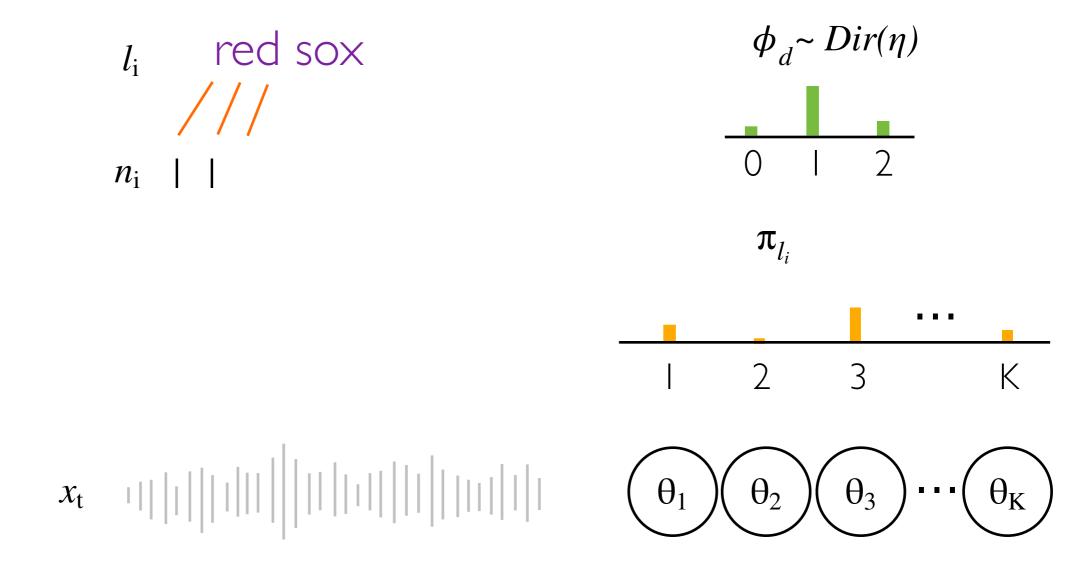
Step I



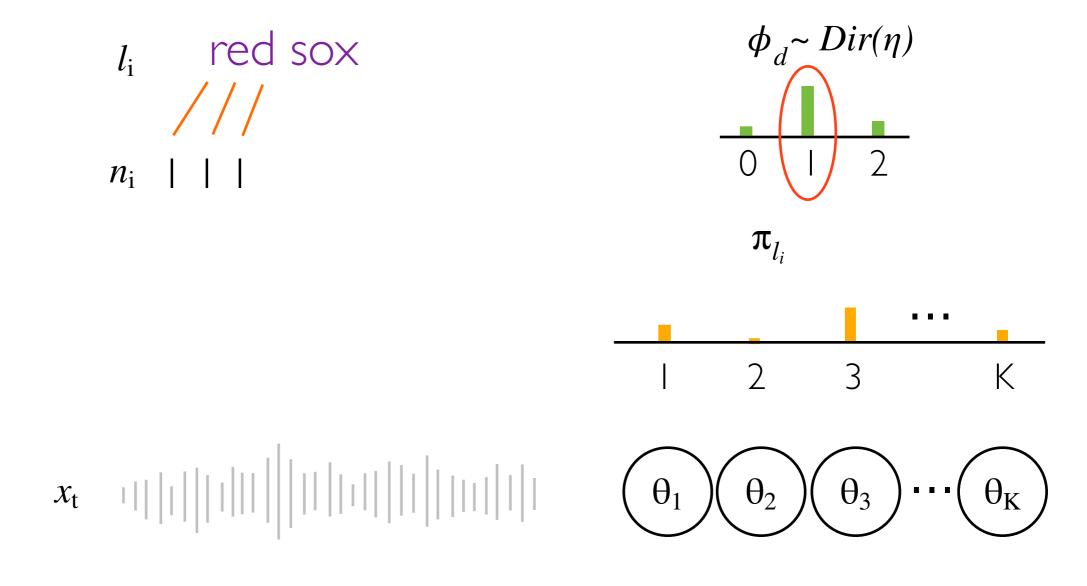
Step I



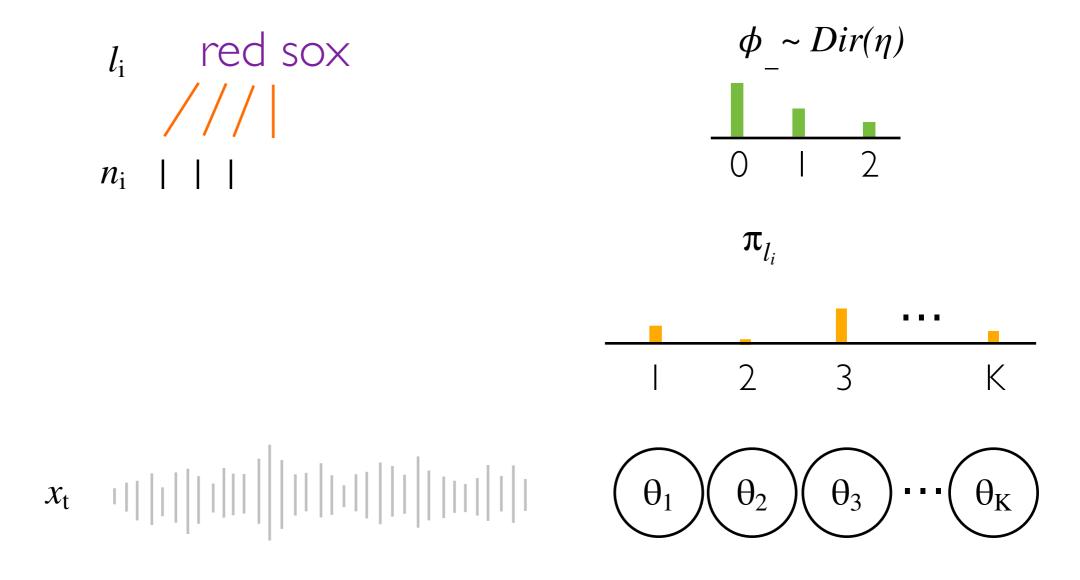
Step I



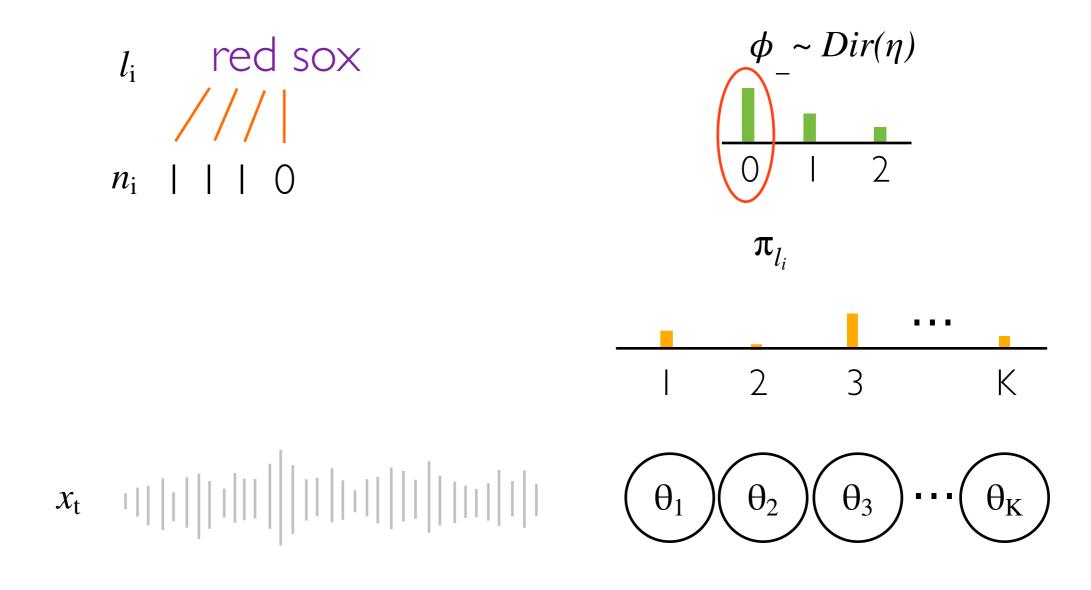
Step I



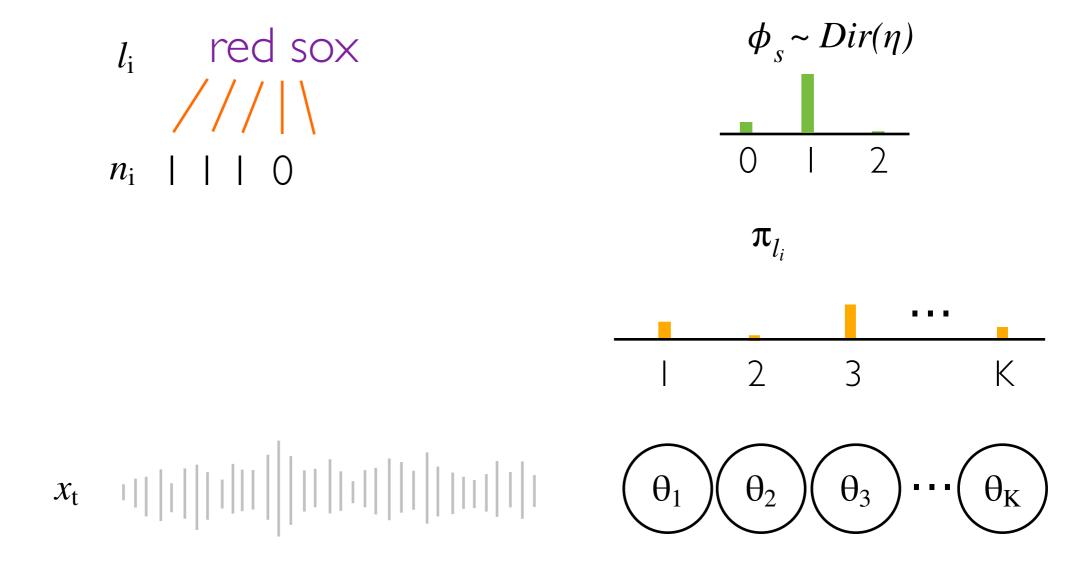
Step I



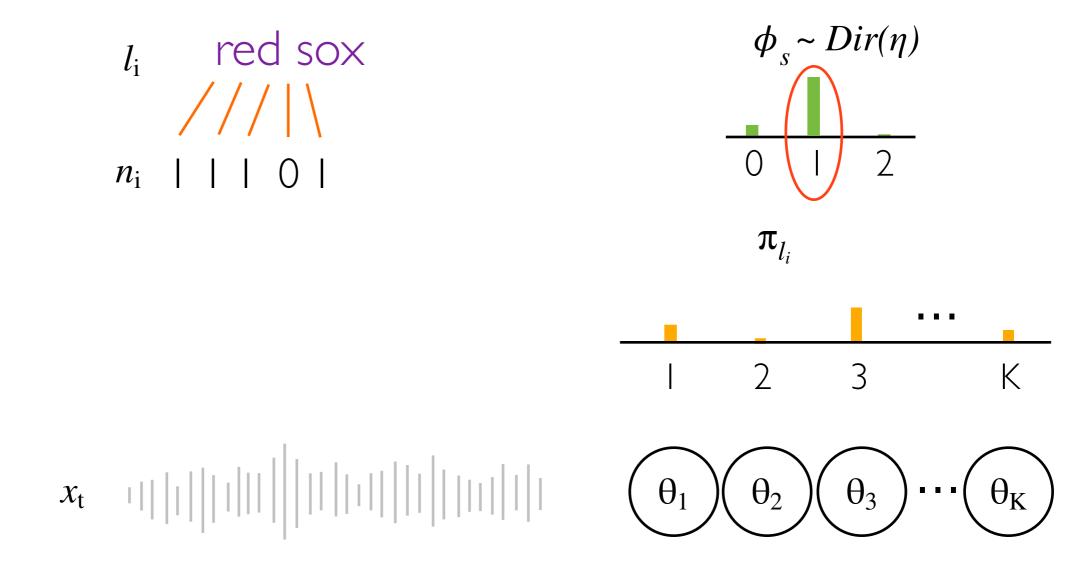
Step I



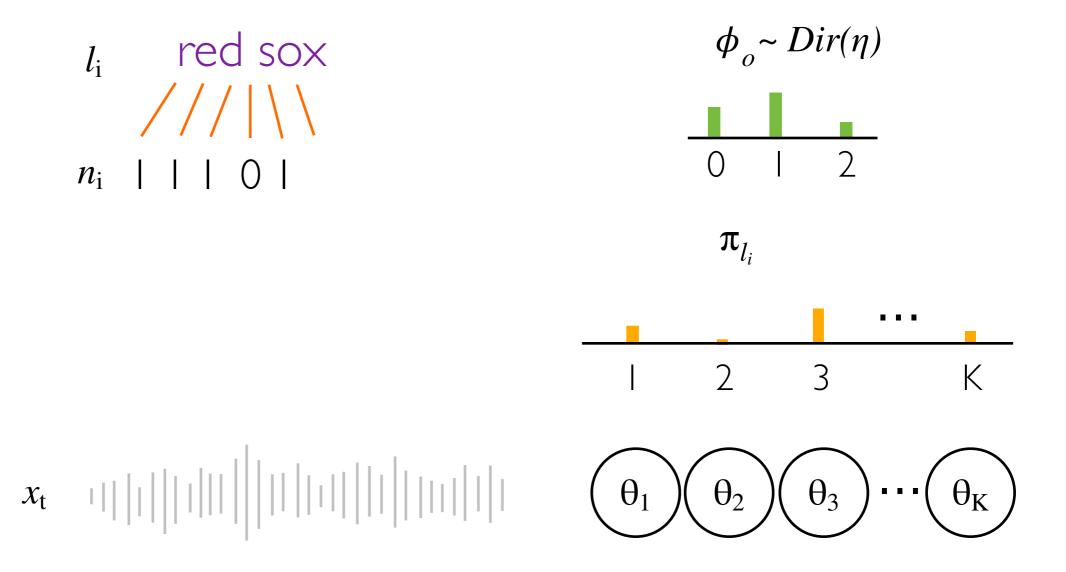
Step I



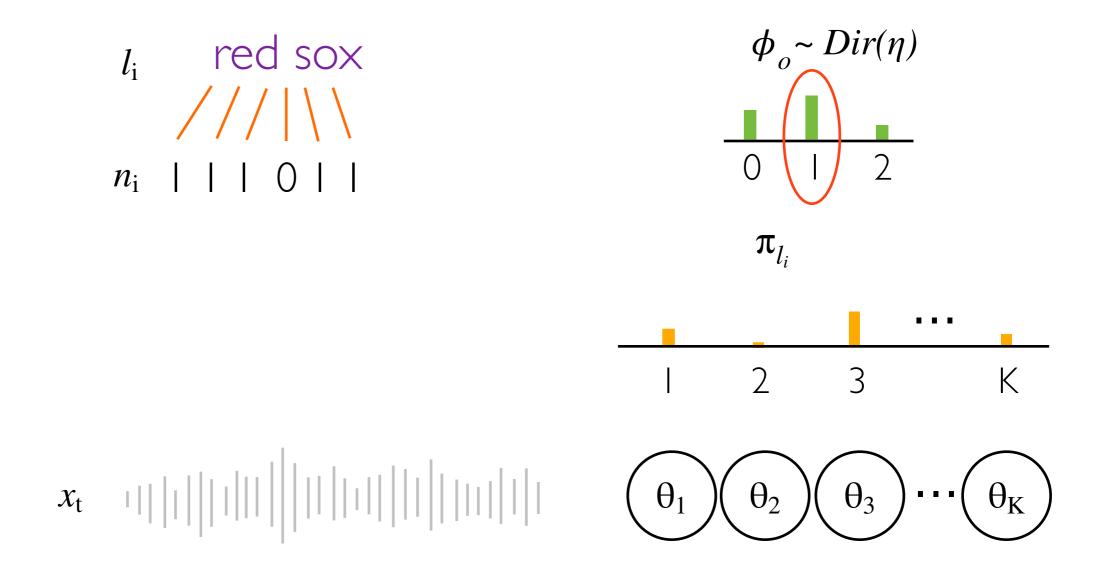
Step I



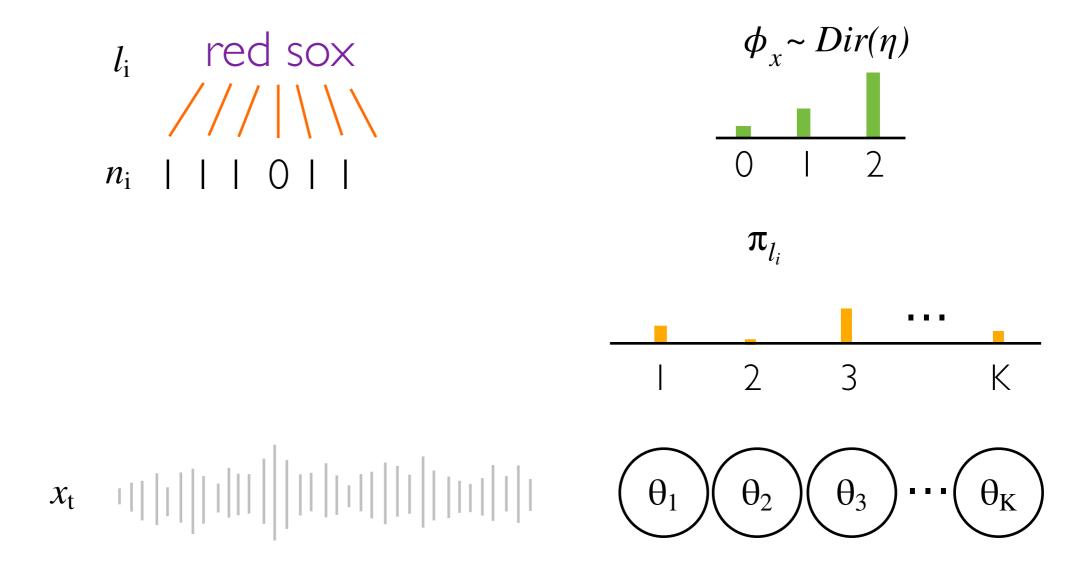
Step I



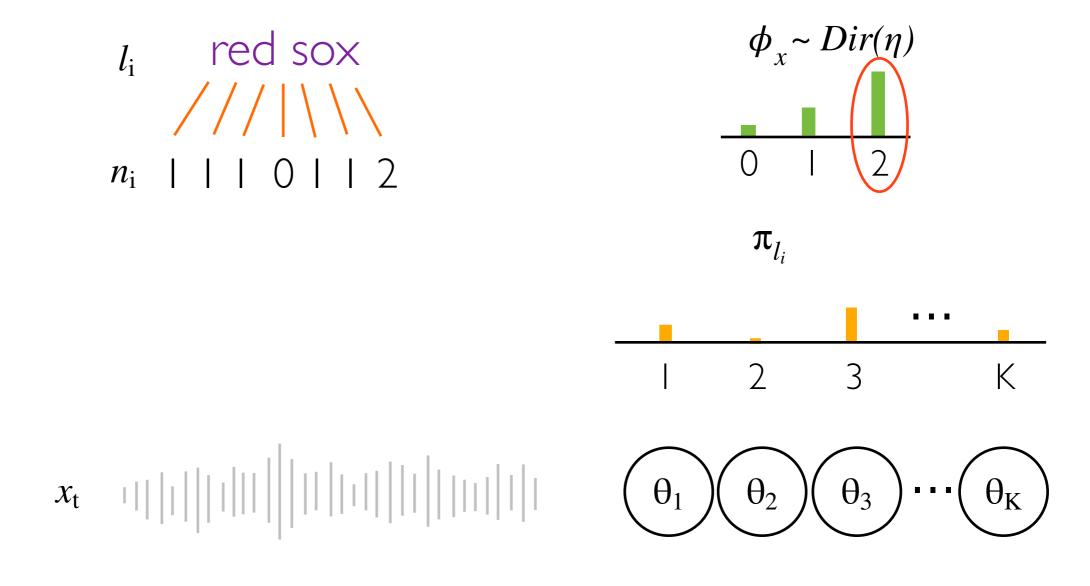
Step I



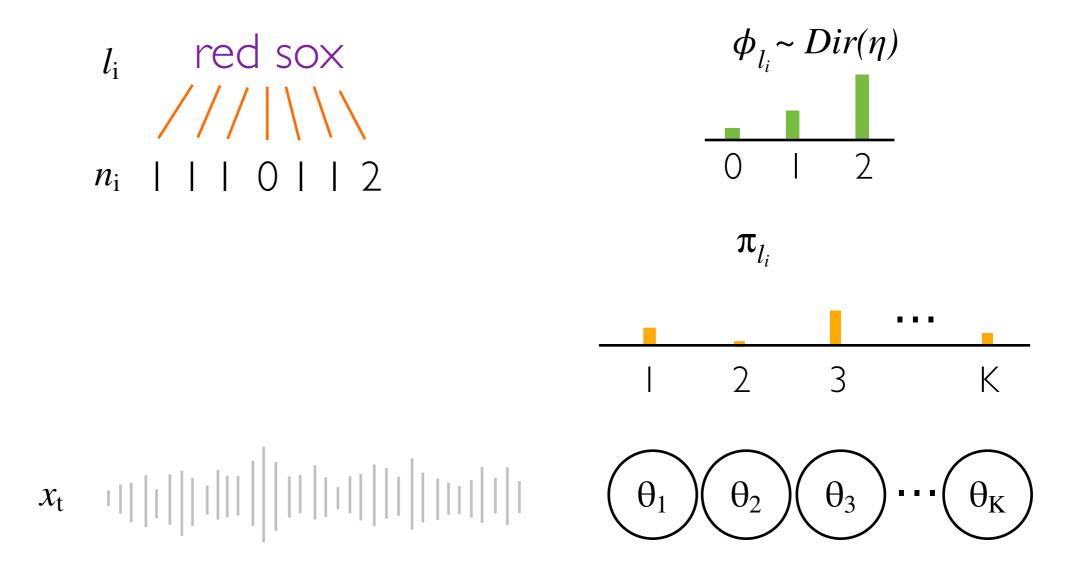
Step I



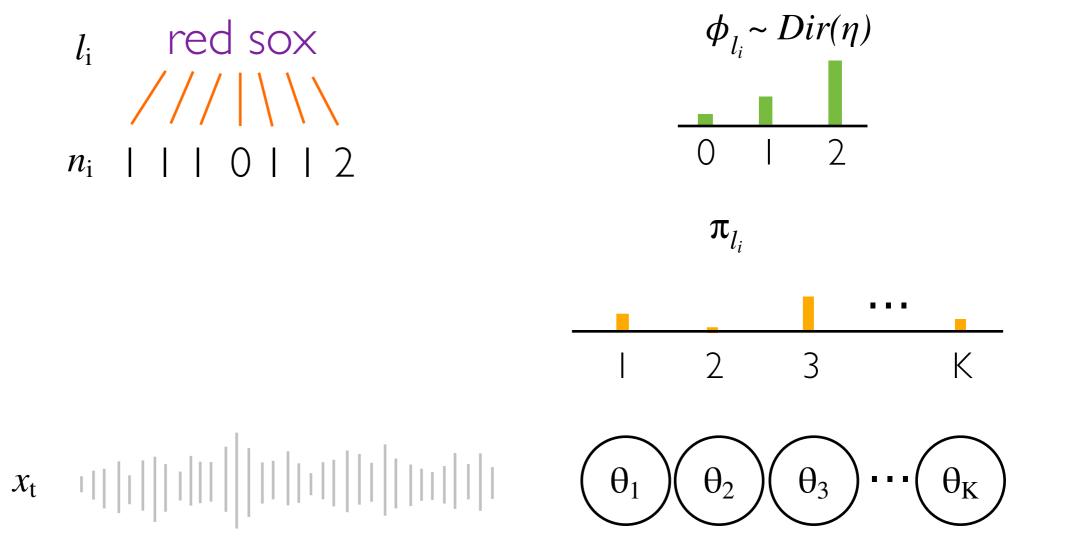
Step I



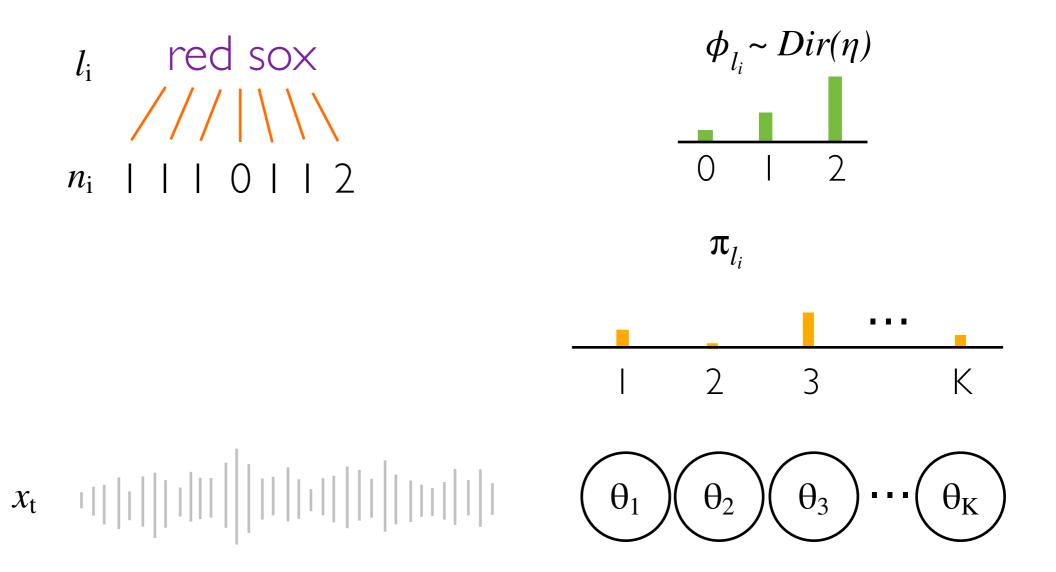
Step I



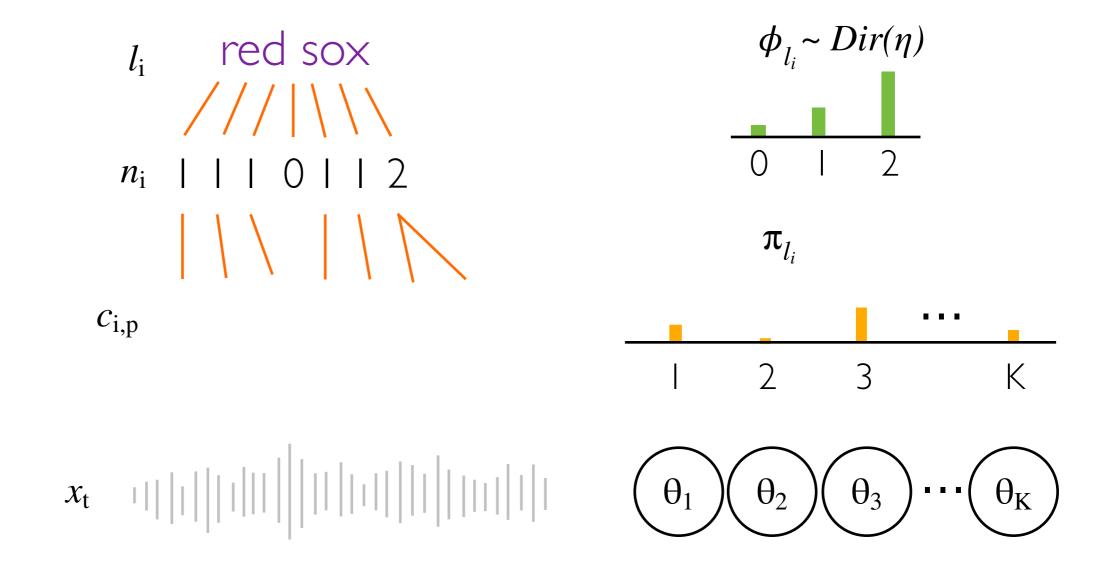
Step 2



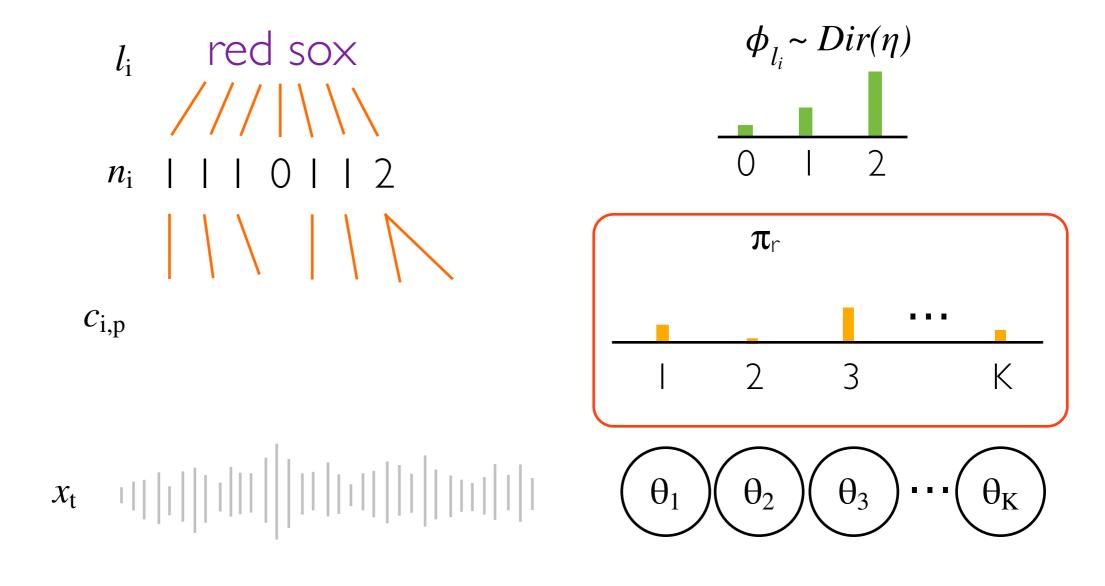
Step 2



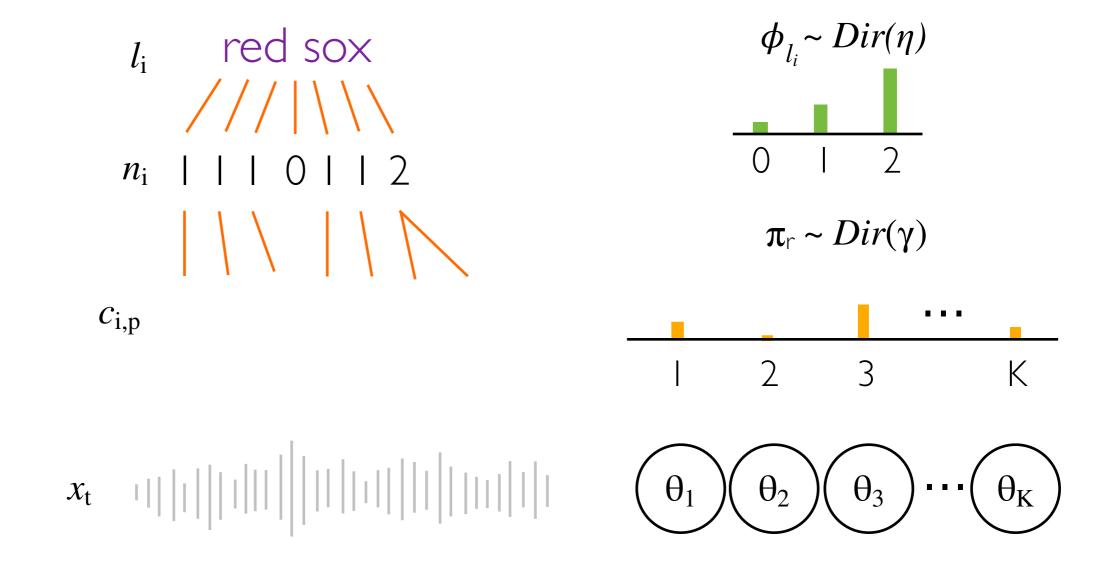
Step 2



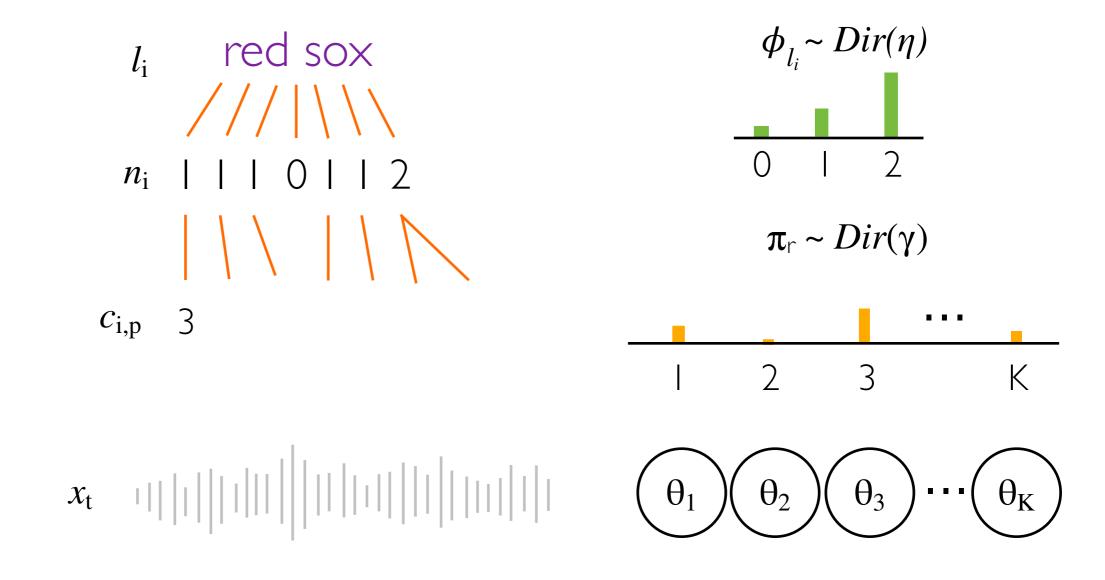
Step 2



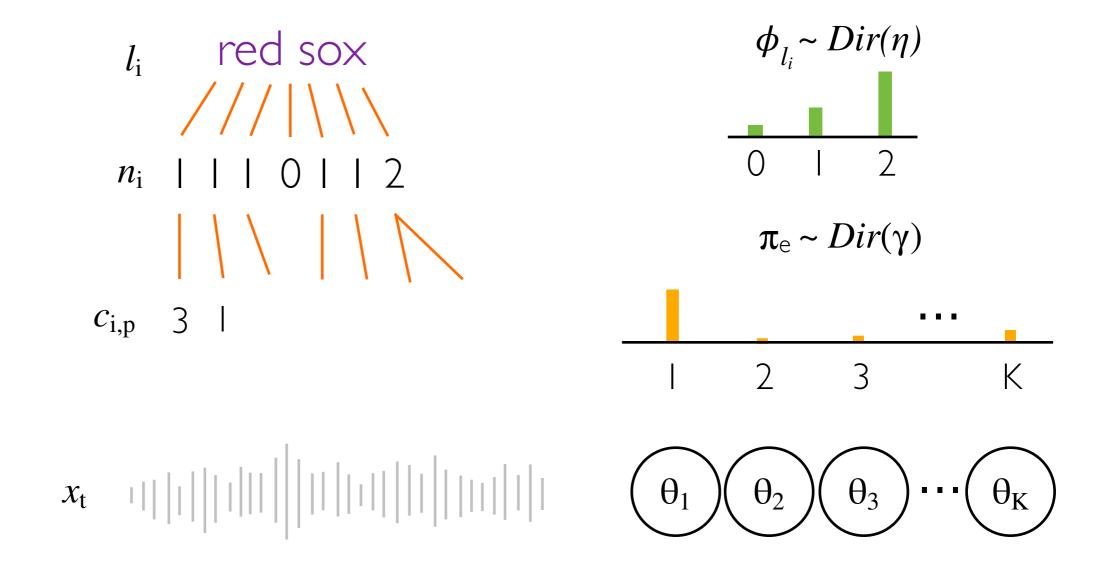
Step 2



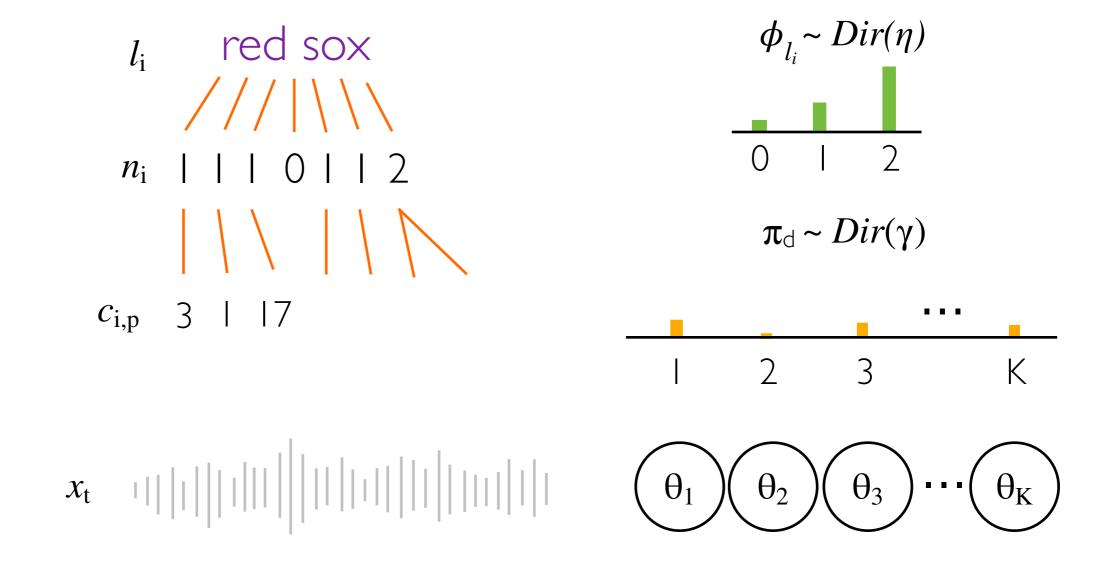
Step 2



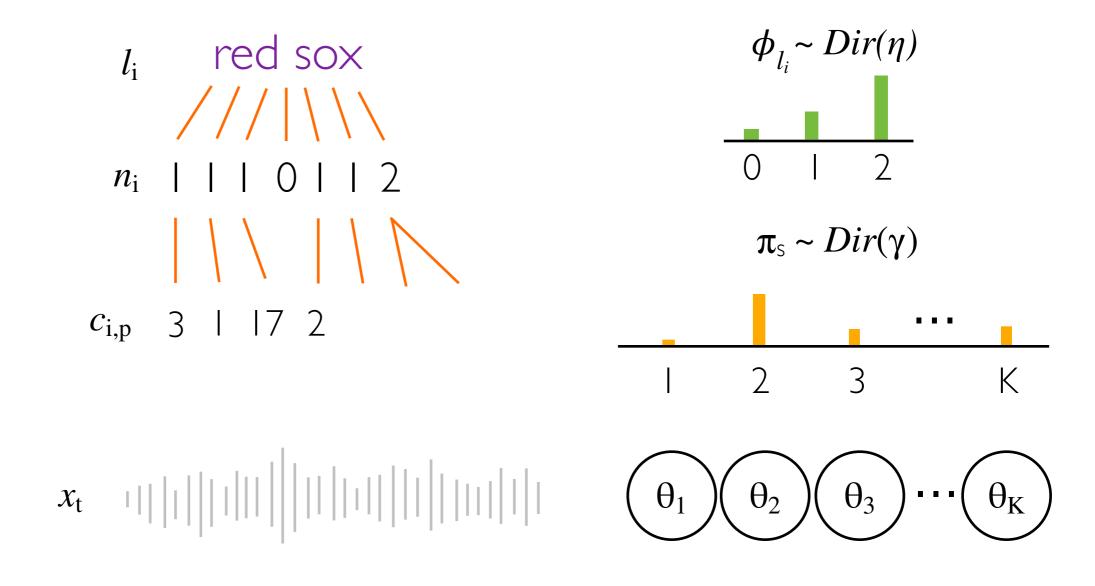
Step 2



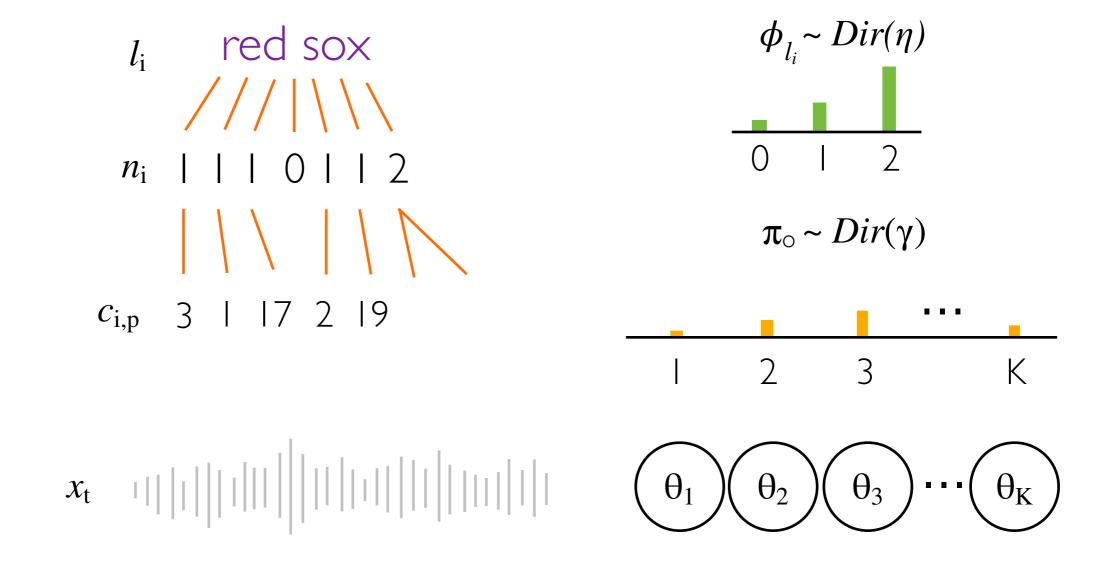
Step 2



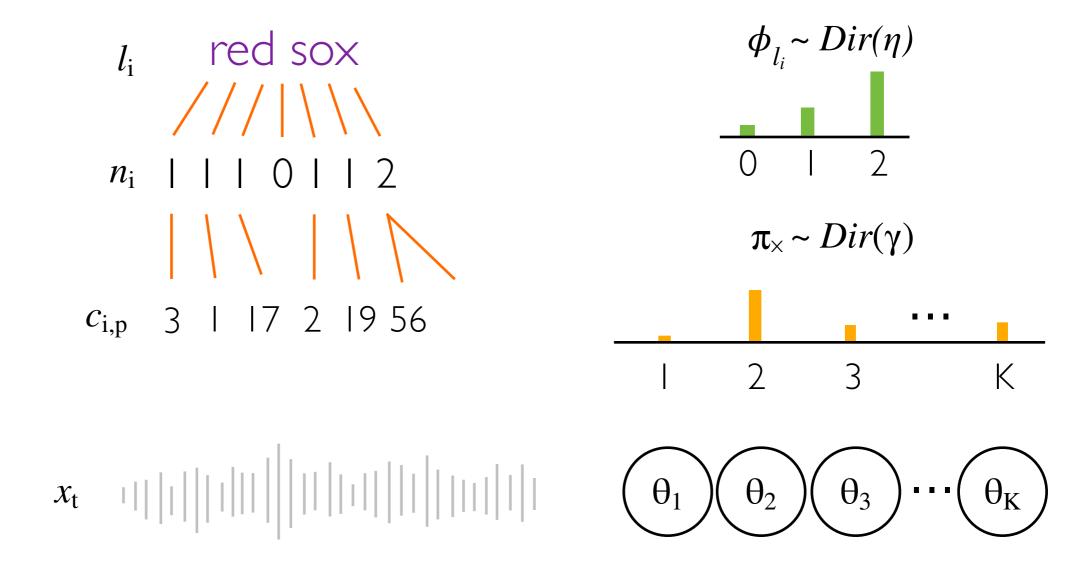
Step 2



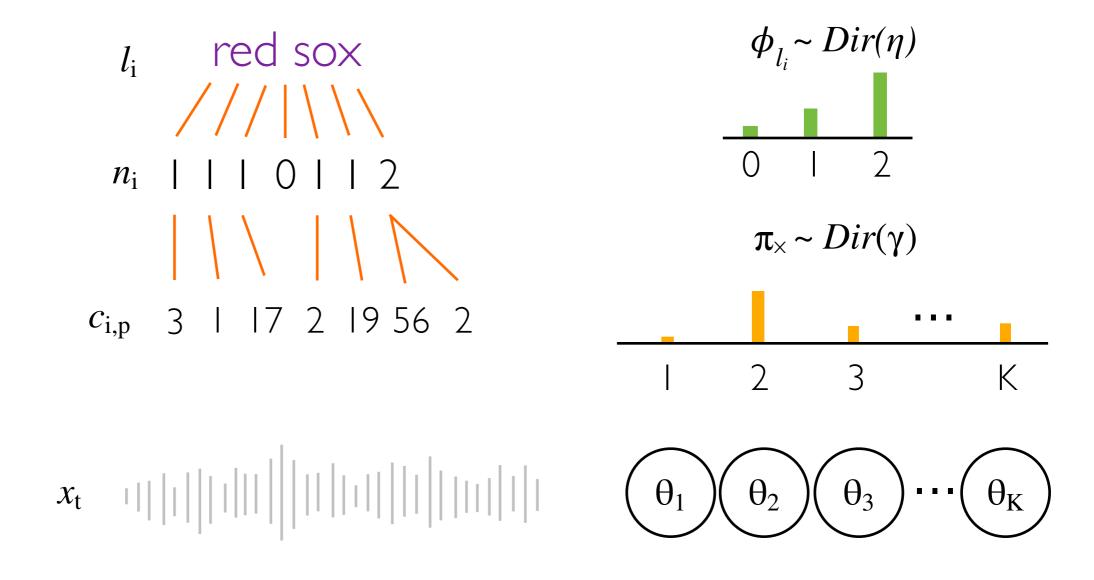
Step 2



Step 2

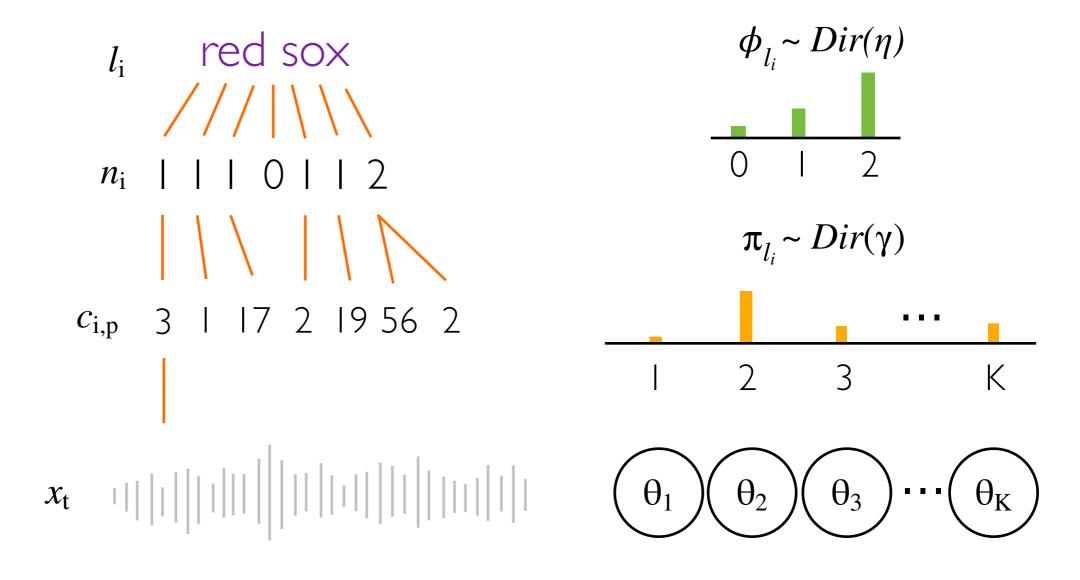


Step 2



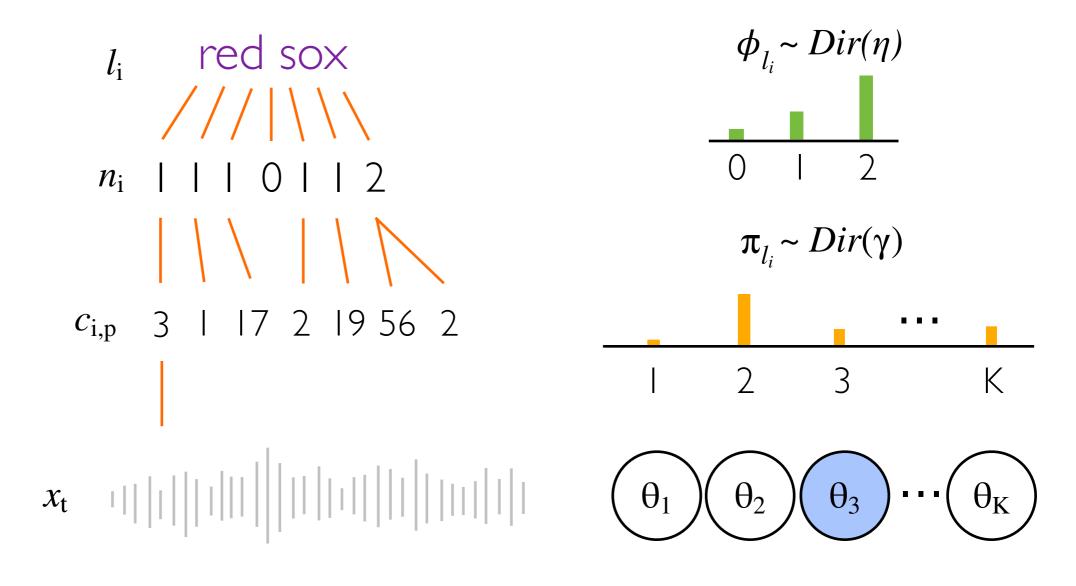
Step 3

- Generate speech (x_t)



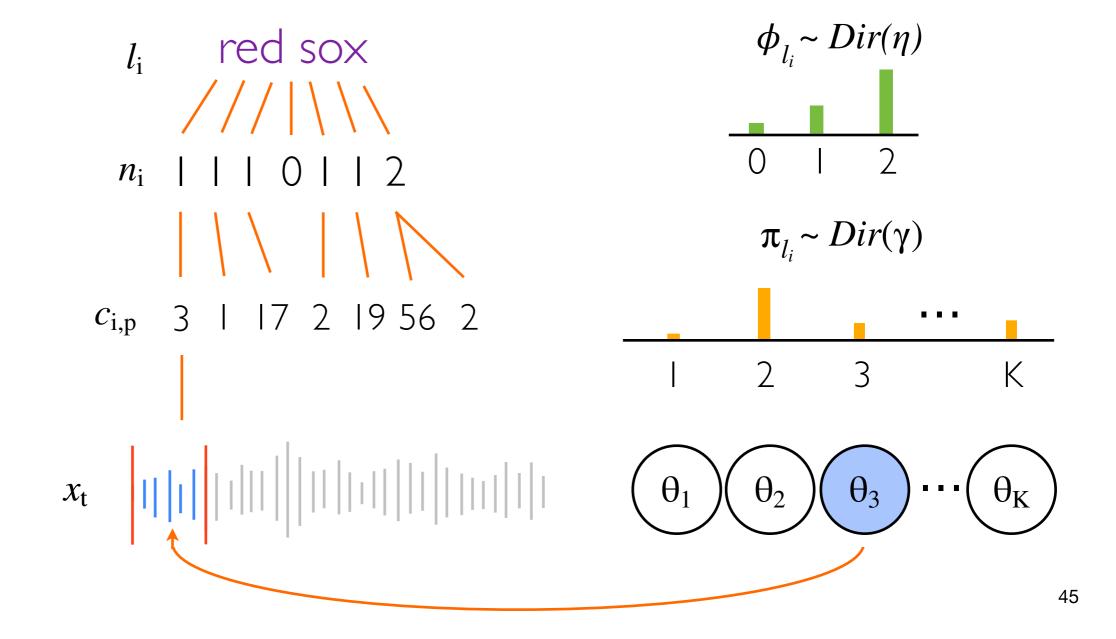
Step 3

- Generate speech (x_t)

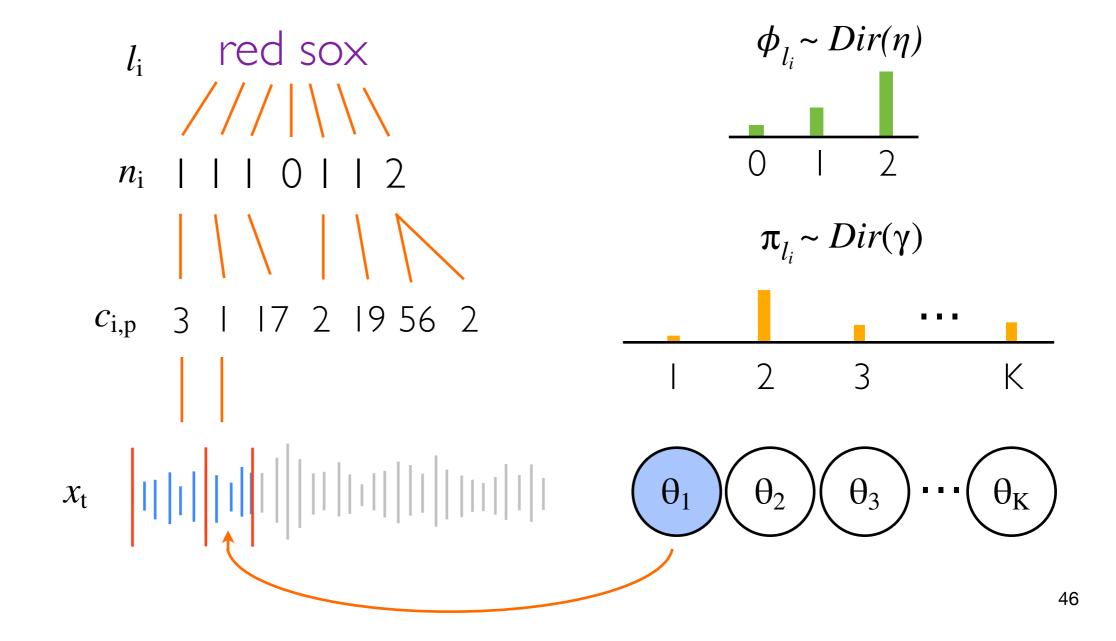


Step 3

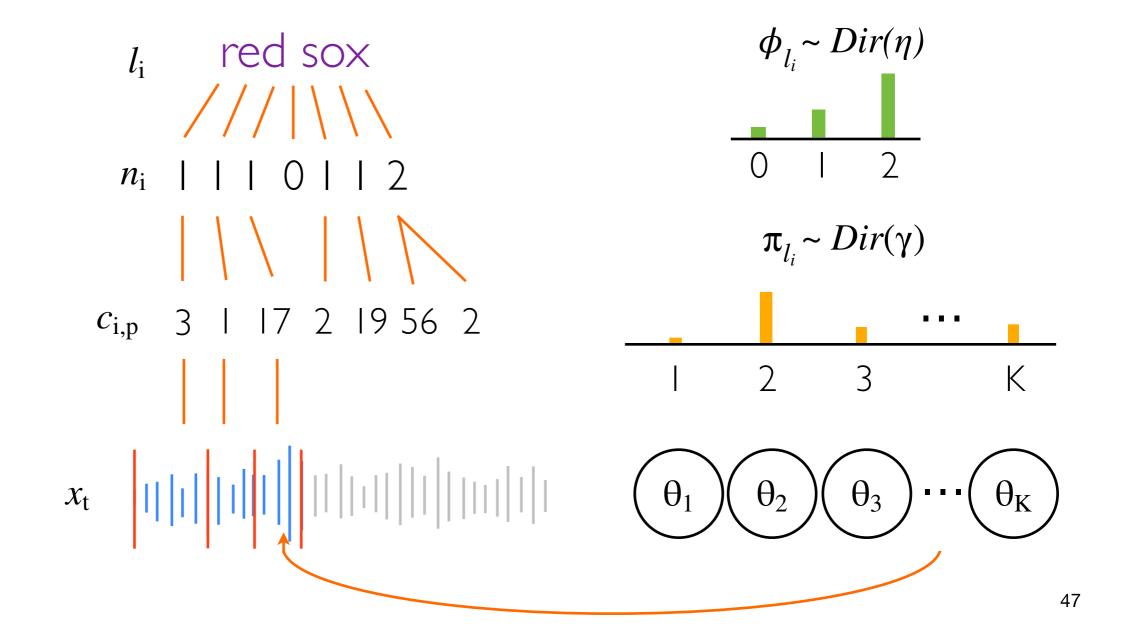
- Generate speech (x_t)



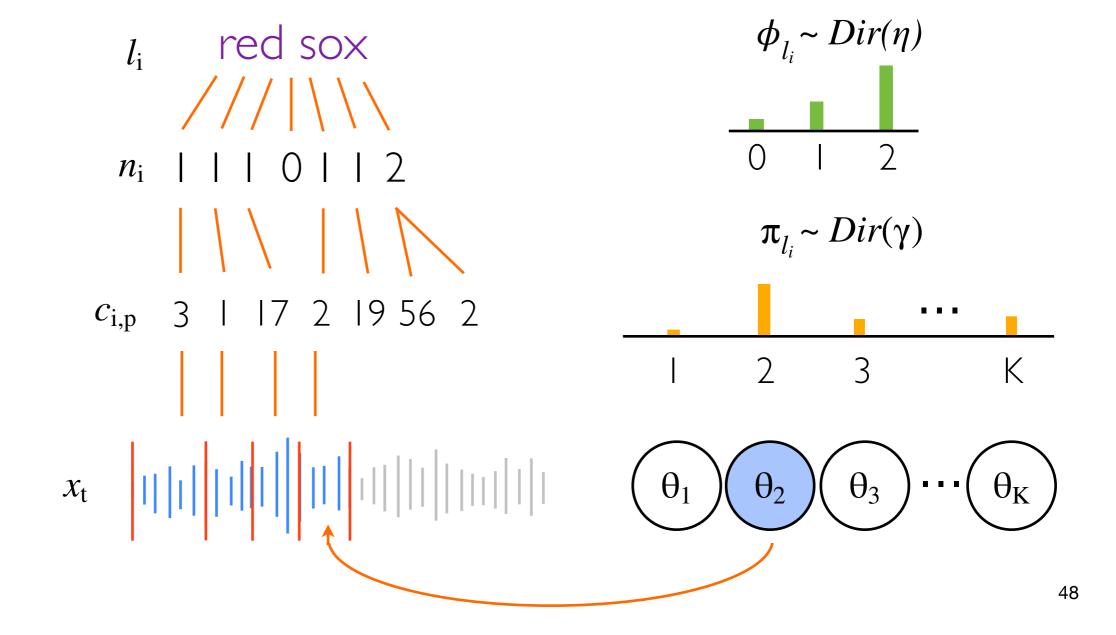
Step 3



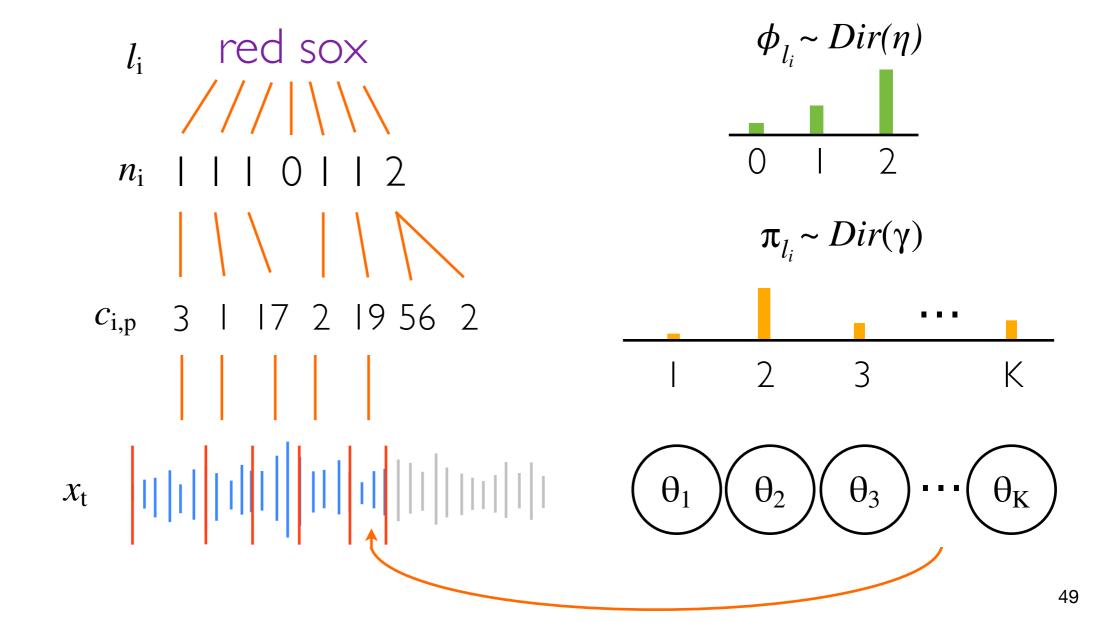
Step 3



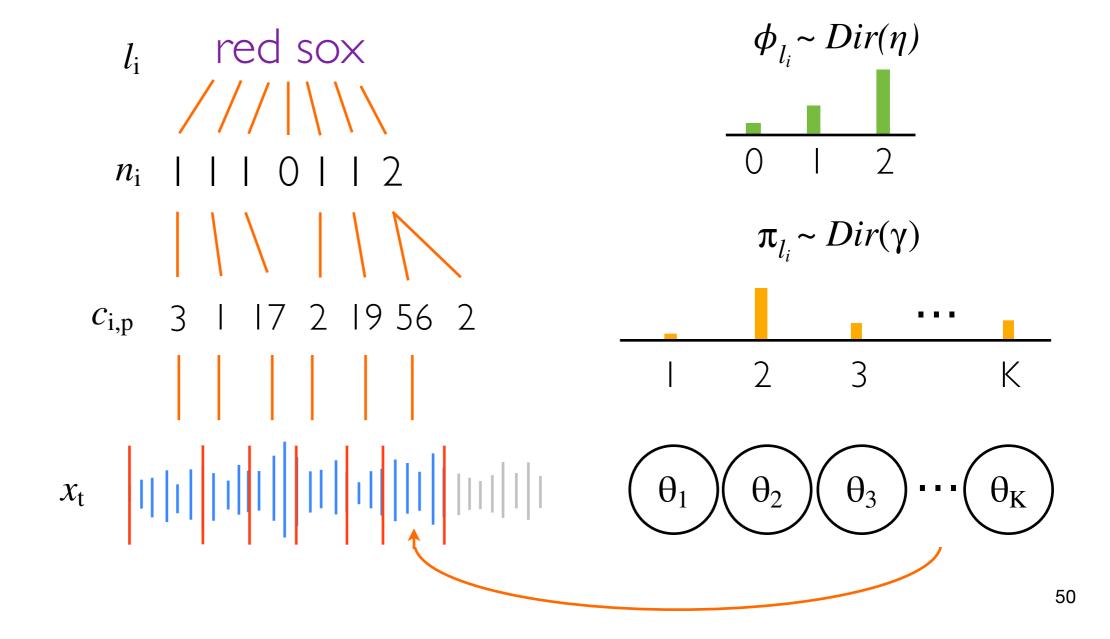
Step 3



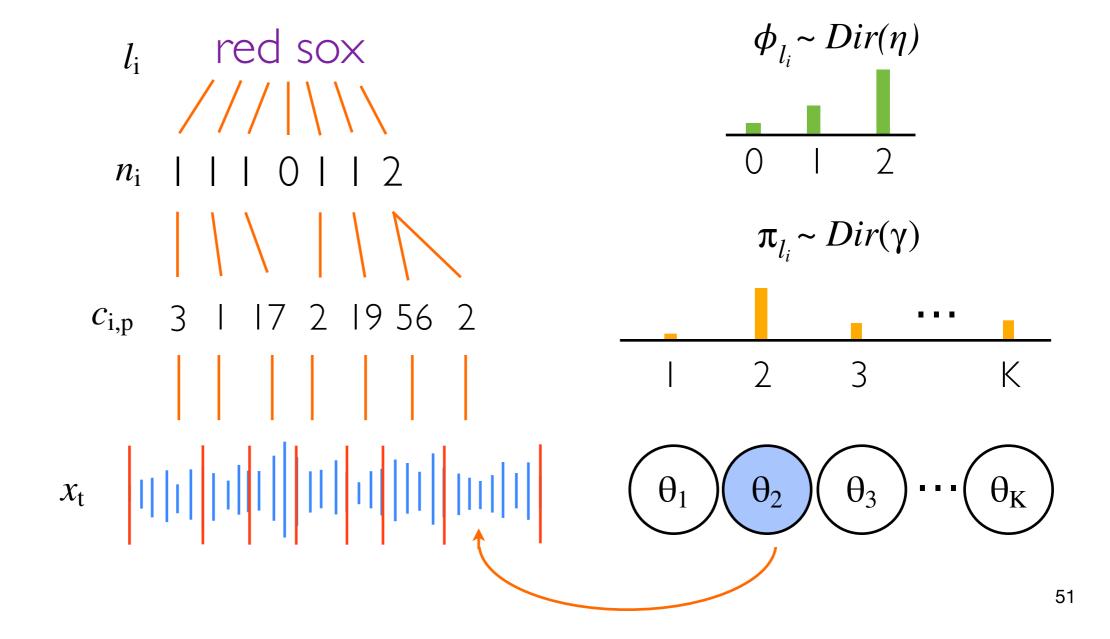
Step 3



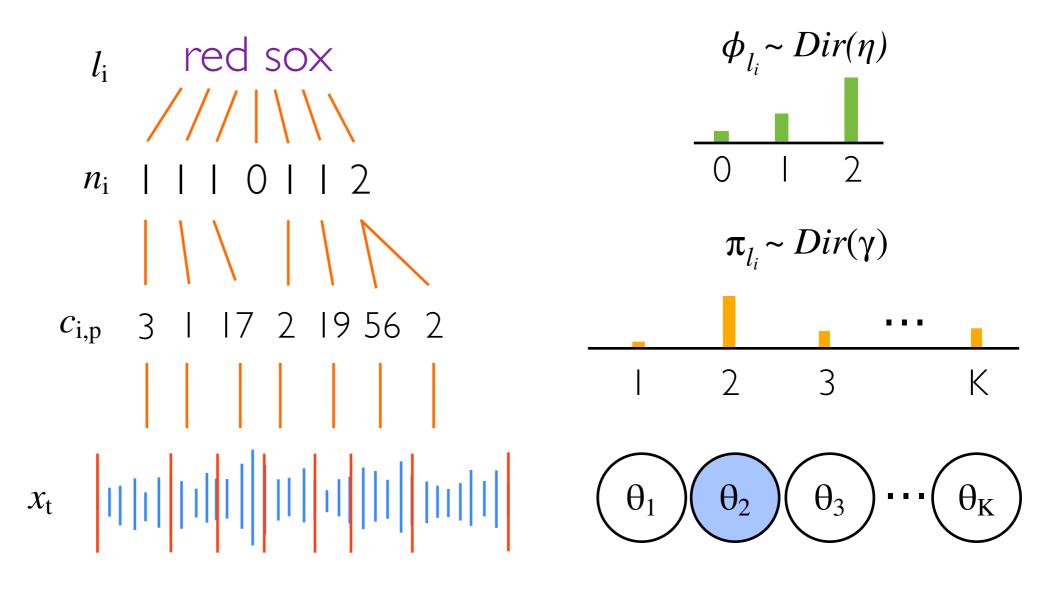
Step 3



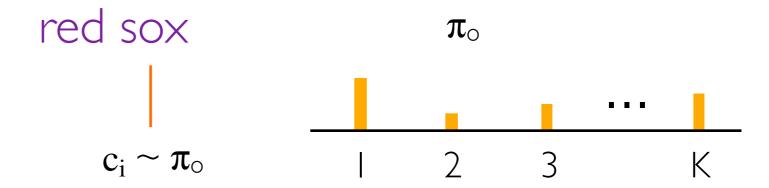
• Step 3



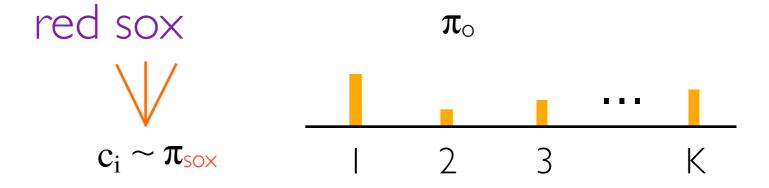
Step 3

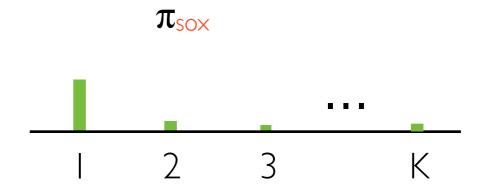


• Take context into account for learning L2S mapping rules

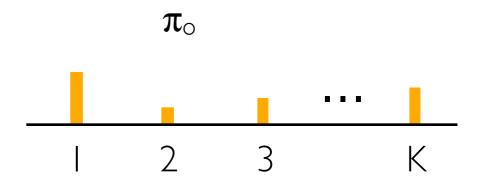


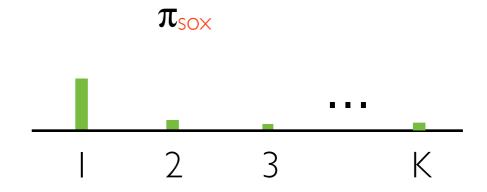
• Take context into account for learning L2S mapping rules



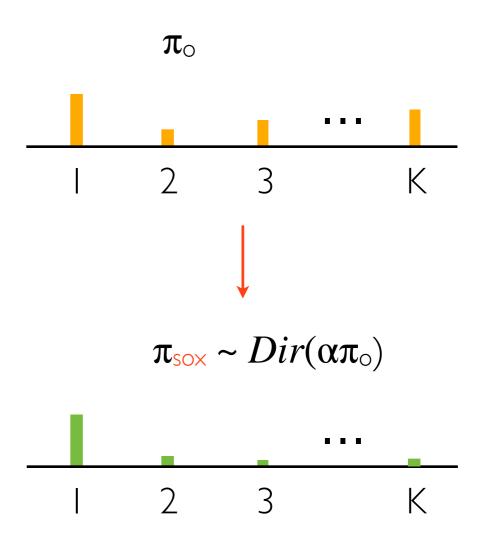


- Take context into account for learning L2S mapping rules
 - More specific rules





- Take context into account for learning L2S mapping rules
 - More specific rules
 - Back-off mechanism through hierarchy

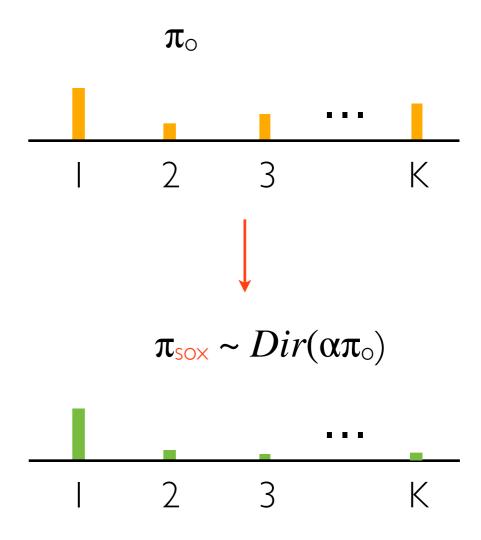


- Take context into account for learning L2S mapping rules
 - More specific rules
 - Back-off mechanism through hierarchy
- View π_0 as the prior of π_{sox}
 - If <u>sox</u> appears frequently

 $\pi_{\text{sox}} \longrightarrow \text{empirical distribution}$

- If sox is rarely observed

$$\pi_{\text{SOX}} \longrightarrow \pi_{\text{O}}$$



Take context into account for learning L2S mapping rules

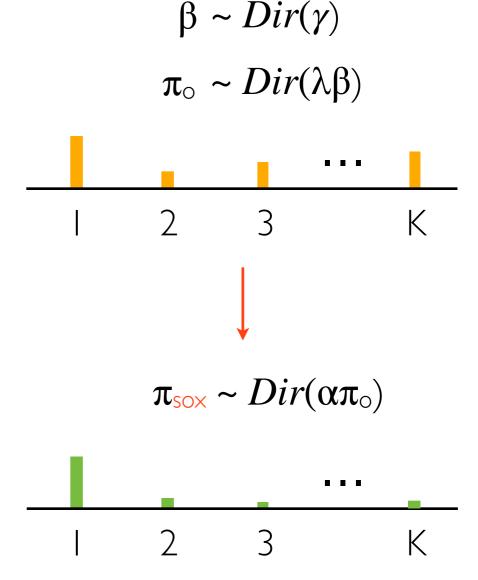
- More specific rules
- Back-off mechanism through hierarchy
- View π_0 as the prior of π_{sox}

- If <u>sox</u> appears frequently

 $\pi_{\text{sox}} \longrightarrow \text{empirical distribution}$

- If sox is rarely observed

$$\pi_{\text{SOX}} \longrightarrow \pi_{\text{O}}$$



Graphical Model

G: the set of graphemes

 \underline{l} : sequence of three graphemes

l: observed graphemes

x: observation speech

d: phone duration

c:phone id

n: number of phones a grapheme maps to

L: total number of graphemes

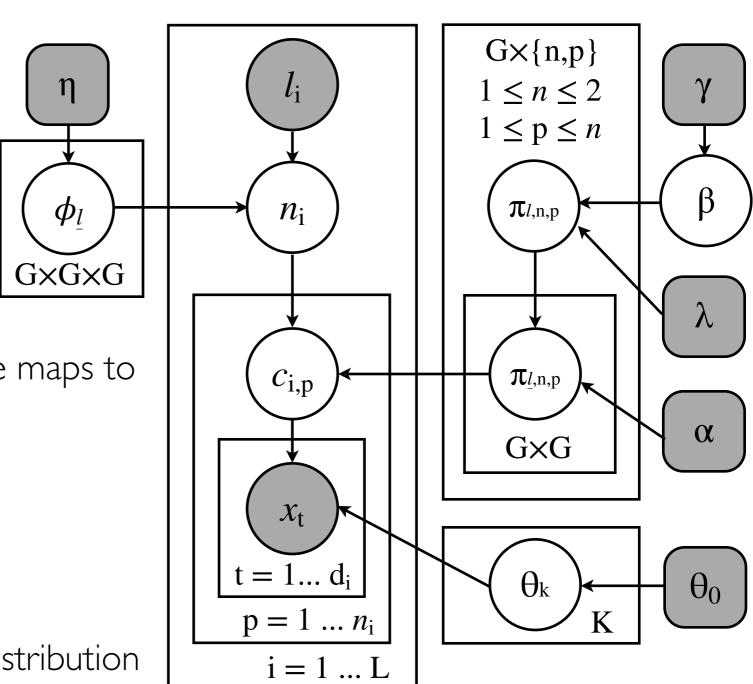
K: total number of HMMs

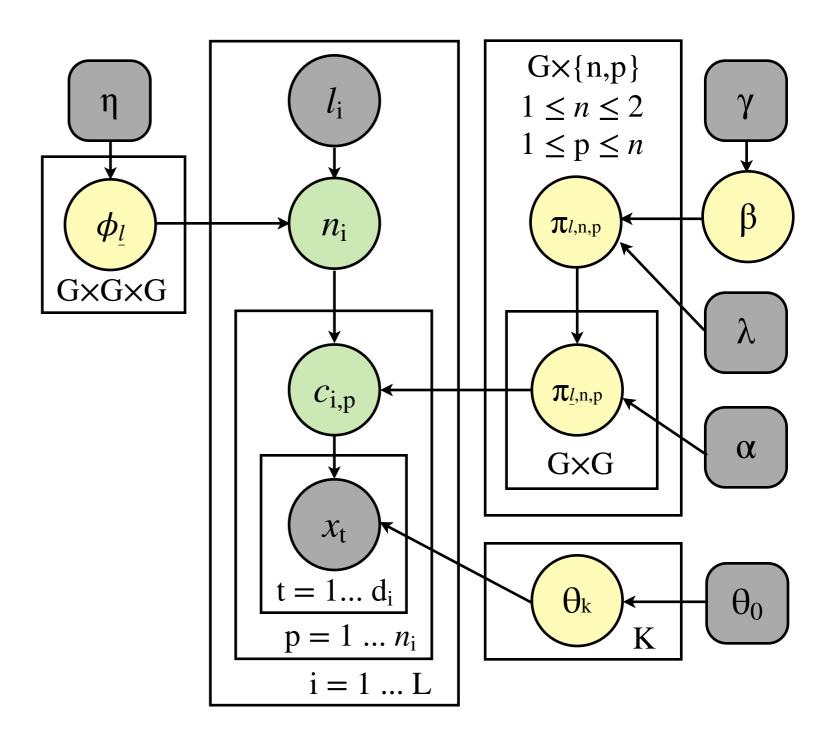
 ϕ_l : 3-dim categorical distribution

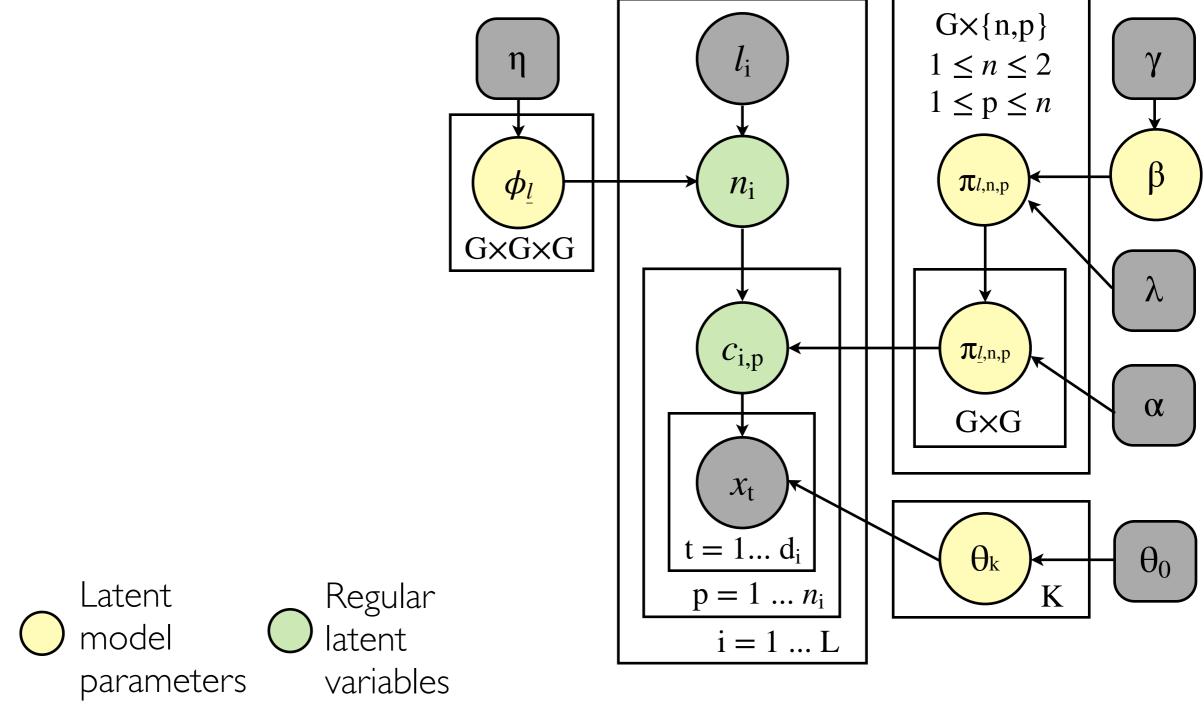
 θ_k : a HMM θ_0 : HMM prior

 $\pi_{l,n,p}, \pi_{l,n,p}, \beta$: K-dim categorical distribution

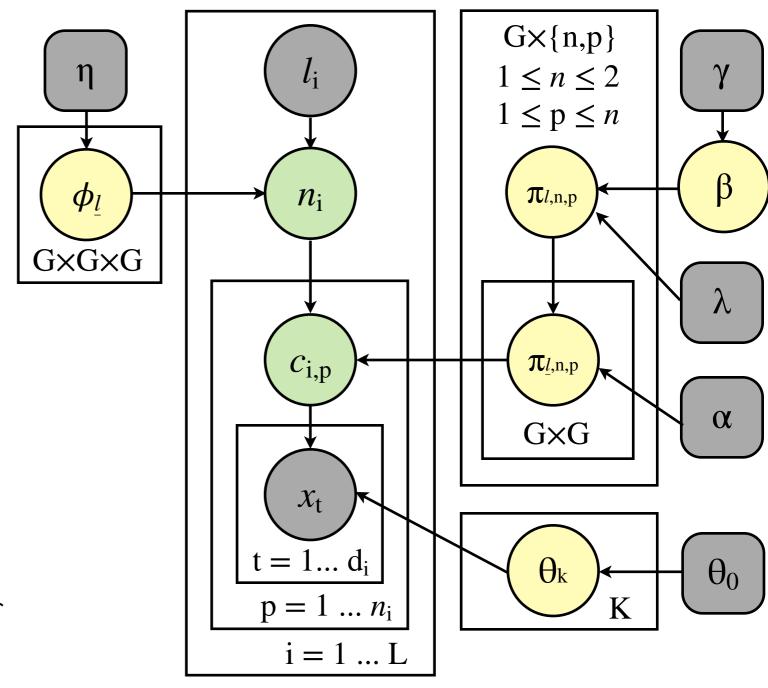
 γ , λ , α : concentration parameter

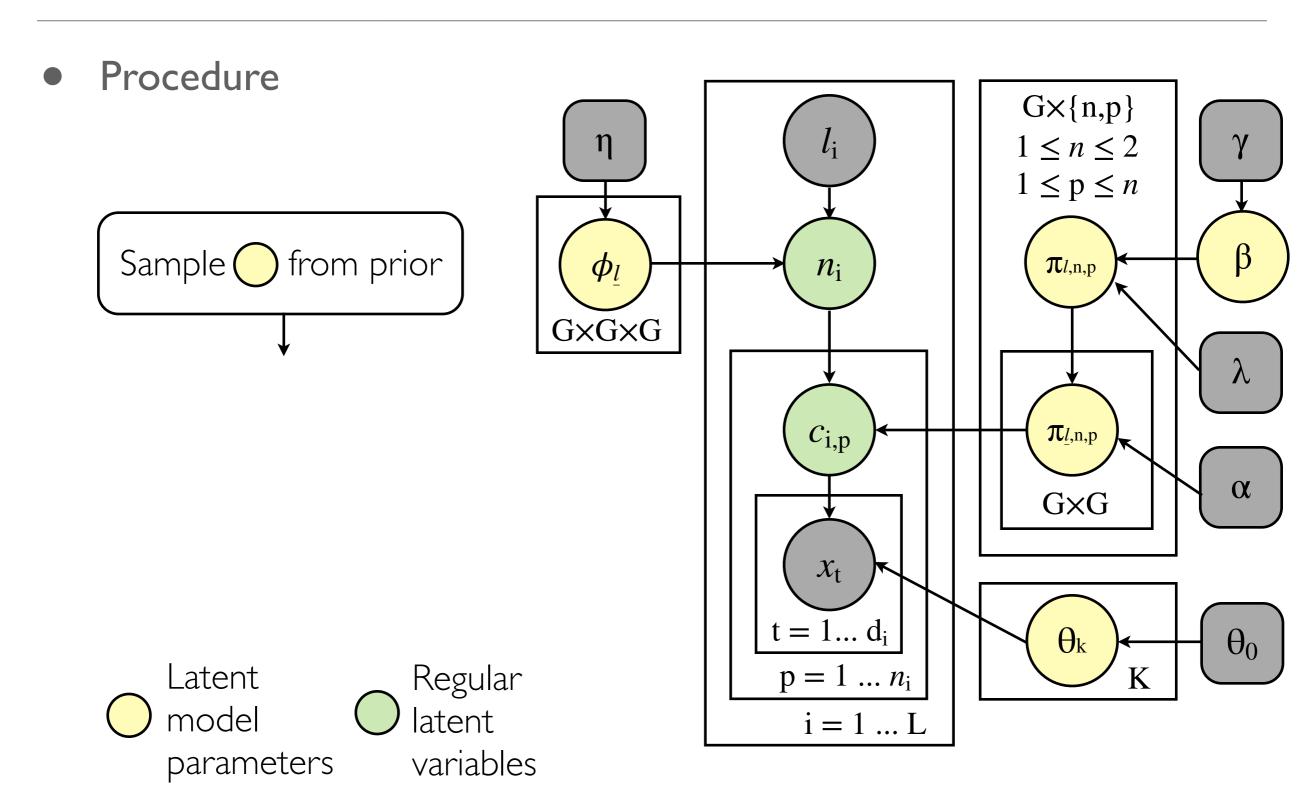


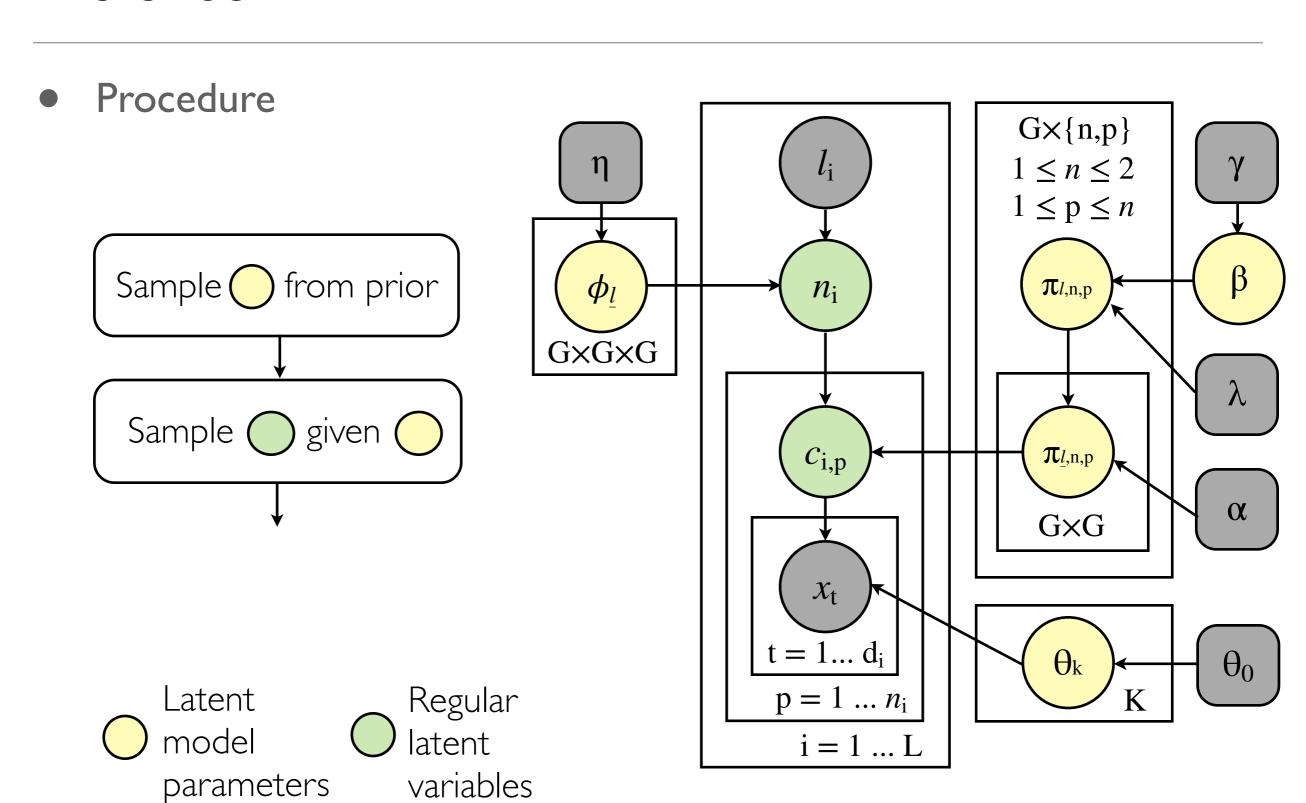




Procedure



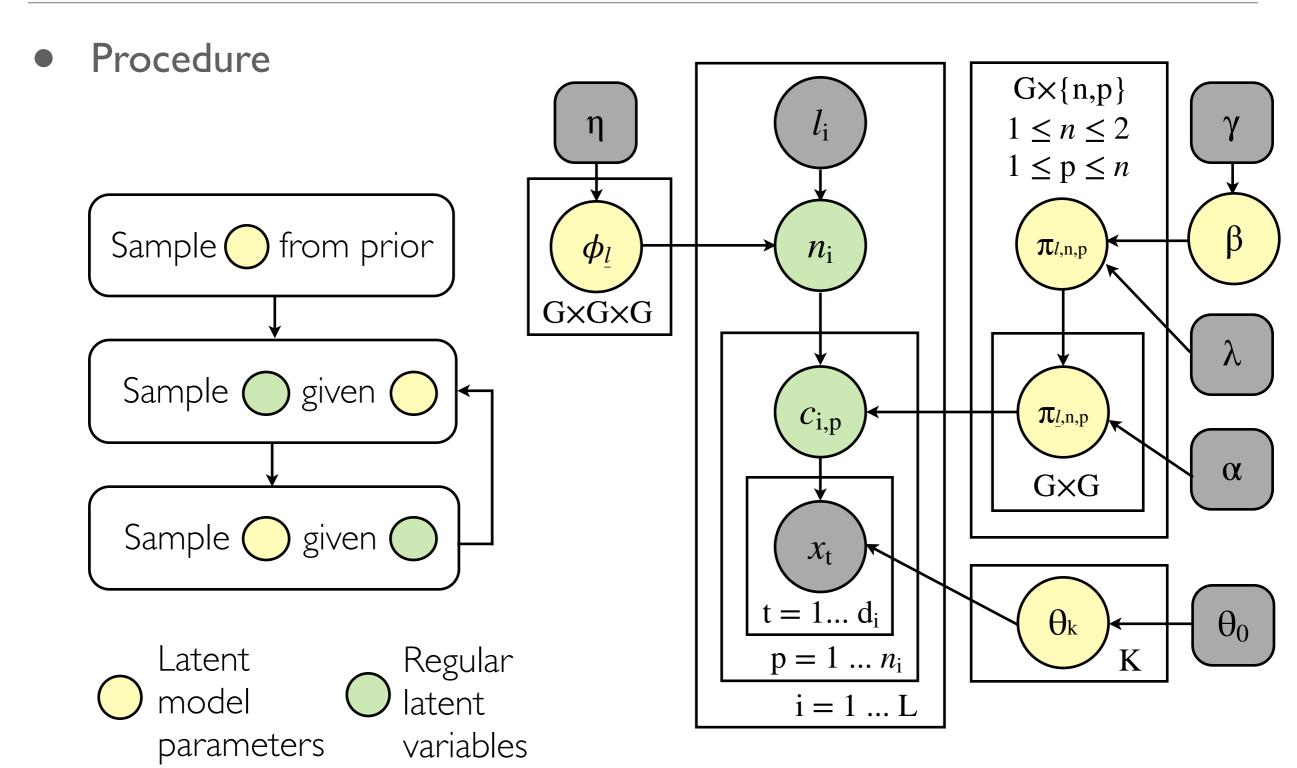


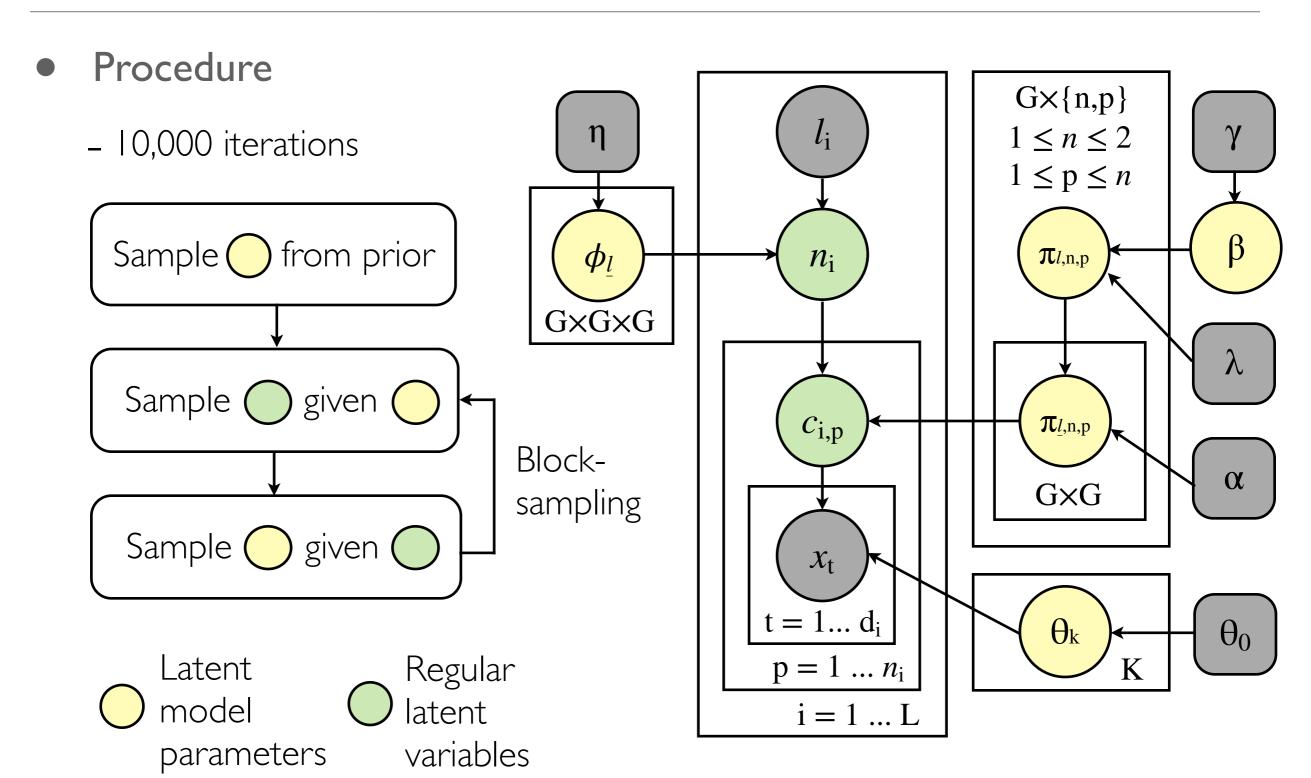


Procedure $G \times \{n,p\}$ $1 \le n \le 2$ $1 \le p \le n$ Sample from prior $\pi_{l,n,p}$ n_i $G \times G \times G$ Sample given $c_{i,p}$ $\pi_{\underline{l},n,p}$ α $G \times G$ Sample ogiven $t = 1... d_i$ θ_k θ_0 Latent Regular $p = 1 ... n_i$ model latent i = 1 ... L

variables

parameters

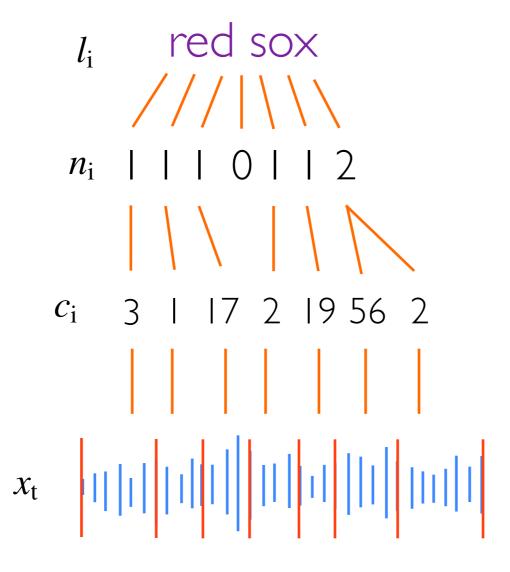




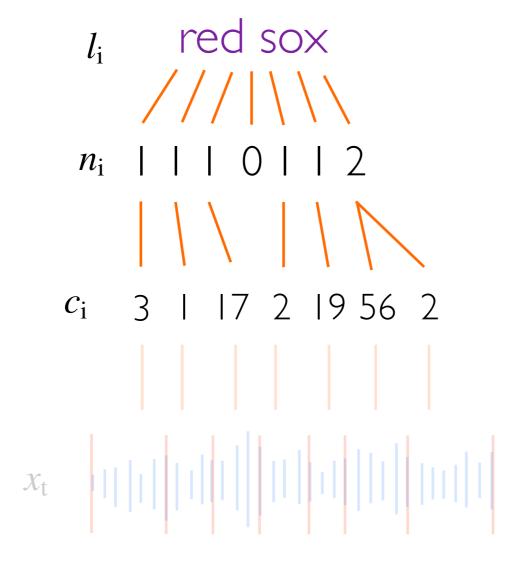
• n_i and c_i define word pronunciations and phone transcriptions

$$l_{\rm i}$$
 red sox

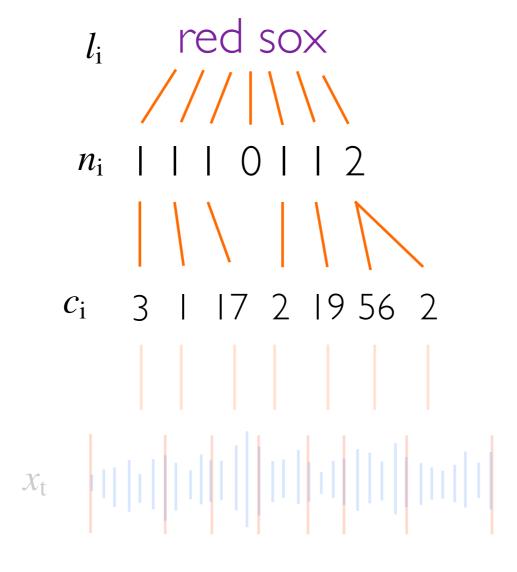
• n_i and c_i define word pronunciations and phone transcriptions



ullet $n_{
m i}$ and $c_{
m i}$ define word pronunciations and phone transcriptions



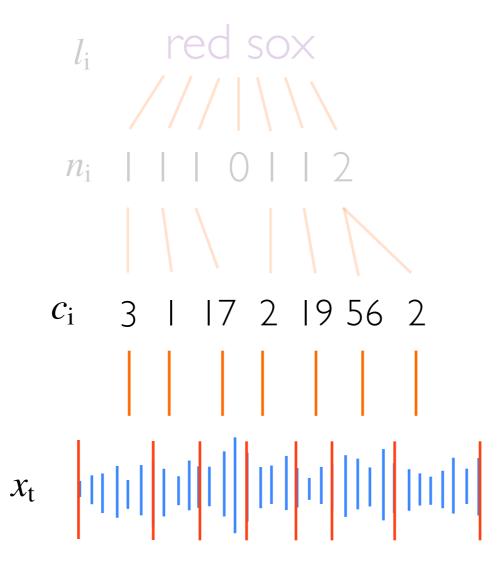
• n_i and c_i define word pronunciations and phone transcriptions



red:3 | 17

sox:219562

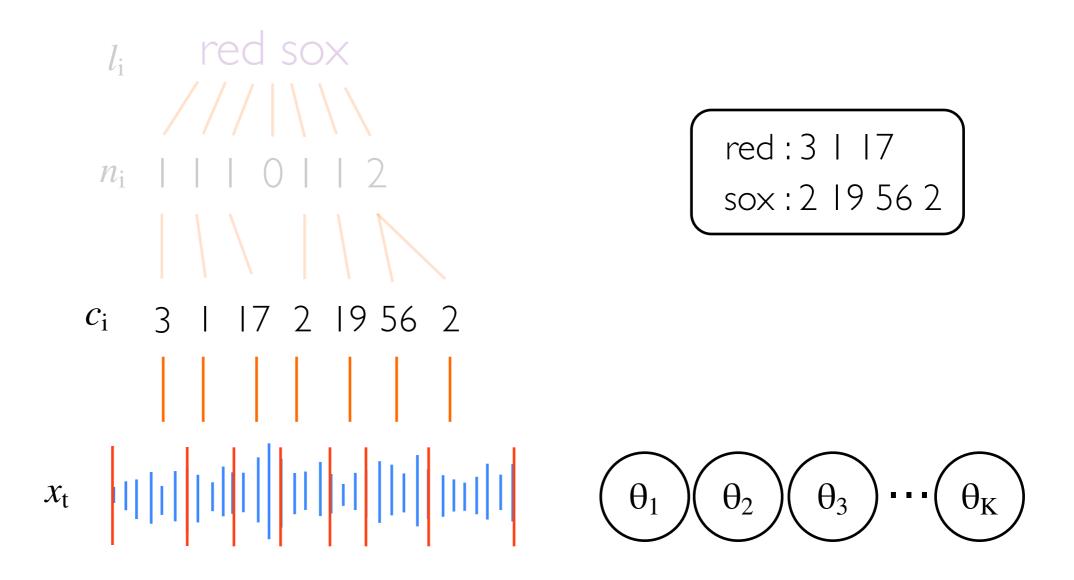
• n_i and c_i define word pronunciations and phone transcriptions



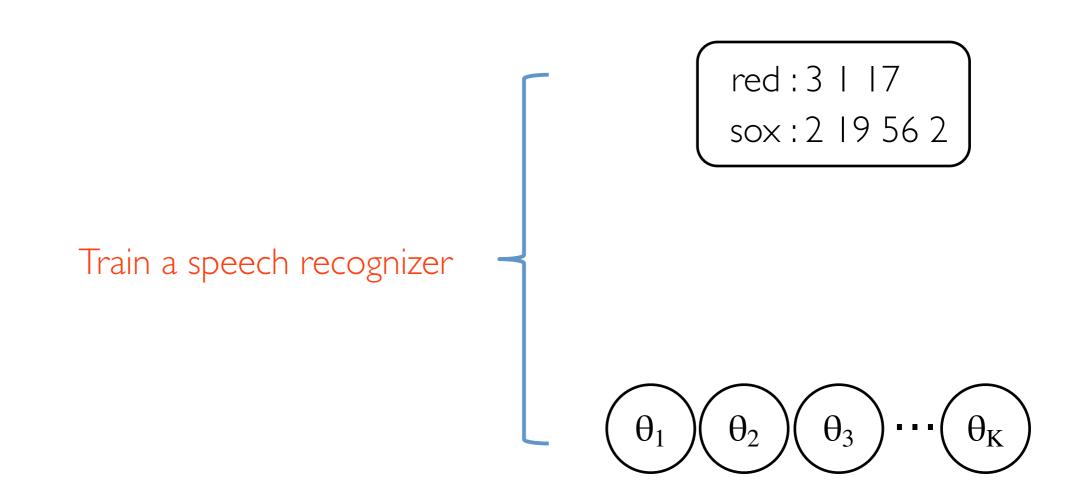
red:3 | 17

sox : 2 19 56 2

• n_i and c_i define word pronunciations and phone transcriptions



• n_i and c_i define word pronunciations and phone transcriptions



Experimental Setup

Dataset

- Jupiter [Zue et al., IEEE Trans. on Speech and Audio Processing, 2000]
- Conversational telephone weather information queries
- 72 hours of training data and 3.2 hours of test data
- A subset of 8 hours of the training data used for training our model

Experimental Setup

Dataset

- Jupiter [Zue et al., IEEE Trans. on Speech and Audio Processing, 2000]
- Conversational telephone weather information queries
- 72 hours of training data and 3.2 hours of test data
- A subset of 8 hours of the training data used for training our model

Benchmark and baseline

- A speech recognizer trained with an expert-crafted lexicon (Supervised)
- A grapheme-based recognizer (Grapheme)

Experimental Setup

Dataset

- Jupiter [Zue et al., IEEE Trans. on Speech and Audio Processing, 2000]
- Conversational telephone weather information queries
- 72 hours of training data and 3.2 hours of test data
- A subset of 8 hours of the training data used for training our model

Benchmark and baseline

- A speech recognizer trained with an expert-crafted lexicon (Supervised)
- A grapheme-based recognizer (Grapheme)
- A 3-gram language model is used for all experiments

Results - Monophone Acoustic Model

Word error rate (WER)

	WER (%)
Grapheme	32.7
Our model	17.0
Supervised	13.8

Results - Triphone Acoustic Model

- Word error rate (WER)
 - Singleton questions are used to build the decision trees

Results - Triphone Acoustic Model

Word error rate (WER)

- Singleton questions are used to build the decision trees

	WER (%)
Grapheme	15.7
Our model	13.4
Supervised	10.0

Related Work

Word pronunciation learning

- A segment model based approach to speech recognition [Lee et al., ICASSP 1988]
- Lexicon-building methods for an acoustic sub-word based speech recognizer [Paliwal, ICASSP 1990]
- Speech recognition based on acoustically derived segment units [Fukuda et al., ICSLP 1996]
- Joint lexicon, acoustic unit inventory and model design [Bacchiani and Ostendorf, Speech Communication 1999]

Related Work

Word pronunciation learning

- A segment model based approach to speech recognition [Lee et al., ICASSP 1988]
- Lexicon-building methods for an acoustic sub-word based speech recognizer [Paliwal, ICASSP 1990]
- Speech recognition based on acoustically derived segment units [Fukuda et al., ICSLP 1996]
- Joint lexicon, acoustic unit inventory and model design [Bacchiani and Ostendorf, Speech Communication 1999]

• Grapheme recognizer

- Grapheme based speech recognition [Killer et al., Eurospeech 2003]
- A grapheme based speech recognizer for Russian [Stuker and Schultz, SPECOM 2004]

Conclusion

- A joint learning framework for discovering pronunciation lexicon and acoustic model
 - Phonetic units are modeled by a HMM-based mixture model
 - L2S mapping rules are captured by weights over mixtures
 - L2S rules are tied together through a hierarchical structure

Conclusion

A joint learning framework for discovering pronunciation lexicon and acoustic model

- Phonetic units are modeled by a HMM-based mixture model
- L2S mapping rules are captured by weights over mixtures
- L2S rules are tied together through a hierarchical structure

Automatic speech recognition experiments

- Outperforms a grapheme-based speech recognizer
- Approaches the performance of a recognizer trained with an expert lexicon

Conclusion

A joint learning framework for discovering pronunciation lexicon and acoustic model

- Phonetic units are modeled by a HMM-based mixture model
- L2S mapping rules are captured by weights over mixtures
- L2S rules are tied together through a hierarchical structure

Automatic speech recognition experiments

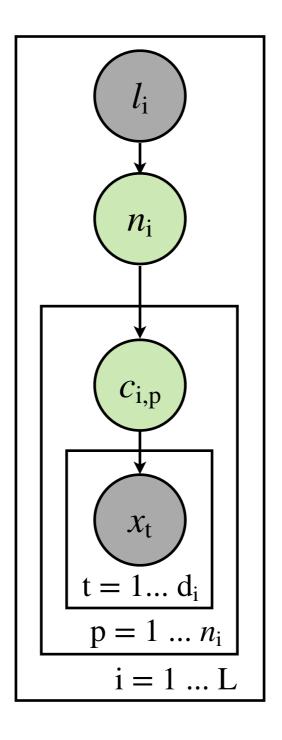
- Outperforms a grapheme-based speech recognizer
- Approaches the performance of a recognizer trained with an expert lexicon

Apply the lexicon and phone units to existing ASR training methods

- Use our model as an initialization

Thank you.

• n_i and $c_{i,p}$ denote an alignment between text and speech



- n_i and $c_{i,p}$ denote an alignment between text and speech
- Sample a new alignment

- n_i and $c_{i,p}$ denote an alignment between text and speech
- Sample a new alignment
 - Compute the probabilities of all possible alignments

- n_i and $c_{i,p}$ denote an alignment between text and speech
- Sample a new alignment
 - Compute the probabilities of all possible alignments
 - Backward message passing with dynamic programming

- n_i and $c_{i,p}$ denote an alignment between text and speech
- Sample a new alignment
 - Compute the probabilities of all possible alignments
 - Backward message passing with dynamic programming
 - Forward block-sample new $n_{
 m i}$ and $c_{
 m i,p}$

- n_i and $c_{i,p}$ denote an alignment between text and speech
- Sample a new alignment
 - Compute the probabilities of all possible alignments
 - Backward message passing with dynamic programming
 - Forward block-sample new $n_{
 m i}$ and $c_{
 m i,p}$
 - Similar to inference for hidden semi-Markov models

• Pronunciations of Burma

propunciation (b)	
pronunciation (b)	p(b)
93 56 87 39 19	0.125
93 56 61 87 73 99	0.125
11 56 61 87 73 99	0.125
93 20 75 87 17 27 52	0.125
55 93 56 61 87 73 84 19	0.125
93 26 61 87 49	0.125
63 83 86 87 73 53 19	0.125
93 26 61 87 61	0.125

$$\sum_{b \in B(w)} p(b) log p(b)$$

B(w): all pronunciations of a word

p(b): pronunciation probability

• Pronunciations of Burma

propunciation (b)	
pronunciation (b)	p(b)
93 56 87 39 19	0.125
93 56 61 87 73 99	0.125
11 56 61 87 73 99	0.125
93 20 75 87 17 27 52	0.125
55 93 56 61 87 73 84 19	0.125
93 26 61 87 49	0.125
63 83 86 87 73 53 19	0.125
93 26 61 87 61	0.125

$$\sum_{b \in B(w)} p(b) log p(b)$$

B(w): all pronunciations of a word

p(b): pronunciation probability

V: vocabulary of the data

Pronunciations of Burma

propunciation (b)	
pronunciation (b)	p(b)
93 56 87 39 19	0.125
93 56 61 87 73 99	0.125
11 56 61 87 73 99	0.125
93 20 75 87 17 27 52	0.125
55 93 56 61 87 73 84 19	0.125
93 26 61 87 49	0.125
63 83 86 87 73 53 19	0.125
93 26 61 87 61	0.125

$$H \equiv \frac{-1}{|V|} \sum_{w \in V} \sum_{b \in B(w)} p(b) log p(b)$$

B(w): all pronunciations of a word

p(b): pronunciation probability

V: vocabulary of the data

• Pronunciations of Burma

propunciation (b)	
pronunciation (b)	p(b)
93 56 87 39 19	0.125
93 56 61 87 73 99	0.125
11 56 61 87 73 99	0.125
93 20 75 87 17 27 52	0.125
55 93 56 61 87 73 84 19	0.125
93 26 61 87 49	0.125
63 83 86 87 73 53 19	0.125
93 26 61 87 61	0.125
Average entropy (H)	4.58

• Pronunciations of Burma

propunciation (b)		
pronunciation (b)	p(b)	
93 56 87 39 19	0.125	
93 56 61 87 73 99	0.125	
11 56 61 87 73 99	0.125	
93 20 75 87 17 27 52	0.125	
55 93 56 61 87 73 84 19	0.125	
93 26 61 87 49	0.125	
63 83 86 87 73 53 19	0.125	
93 26 61 87 61	0.125	
Average entropy (H)	4.58	
WER (%)	17.0	

Pronunciations of Burma

pronunciation (b)	pronunciation probabilities		
	Our model	+I PMM*	+2 PMM*
93 56 87 39 19	0.125		
93 56 61 87 73 99	0.125		
11 56 61 87 73 99	0.125		
93 20 75 87 17 27 52	0.125		
55 93 56 61 87 73 84 19	0.125		
93 26 61 87 49	0.125		
63 83 86 87 73 53 19	0.125		
93 26 61 87 61	0.125		
Average entropy (H)	4.58		
WER (%)	17.0		

^{*}Learning lexicon from speech using a pronunciation mixture model [McGraw et al., 2013]

• Pronunciations of Burma

pronunciation (b)	pronunciation probabilities		
	Our model	+I PMM*	+2 PMM*
93 56 87 39 19	0.125	-	-
93 56 61 87 73 99	0.125	-	-
11 56 61 87 73 99	0.125	0.400	0.419
93 20 75 87 17 27 52	0.125	0.125	0.124
55 93 56 61 87 73 84 19	0.125	0.220	0.210
93 26 61 87 49	0.125	0.128	0.140
63 83 86 87 73 53 19	0.125	-	-
93 26 61 87 61	0.125	0.127	0.107
Average entropy (H)	4.58		
WER (%)	17.0		

^{*}Learning lexicon from speech using a pronunciation mixture model [McGraw et al., 2013]

Pronunciations of Burma

pronunciation (b)	pronunciation probabilities		
	Our model	+I PMM*	+2 PMM*
93 56 87 39 19	0.125	-	-
93 56 61 87 73 99	0.125	1	-
11 56 61 87 73 99	0.125	0.400	0.419
93 20 75 87 17 27 52	0.125	0.125	0.124
55 93 56 61 87 73 84 19	0.125	0.220	0.210
93 26 61 87 49	0.125	0.128	0.140
63 83 86 87 73 53 19	0.125	1	-
93 26 61 87 61	0.125	0.127	0.107
Average entropy (H)	4.58	3.47	3.03
WER (%)	17.0	16.6	15.9

^{*}Learning lexicon from speech using a pronunciation mixture model [McGraw et al., 2013]

