Discovering Linguistic Structures from Speech: Models and Applications

Jackie Lee

Spoken Language Systems Group, CSAIL, MIT Machine Learning Engineer @ Kite

Problem Overview

• A task that humans can perform naturally

• Goal

- Develop computational models for discovering linguistic structures from speech

- Unsupervised training of speech recognizers
- Take acoustic model as an example

- Unsupervised training of speech recognizers
- Take acoustic model as an example
 - Training requires word transcriptions with a pronunciation lexicon

- Unsupervised training of speech recognizers
- Take acoustic model as an example
 - Training requires word transcriptions with a pronunciation lexicon
- Unsupervised phonetic unit discovery

- Unsupervised training of speech recognizers
- Take acoustic model as an example
 - Training requires word transcriptions with a pronunciation lexicon
- Unsupervised phonetic unit discovery
 - Allows learning an acoustic model directly from speech data

Applications of Higher Level Linguistic Structures

• Sub-word units are useful for representing out-of-vocabulary words

Applications of Higher Level Linguistic Structures

- Sub-word units are useful for representing out-of-vocabulary words
- Unsupervised word discovery
 - Natural language processing on spoken documents without speech recognition

• Connection to the field of Cognitive Science

Outline

Discovering phonetic inventory [Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures [Lee, O'Donnell, and Glass, TACL 2015] Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/ Part I of the talk

Part II of the talk

Part I: Discovering Phonetic Units from Speech

Discovering phonetic inventory [Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures [Lee, O'Donnell, and Glass,TACL 2015 Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/ Part I of the talk

Part II of the talk

Problem Overview

• Find the phone units embedded in the observed speech data

Problem Overview

- Find the phone units embedded in the observed speech data
- Latent variables

- Phone boundaries
- Phone labels
- Phone inventory

Related Work

- Unsupervised acoustic unit discovery and modeling
 - Towards unsupervised training of speaker independent acoustic models [Jansen and Church, INTERSPEECH 2011]
 - Unsupervised hidden Markov modeling of spoken queries for spoken term detection without speech recognition [*Chan et al., INTERSPEECH 2011*]
 - Keyword spotting of arbitrary words using minimal speech resources [Garcia and Gish, ICASSP 2006]
 - Toward ALISP: A proposal for automatic language independent speech processing [Chollet et al., Computational Models of Speech Pattern Processing 1999]
 - A segment model based approach to speech recognition [Lee et al., ICASSP 1988]

• A simple explanation of how a spoken utterance is generated

• A simple explanation of how a spoken utterance is generated

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/ /ae/

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/ /ae/ /n/

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/ /ae/ /n/ /ax/

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/ /ae/ /n/ /ax/

• A simple explanation of how a spoken utterance is generated

/b/ /ax/ /n/ /ae/ /n/ /ax/

• A simple explanation of how a spoken utterance is generated

- Phone labels (c)
- HMM parameters (θ)

- Iterate n times
 - n = 20,000 in our experiments

- Iterate n times
 - n = 20,000 in our experiments
- A Chinese Restaurant Process (CRP) representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese Restaurant Process (CRP) representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

 $C_1 = 1$

- A Chinese Restaurant Process (CRP) representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese Restaurant Process (CRP) representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

- A Chinese Restaurant Process (CRP) representation
 - Each table is a phonetic unit
 - Each speech segment is a customer $s_i = [x_t, x_{t+1}, ..., x_{t+Li}]$

• For a new segment (s_i), the posterior probability distribution of c_i :

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i) , the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K | \dots) \propto \frac{n_k}{N + \alpha} p(s_i | \theta_k)$$
posterior probability DP prior likelihood

- n_k : number of customers at table k
- N : number of costumers seen so far
- lpha : concentration parameter of DP

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K \mid \dots) \propto \frac{n_k}{N + \alpha} p(s_i \mid \theta_k)$$

- si opens a new table \longrightarrow si is a new phone

- For a new segment (s_i), the posterior probability distribution of c_i :
 - si sits at an occupied table \longrightarrow si is not a new phone

$$p(c_i = k, 1 \le k \le K \mid \dots) \propto \frac{n_k}{N + \alpha} p(s_i \mid \theta_k)$$

- si opens a new table \rightarrow si is a new phone

$$p(c_i = K + 1 | \cdots) \propto \frac{\alpha}{N + \alpha} \int_{\theta} p(s_i | \theta) d\theta$$

• For a new segment (s_i), the posterior probability distribution of c_i : - s_i sits at an occupied table \longrightarrow s_i is not a new phone

$$p(c_{i} = k, 1 \le k \le K | \dots) \propto \frac{n_{k}}{N + \alpha} p(s_{i} | \theta_{k})$$

$$= \text{ si opens a new table } \longrightarrow \text{ si is a new phone}$$

$$p(c_{i} = K + 1 | \dots) \propto \frac{\alpha}{N + \alpha} \int_{\theta} p(s_{i} | \theta) d\theta$$
Generate a sample for ci

Inference Procedure

- Iterate n times
 - n = 20,000 in our experiments

Inference Procedure

- Iterate n times
 - n = 20,000 in our experiments

Experiments

- Data set
 - TIMIT corpus
 - Multi-speaker, clean read speech, 16kHz sampling rate

Experiments

- Data set
 - TIMIT corpus
 - Multi-speaker, clean read speech, 16kHz sampling rate
- Qualitative assessment
 - Correlation between induced phone units and English phones
 - Results learned from 3696 utterances

Experiments

- Data set
 - TIMIT corpus
 - Multi-speaker, clean read speech, 16kHz sampling rate
- Qualitative assessment
 - Correlation between induced phone units and English phones
 - Results learned from 3696 utterances
- Quantitative assessments
 - Phone segmentation
 - (Query-by-example spoken term detection)

- 123 phone units discovered from 3696 TIMIT utterances
 - A fine correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A fine correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A fine correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A fine correlation between discovered phones and English phones

- 123 phone units discovered from 3696 TIMIT utterances
 - A fine correlation between discovered phones and English phones

Phone Segmentation

• TIMIT training portion

	Recall	Precision	F-score
Dusan et al. (unsupervised)	75.2	66.8	70.8
Qiao et al. (semi-supervised)	77.5	76.3	76.9
Our model (unsupervised)	76.2	76.4	76.3

Part I: Discovering Phonetic Units from Speech

Discovering phonetic inventory [Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures [Lee, O'donnell, and Glass,TACL 2015 Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/ DP mixture models with HMMs

- Discovered phonetic units are highly correlated with standard phones
- Achieves phone segmentation performance similar to the semisupervised baseline

Part II of the talk

Part II: Discovering Hierarchical Linguistic Structures

Discovering phonetic inventory [Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical		
[Lee, O'Donnell, and Glass, TACL 2015]		
Word	banana	
Syllable		
Phone /b/ /ax/	/n/ /ae/ /n/ /ax/	

DP mixture models with HMMs

- Discovered phonetic units are highly correlated with standard phones
- Achieves phone segmentation performance similar to the semisupervised baseline

Part II of the talk

Problem Overview

• Discover hierarchical linguistic structures from speech

- Phone-like, syllable-like and word-like units

Words:andMIT'sopenuniversityand| \wedge \wedge \wedge |||Syllables:[ae n d] [eh m] [ay] [t iy z] [ow p] [ax n] [y uw] [n ax] [v er] [s ax] [dx iy] [ae n d] \wedge \wedge \wedge \wedge Phones:ae n d eh m ay t iy z ow p ax n y uw n ax v er s ax dx iy ae n dInput:|||

Related Work

• Spoken term discovery

- Unsupervised patter discovery in speech [Park and Glass, IEEE Trans., 2008]
- Unsupervised speech processing with applications to query-by-example spoken term detection [*Zhang, Ph.D.Thesis 2013*]
- Towards spoken term discovery at scale with zero resources [Jansen et al., INTERSPEECH 2010]
- Word segmentation on phone transcripts of spoken utterances
 - A Bayesian framework for word segmentation: Exploring the effects of context [Goldwater et al., Cognition 2009]
 - Bayesian unsupervised word segmentation with nested Pitman-Yor language modeling [*Mochihashi et al., ACL 2009*]
 - Using adaptor grammars to identify synergies in the unsupervised acquisition of linguistic structure [Johnson, ACL-HLT 2008]

Spoken Term Discovery

• Discover speech segments that correspond to words

[Park and Glass, IEEE Trans., 2008] [Zhang, Ph.D. Thesis 2013] [Jansen et al., INTERSPEECH 2010]

Spoken Term Discovery

• Discover speech segments that correspond to words

university

[Park and Glass, IEEE Trans., 2008] [Zhang, Ph.D. Thesis 2013] [Jansen et al., INTERSPEECH 2010]

• Model words as sequences of phones

[Goldwater et al., ACL 2006] [Brent and Cartwrite, Cognition 1996] [Mochihashi et al., ACL 2009]

- Model words as sequences of phones
- Modeling more levels of structures improves word segmentation
 - Word \rightarrow Syllables Syllable \rightarrow Phones

- Model words as sequences of phones
- Modeling more levels of structures improves word segmentation
 - Word \rightarrow Syllables Syllable \rightarrow Phones

- Model words as sequences of phones
- Modeling more levels of structures improves word segmentation
 - Word \rightarrow Syllables Syllable \rightarrow Phones
- Adaptor grammars is an effective tool for learning rich structures

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Phone discovery model

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

A nonparametric Bayesian extension of probabilistic context-free grammars (PCFGs)

Noisy-channel model

Phone discovery model
PCFG Example

An example PCFG for generating phone sequences

Ρ	C	-(G	

Sen

Sen | Word

0.1 Phn \rightarrow /p/

. . .

Adaptor Grammars

• A PCFG +

Adaptor Grammars

• A PCFG + cached subtrees for adapted nonterminals

Adaptor Grammars

• A PCFG + cached subtrees for adapted nonterminals

• Assume a current parse

• Cache subtrees for adapted nonterminals

• Cache subtrees for adapted nonterminals

• Generate a new parse

• Expand regular nonterminals using PCFG rules

• Expand regular nonterminals using PCFG rules

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

- Expand adapted nonterminals
 - Reuse a cached subtree

• Expand adapted nonterminals

• Cache subtrees for adapted nonterminals

For Our Problem

- The phone inventory is unknown
 - Terminal symbols should be discovered phonetic unit ids

For Our Problem

- The phone inventory is unknown
 - Terminal symbols should be discovered phonetic unit ids

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Phone discovery model

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Phone discovery model

First part of the talk

Recall

- A standard phone may map to multiple discovered units
- Various phone sequences for a word type

Recall

- A standard phone may map to multiple discovered units
- Various phone sequences for a word type

Recall

- A standard phone may map to multiple discovered units
- Various phone sequences for a word type
- These variations must be collapsed for lexicon learning

Collapse the variations by using a noisy-channel model

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Regularize the phonetic variations

Phone discovery model

Noisy-channel Model

• Assume the phonetic variations are outcomes of a noisy-channel

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

- exact-match $49 \rightarrow 49$ substitution $58 \rightarrow 26$
- exact-match $32 \rightarrow 32$

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

• Generate a parse from adaptor grammars

Adaptor grammars

Noisy-channel model

• Generate a parse from adaptor grammars

• Generate phonetic variations

Adaptor grammars

Noisy-channel model

• Generate phonetic variations

• Generate phonetic variations

• Generate phonetic variations

Adaptor grammars

Noisy-channel model

• Generate phonetic variations

v bottom-layer phone units

Adaptor grammars

Noisy-channel model

• Generate speech data

Adaptor grammars

Noisy-channel model

• Generate speech data

• Generate speech data

• Generate speech data

x observed speech data

b phone segmentation

Adaptor grammars

Noisy-channel model

Adaptor grammars

Noisy-channel model

Adaptor grammars

Noisy-channel model

d

 \mathcal{U}

 \mathcal{V}

 ${\mathcal X}$

b

• Only speech data are observed

Adaptor grammars

Noisy-channel model

Adaptor grammars

Noisy-channel model

d

• Given v and b sample d and u

Metropolis-Hastings algorithm

Adaptor grammars

Noisy-channel model

Inference and (b) and (u) resample (v)Given (d Sen Word d <u>Syl</u> <u>Syl</u> Phn Phn Adaptor grammars 3 16 58 49 \mathcal{U} Noisy-channel model Phone discovery model \mathcal{X}

Adaptor grammars

Noisy-channel model

Experimental Setup

• MIT Lecture Corpus

- The six lectures evaluated in [Park and Glass, IEEE Trans. 2008]
- Each lecture contains \sim I hour of speech data by a single speaker
- Each lecture contains a set of subject-specific keywords
- Qualitative assessment
 - Sentence and word parses
 - Analysis on the discovered hierarchical linguistic structures
- Quantitative assessment
 - Coverage of subject-specific keywords
 - (Word and phone segmentation)

Parse of a Full Sentence

37 12 67 88 158 1 2 19 20 41 47 13 103 48 91 4 67 25 8 99 29 44 22 103 4 37 12 67

Parse of a Full Sentence

Parse of a Full Sentence

MIT's only occurs 3 times in the lecture

open and university almost always appear together in the lecture
• Two instances of "collaboration"

• Two instances of "collaboration"

- Two instances of "collaboration"
 - Noisy-channel model regularizes the bottom-layer phone units

- Two instances of "collaboration"
 - Noisy-channel model regularizes the bottom-layer phone units
 - Highly reusable sub-word structures

Structure Reuse

• Examples of reusing [6 7 30]

 [50 | 37]
 [28 | 6]
 [18 3 | 43]
 [6 7 30]

 kcl k
 el ae
 bcl ax r
 ey sh en

Subject-specific Keywords

- Term Frequency Inverse Document Frequency (TFIDF) scores
 - The top 20 words for each lecture [Park and Glass, IEEE Trans. 2008]
- Keyword examples
 - From the seminar about the book "The world is flat" by Thomas Friedman

١.	flat	6.	flattener	II. airline	16.	huge
2.	globalization	7.	dollar	2. thousand	17.	create
3.	collaboration	8.	China	3. outsourcing	<mark>8</mark> . (convergence
4.	India	9.	southwest	4. really	19.	connect
5.	era	10.	argue	5. platform	20.	chapter

📕 Park & Glass, 2008 🛛 📕 Full model

• Two models for discovering linguistic structures from speech

• Two models for discovering linguistic structures from speech

Discovering phonetic inventory

/b/ /ax/ /n/ /ae/ /n/ /ax/

- DP mixture models with HMMs
- Discovered phonetic units are highly correlated with standard phones

• Two models for discovering linguistic structures from speech

Discovering phonetic inventory

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/

- DP mixture models with HMMs
- Discovered phonetic units are highly correlated with standard phones

• Two models for discovering linguistic structures from speech

Discovering phonetic inventory

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures

- DP mixture models with HMMs
- Discovered phonetic units are highly correlated with standard phones

 Integrate adaptor grammars with the phone discovery model

• Two models for discovering linguistic structures from speech

Discovering phonetic inventory

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures

- DP mixture models with HMMs
- Discovered phonetic units are highly correlated with standard phones

- Integrate adaptor grammars with the phone discovery model
 - Noisy-channel model is critical for learning lexical units

• Two models for discovering linguistic structures from speech

Discovering phonetic inventory

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures

- DP mixture models with HMMs
- Discovered phonetic units are highly correlated with standard phones

- Integrate adaptor grammars with the phone discovery model
 - Noisy-channel model is critical for learning lexical units
 - Synergies between word and phone learning

Models and Applications

Discovering phonetic inventory

[Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures [Lee, O'Donnell, and Glass, TACL 2015] Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/

Models and Applications

Discovering phonetic inventory

[Lee and Glass, ACL 2012]

/b/ /ax/ /n/ /ae/ /n/ /ax/

Discovering hierarchical linguistic structures [Lee, O'Donnell, and Glass, TACL 2015] Word banana Syllable Phone /b/ /ax/ /n/ /ae/ /n/ /ax/

Models and Applications

Future Work

- Learning from more sensory data
 - Speech and visual streams

The doggie is sleeping

Future Work

- Building spoken language systems based on discovered vocabulary
 - For low-resource languages or languages without a writing system

Thank you. (<u>kite.com</u>)

Discovered Phone Units -- 300 utterances

- 43 phone units discovered from 300 TIMIT utterances
 - Phone units are correlated with English broad phone classes

Dirichlet Process (DP)

• Let's start with Dirichlet distribution

- Dirichlet distribution is a distribution over the K-dim probability simplex

Dirichlet Process (DP)

• Let's start with Dirichlet distribution

- Dirichlet distribution is a distribution over the K-dim probability simplex
- Assume we have 3 HMMs in the mixture

Inference for HMM Parameters (θ)

- HMM is used to model each phone
 - Three states with only left-to-right and self transitions
 - Always start from the first state
 - A diagonal GMM is used for the emission distributions

Inference for HMM Parameters (θ)

- HMM is used to model each phone
 - Three states with only left-to-right and self transitions
 - Always start from the first state
 - A diagonal GMM is used for the emission distributions
- Latent variables
 - Transition probabilities (a)
 - Mixture weights (**w**)
 - Means (µ)
 - Variances (σ^2)

Priors and Posteriors for HMM

- Priors
 - Dirichlet distributions for transition probabilities (a) and mixture weights (w)
 - Normal-gamma distributions for Gaussian parameters ($\mu,\sigma^{2})$

Priors and Posteriors for HMM

- Priors
 - Dirichlet distributions for transition probabilities (a) and mixture weights (w)
 - Normal-gamma distributions for Gaussian parameters (μ, σ^2)
- Posteriors
 - Gather relevant counts from customer segments

Priors and Posteriors for HMM

• Priors

- Dirichlet distributions for transition probabilities (a) and mixture weights (w)
- Normal-gamma distributions for Gaussian parameters (μ , σ^2)

Posteriors

- Gather relevant counts from customer segments
- Update prior distributions
- Sample new values for the latent variables

Dirichlet Process (DP)

- Conceptually
 - Dirichlet process can be viewed as an infinite case of Dirichlet distribution

- Unknown # of HMMs
 - Assume there are infinite number of HMMs first
 - Infer the finite number of HMM are needed to explain the finite data
 - By integrating $\,\beta$ during inference, DP provides a nice math format to find the #

PCFG Review

- A PCFG is a quintuple $(N, T, S, R, \{\pi^q\}_{q \in N})$
- N: a finite set of <u>nonterminal</u> symbols
- T: a finite set of <u>terminal</u> symbols - $N \cap T = \emptyset$
- S:start symbol
 - $-S \in N$
- *R* : production rules
 - $-R = \{N \to (N \cup T)^*\}$
- π^q : rule probabilities

 $-q \in N$

Acoustic Landmarks

- Naively, every frame can be a phone boundary
 - In fact, some frames are more likely to be boundaries and some are less likely
 - Compute landmarks [Glass et al. 2003] and only do inference on landmarks
 - A language-independent method

- Disadvantage
 - Put an upper bound on recall rate
- Advantage
 - Reduce inference load

Spoken Term Detection

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units

x : a single frame of feature vector

 $State_{i,j}$: the j-th state of the i-th HMM

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units

x: a single frame of feature vector

 $State_{i,j}$: the j-th state of the i-th HMM

$$posterior-gram(x) = \left[\frac{p(State_{i,j} \mid x)}{\sum_{i=1}^{K} \sum_{j=1}^{3} p(State_{i,j} \mid x)} \right] \text{ for } 1 \le i \le K \text{ and } 1 \le j \le 3$$

K: the total number of HMMs

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

P@N	EER
r@N	

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

	P@N	EER
English Monophone (Supervised)	74	11.8
Thai Monophone Model (Supervised)	56.6	14.9
Our model	63	16.9

- Given a spoken query (w), find all spoken documents that contain w
 - 3696 utterances for discovering phone units
 - Compute posterior-grams on the HMM states of the discovered phone units
 - Apply dynamic time warping to keyword detection [Zhang et al, 2009]
 - 10 selected keywords

P@N: the average precision of top N hits

	P@N	EER
English Monophone (Supervised)	74	11.8
Thai Monophone Model (Supervised)	56.6	14.9
Our model	63	16.9
Zhang 2009 (GMM) (Unsupervised)	52.5	16.4
Zhang 2012 (DBM) (Unsupervised)	51.1	14.7

• An unknown set of phone units

- An unknown set of phone units
 - Impose a Dirichlet Process prior to infer the number of phones

- An unknown set of phone units
 - Impose a Dirichlet Process prior to infer the number of phones
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?

Phone Frequency -- Monophone

Phone Frequency -- Triphone

- An unknown set of phone units
 - Impose a Dirichlet Process prior to infer the number of phones
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?

- An unknown set of phone units
 - Impose a Dirichlet Process prior to infer the number of phones
- Is Dirichlet process (DP) a proper prior for this task?
 - Does phone frequency inherit power law?
 - DP should be a reasonable prior to start with

Generative Story

• A simple explanation of how a spoken utterance is generated

Language Acquisition Modeling

• Previous work relies on highly pre-processed input data

Language Acquisition Modeling

Previous work relies on highly pre-processed input data

I uh k ae t dh ae t d ao g iy

Word
egmentation
Modellook(l uh k)
(ae t)
thatModelat(ae t)
(dh ae t)
doggie

Other tasks such as phonetic unit learning are ignored

- Ground language acquisition modeling in real sensory data
- Ultimately allow machines to acquire a language like humans

- Useful for representing out-of-vocabulary words
- Spoken document summarization

- Useful for representing out-of-vocabulary words
- Spoken document summarization

- Sub-word units are useful for representing out-of-vocabulary words
- Unsupervised word discovery
 - Automatic spoken document summarization without speech recognition

latent word structures

- Sub-word units are useful for representing out-of-vocabulary words
- Unsupervised word discovery
 - Automatic spoken document summarization without speech recognition

• Connection to Cognitive Science (CogSci)

- Computational models for learning from speech are of great interests in CogSci

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Discover hierarchical linguistic structures (Words, Syllables etc)

Noisy-channel model

Phonetic discovery model

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Phonetic discovery model

Discover the phonetic units from acoustic data

Model Overview

- Integrate adaptor grammars and the phone discovery model
 - To discover rich linguistic structures from speech
- Three components in the model

Adaptor grammars

Noisy-channel model

Bridges the other two components

Phonetic discovery model

Inference

D

Given (and \mathcal{U} d Sen Word d <u>Syl</u> <u>Syl</u> Phn Phn 16 58 49 3 \mathcal{U} 3 5 16 37 49 V X

Adaptor grammars

Noisy-channel model

Phonetic discovery model

Inference

Initialization

d

 \mathcal{U}

 \mathcal{V}

 $\boldsymbol{\mathcal{X}}$

b

Adaptor grammars

Noisy-channel model

Phonetic discovery model

Initialization

Inference on Phone Boundaries (b)

- Boundary variables
 - A priori, every frame can be a phone boundary

Inference on Phone Boundaries (b)

- Boundary variables
 - A priori, every frame can be a phone boundary
 - Boundary variables take binary values

• Prior

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

• Prior

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

Prior and Posterior for Phone Boundaries

• Prior

- Fixed prior probabilities $p(b_t = 1) = \alpha_b$ and $p(b_t = 0) = 1 - \alpha_b$

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

Prior and Posterior for Phone Boundaries

• Prior

- Fixed prior probabilities $p(b_t = 1) = \alpha_b$ and $p(b_t = 0) = 1 - \alpha_b$

- Posterior: examine one boundary variable (*b*_t) at a time
 - Fix the current values of other boundary variables
 - Consider both 0 and 1 for b_t and the respective segmentation outcomes

Noisy-channel Model

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

exact-match $49 \rightarrow 49$

Noisy-channel Model

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

exact-match $49 \rightarrow 49$ substitution $58 \rightarrow 26$

Noisy-channel Model

- Assume the phonetic variations are outcomes of a noisy-channel
- Formulate the noisy-channel model as a set of edit operations
 - Substitution, deletion, insertion, and exact-match

- exact-match $49 \rightarrow 49$ substitution $58 \rightarrow 26$
- exact-match $32 \rightarrow 32$

Acknowledgement

- Thesis advisor
 - Jim Glass
- Thesis committee
 - Regina Barzilay and Victor Zue
- Collaborators
 - Tim O'Donnell
 - Brenden Lake
 - Matt Johnson Yu Zhang
 - Lee Hetherington Ian McGraw
 - Stephanie Seneff Oded Ghitza

- SLS members
 - Marcia Tuka Xue Daniel
 - Scott Carrie David Michael
 - Najim Ekapol Mandy Stephen
 - Patrick Jennifer Ann Yu
 - Chengjie
- Previous officemates
 - Hung-an Paul
 - Yaodong Yuan
 - Friends and family