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Motivation

• Human v.s.  Automatic Speech Recognizers (ASRs)

- Humans are particularly good at dealing with previously unseen 
noise or dynamic noises.

• Mounting evidence of the role of efferent-feedback 
in mammalian auditory systems

- Operating point of the cochlea is regulated by background noise

- Results in stable internal representations

• Explore potential use of a feedback mechanism for 
ASR

- Use a MOC efferent-inspired auditory model as an ASR front-end



Cochlea
Inner
Hair
Cell

Middle 
Ear

Dynamic 
Range 

Window

• Messing et al., 2009
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• Middle Ear

- Modeled by a high-pass filter



Model of Ascending Pathway

• J. Goldstein, 1990

• Multi-Band Path Non-Linear model (MBPNL)
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MBPNL Model

• Modeling cochlear nonlinearity

• Example for center frequency = 1820 Hz

- filter characteristics change instantaneously as a function of input 
signal strength
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• Inner Hair Cell

- Generic MIT model

- A half-wave rectifier followed by a low pass filter

Model of Ascending Pathway
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• Dynamic Range Window (DRW)

- A hard limiter with upper and lower bounds, representing the 
dynamic range of auditory nerve firing

Model of Ascending Pathway



Dynamic Range Window

Input

Output

Lower Bound Upper Bound

• No firing for signals below the lower bound

• Saturation in firing rate for signals above the upper bound
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• G is adjusted based on the background noise such that the 
output of the DRW is at “epsilon level”.

- G impacts the filter response in the MBPNL cochlear model.

G

• G  is associated with efferent signals (goldstein)



An Efferent-inspired Auditory Model

• The noisy speech signal is processed by the tuned auditory model.
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• Open-loop model

- The model for the ascending pathway
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• Closed-loop model

- The ascending pathway model with the efferent-inspired feedback



Visual Illustration

Short time Fourier transform Closed-loop model

• Rows represent speech in different types of noise at 10 dB SNR



A Closed-loop Front-end for ASR
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•Need to extract features that can be processed by speech recognizers
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• The feature generation method follows the standard MFCC 
extraction process.

A Closed-loop Front-end for ASR
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Experimental Setup

• Corpus creation (noisy speech data synthesis)

• Feature extraction methods

• Recognizer training and testing

• Experimental results



Corpus Creation

• Noise signals

- Stationary noise: speech-shaped, white, pink

- Non-stationary Aurora2 noise: train, subway

• Speech signals

- Aurora2 digits (TIDigits)

• Noisy speech synthesis

- Noise signals are fixed at 70 dB SPL

- Speech signals are adjusted to create 5 to 20 dB SNRs

- 300 ms adaptation prior to speech signal 



Feature Extraction Methods

• Three feature extraction methods

- MFCC baseline with conventional normalization method

- The open-loop auditory model (in paper)

- The closed-loop auditory model
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• Standard Aurora2 HMM-based recognizer was used

• Jackknifing experiments with mismatched training and test conditions
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Experimental Results

MFCC Baseline Closed-loop model

Average

STD

86 92

8.6 4.7

Accuracy 
(%)

• The closed-loop model performs 43% better than the MFCC baseline,

   and reduced variation across mismatched conditions by 45%.
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Experimental Results

Closed-loop model

•The closed-loop model performed better than the baseline across 
all mismatched training and test conditions.
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Conclusions

• Key ideas

- Efferent-inspired feedback regulates the operating point of the 
front-end

- Results in a stable representation -- a desired property for ASR

• Experimental validation

- Digit recognition in noise in mismatched conditions with multiple 
noise types and SNRs

- The closed-loop model outperformed the baseline across all 
mismatched training and test conditions.

- The results indicate that incorporating feedback in the front-end 
shows promise for generating robust speech features.


