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Motivation

® Human v.s. Automatic Speech Recognizers (ASRS)

- Humans are particularly gsood at dealing with previously unseen
noise or dynamic noises.

® Mounting evidence of the role of efferent-feedback
in mammalian auditory systems

- Operating point of the cochlea Is regulated by background noise

- Results in stable internal representations

® Explore potential use of a feedback mechanism for
ASR

- Use a MOC efferent-inspired auditory model as an ASR front-end



An Efferent-inspired Auditory Model

® Messing et al., 2009
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Model of Ascending
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® Middle Ear

Modeled by a high-pass filter
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Model of Ascending Pathway
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® | Goldstein, 1990
® Multi-Band Path Non-Linear model (MBPNL)



MBPNL Model

® Modeling cochlear nonlinearity

® Example for center frequency = 1820 Hz

- filter characteristics change instantaneously as a function of input
signal strength
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Model of Ascending Pathway
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® Inner Hair Cell

- Generic MIT model

- A half-wave rectifier followed by a low pass filter



Model of Ascending Pathway
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® Dynamic Range Window (DRW)

- A hard limiter with upper and lower bounds, representing the
dynamic range of auditory nerve firing



Dynamic Range Window

Output

Lower Bound Upper Bound Input

® No firing for signals below the lower bound

® Saturation In firing rate for signals above the upper bound



An Efferent-inspired Auditory Model
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An Efferent-inspired Auditory Model
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® ( is adjusted based on the background noise such that the
output of the DRWV s at “epsilon level ™.

- G impacts the filter response in the MBPNL cochlear model.



An Efferent-inspired Auditory Model
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® [he noisy speech signal is processed by the tuned auditory model.



® Open-loop model

Definitions

The model for the ascending pathway
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Definitions

® Closed-loop model

- The ascending pathway model with the efferent-inspired feedback
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Visual Illustration

® Rows represent speech In different types of noise at |0 dB SNR

Short time Fourier transform Closed-loop model
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A Closed-loop Front-end for ASR
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® Need to extract features that can be processed by speech recognizers



A Closed-loop Front-end for ASR
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® [he feature generation method follows the standard MFCC
extraction process.



Experimental Setup

® (Corpus creation (noisy speech data synthesis)

® [ecature extraction methods
® Recognizer training and testing

® [xperimental results



Corpus Creation

® Noise signals
- Stationary noise: speech-shaped, white, pink
- Non-stationary Aurora2 noise: train, subway
® Speech signhals

- Aurora? digits (TIDigits)

® Noisy speech synthesis
- Noise signals are fixed at /0 dB SPL
- Speech signals are adjusted to create 5 to 20 dB SNRs

- 300 ms adaptation prior to speech signal



Feature Extraction Methods

® Three feature extraction methods
- MFCC baseline with conventional normalization method
- The open-loop audrtory model (in paper)

- The closed-loop auditory model



Recognizer lraining and lesting

® Standard AuroraZ HMM-based recognizer was used

® |ackknifing experiments with mismatched training and test conditions
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Experimental Results
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® [he closed-loop model performs 43% better than the MFCC baseline,

and reduced variation across mismatched conditions by 45%.



Experimental Results

MFCC baseline Closed-loop model

Acc (%) Acc (%)

-« HEEE ---EEEEE
(20 ) 95 | 92 | 91 | 88 | 94 9% | 94 | 95 | 93 | 96
C15 ) 94 | 90 | 8 | 84 | 93 9% | 93 | 96 | 92 | 95
Cio) 91 [ 85 | 85 | 76 | 92 o4 | 91 | 95 | 89 | 93
Cs ) st | 73 | 76 | 62 | 84 | (5 )] 8 | 8 | 91 | 78 | 84
Cag) 9 | 85 | 85 | 77 | 9 ag )| 92 | 90 | 94 | 88 | 92

® [he closed-loop model performed better than the baseline across
all mismatched training and test conditions.



Conclusions

® Key ideas

- Efferent-inspired feedback regulates the operating point of the
front-end

- Results In a stable representation -- a desired property for ASR

® Experimental validation

- Digit recognition in noise in mismatched conditions with multiple
noise types and SNRs

- The closed-loop model outperformed the baseline across all
mismatched training and test conditions.

- The results indicate that incorporating feedback in the front-end
shows promise for generating robust speech features.



