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Abstract

An image articulation manifold (IAM) is the collection of images formed by
imaging an object that is subject to continuously changing imaging parameters.
IAMs arise in a variety of image processing and computer vision applications,
where they support a natural low-dimensional embedding of the collection of
high-dimensional images. To date IAMs have been studied as embedded sub-
manifolds of Euclidean spaces. Unfortunately, their promise has not been realized
in practice, because real world imagery typically contains sharp edges that ren-
der IAMs non-differentiable. Moreover, IAMs are also non-isometric to the low-
dimensional parameter space under the Euclidean metric. As a result, the standard
tools from differential geometry, in particular using linear tangent spaces to trans-
port along the IAM, have limited utility. In this paper, we explore a nonlinear
transport operator for IAMs based on the optical flow between images and de-
velop new analytical tools reminiscent of those from differential geometry using
the idea of optical flow manifolds (OFMs). We define a new metric for IAMs that
satisfies certain local isometry conditions, and we show how to use this metric to
develop new tools such as flow fields on IAMs, parallel flow fields, parallel trans-
port, as well as a intuitive notion of curvature. The space of optical flow fields
along a path of constant curvature has a natural multi-scale structure via a monoid
structure on the space of all flow fields along a path. We also develop lower
bounds on approximation errors while approximating non-parallel flow fields by
parallel flow fields.
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1. Introduction

1.1. Image articulation manifolds
Many problems in image processing and computer vision involve image en-

sembles that are generated by varying a small set of imaging parameters such as
pose, lighting, view angle, etc. of a fixed three-dimensional (3D) scene. As the
parameters vary, the images can be modeled as lying on a (typically nonlinear)
manifold called an image articulation manifold (IAM) [1, 2, 3, 4]. Each point on
an IAM is an image at a particular parameter value. Over the past decade, there
has been significant work [3, 5, 6, 7] in learning and processing the underlying ge-
ometric structures associated with image ensembles. Moreover, these embedding
techniques have been profitably applied to learning the low-dimensional structure
of manifolds embedded in high-dimensional space. This is particularly impor-
tant for the case of image manifolds, as IAMs are, by the very imaging process,
low-dimensional manifolds embedded in the high-dimensional image space of all
possible images. Finally, using techniques such as those in [5, 6], tasks such as
recognition, classification, and image synthesis can be interpreted as navigation
along a particular IAM.

Formally, we define an image articulation manifold (IAM) as the set of im-
ages M formed by the action of an imaging map i on a space of articulations Θ,
i.e, M = {iθ = i(θ) : θ ∈ Θ}. This imaging process can be decomposed into
two steps: first, the action of the articulation on a 3D object or scene and sec-
ond, the subsequent imaging of the articulated object/scene (see [8] for a detailed
discussion of image formation).1

1.2. IAM challenges
In spite of much progress, there are fundamental challenges to successfully

applying manifold-processing tools to generic image data, in particular IAMs.

1Before we proceed further, it is worth discussing certain degeneracies in the imaging process
that we will avoid in this paper for analytical reasons. In particular, we want to avoid cases where
the set M is not expressive of the full range of articulations. As an example, consider a uniformly
colored 3D sphere O undergoing rotation about a fixed axis. Here, the parameter space Θ is the
unit circle S1. Being uniformly colored, the sphere does not change appearance under rotation,
and the IAM degenerates to a single point {IO}. Were the sphere richly textured, we would obtain
new views of the sphere for each rotation so that the IAM is isomorphic to S1. For the remainder
of the paper, we will consider IAMs without degeneracies by assuming that the imaging map i is a
re-parametrization of Θ; i.e., we will assume that the IAM is homeomorphic to the corresponding
parameter space.
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Figure 1: Non-differentiability of IAMs renders (locally) linear transport inaccurate. Consider an
image interpolation task. Given images I1 and I2, the line connecting them α(t) = tI1 +(1− t)I2
is blurred and thus a poor approximation to the geodesic connecting I1 and I2.

First, it has been shown that IAMs containing images with sharp edges are
non-differentiable [1]. Specifically, given parameters θ1 and θ2 with correspond-
ing images I1 and I2, it follows that the L2 distance ‖I1 − I2‖L2 between images
I1 and I2 is a nonlinear function η(‖θ1 − θ2‖) that is asymptotically equivalent to
(‖θ1 − θ2‖)

1
2 . Indeed, ‖I1−I2‖L2

‖θ1−θ2‖ ≥ c‖θ1 − θ2‖−
1
2 , and this non-Lipschitz relation

indicates that the corresponding IAM is non-differentiable. Non-differentiability
suggests that local linear approximations, such as those suggested by differential
geometry, are invariably inaccurate on IAMs. To illustrate this, consider a stylized
example of image interpolation (see Fig.1). Given images I1, I2 ∈ M , consider
the affine path α(t) = tI1+(1−t)I2 with t ∈ [0, 1]; for a smooth manifold (> C2),
this line would be a close approximation to the actual manifold, especially over
small neighborhoods. However, non-differentiability implies that a first-order ap-
proximation to the manifold is inaccurate even over a small neighborhood. This is
illustrated in Fig.1. To alleviate the non-differentiability problem, Wakin et al. [2]
have proposed a multiscale smoothing procedure that regularizes each point of the
IAM by a set of multiscale Gaussian smoothing filters that render the IAM smooth
across the various scales. This smoothing procedure then enables the definition of
linear tangent spaces on which one can perform standard linear methods of analy-
sis. However, this is unsatisfactory, since Gaussian smoothing is inherently lossy
— leading to loss of high-frequency information in the images. Further, defining
tangent vectors as the limit of a multiscale procedure (as in [2, 1]) is inherently
complex and moreover not possible for practical scenarios where we have only
samples from the IAM.
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Second, conventional manifold models lack a meaningful metric between
points on the IAM, especially when the sampling of the manifold is sparse. Con-
sider the simple translation manifold MT generated by imaging a black disk of
radius R translating on an infinite white background (see Fig. 2). Let I1 be the
image of the disk with center c1 and I2 the image of the disk with center c2. It
then follows that

‖I1 − I2‖L2 = η(min(2R, ‖c1 − c2‖)) =

{
η(‖c1 − c2‖), ‖c1 − c2‖ < 2R

η(2R), ‖c1 − c2‖ ≥ 2R,

where η(·) is a nonlinear function. Thus, when the disk centres are separated by
a distance greater than their diameters, the metric is completely uninformative
(see Fig.2). This suggests that, unless the sampling of images from the IAM is
sufficiently dense, organization of the images using a construct such as a k-nearest
neighbor graph is meaningless. Unfortunately, k-nearest neighbor graphs are at
the heart of traditional manifold learning techniques such as LLE [6], ISOMAP
[5], Laplacian Eigenmaps [7] and diffusion maps [3]; as a consequence, such
techniques are doomed to fail unless the sampling is sufficiently dense.

These shortcomings are exacerbated for images with rich textures; this rules
out a consistent analysis of IAMs based on classical differential geometry that
relies on the smoothness and metric properties of the manifold. A critical missing
link in the analysis of IAMs is a systematic theory that successfully handles the
above issues and enables the development of new mathematical tools for IAMs,
including analogues of traditional notions such as curvature, vector fields, parallel
transport, etc. [9]. Once such analytic tools are available, we can greatly expand
the scope of applications and pave the way for efficient algorithms specific to
IAMs.

1.3. Transport operators
Recently, a new class of methods for handling image ensembles has been de-

veloped based on the idea of transport operators [4, 10, 11, 12, 13]. A transport
operator on an IAM is a (typically nonlinear) map from the manifold into itself
that enables one to move between different points on the manifold. Given im-
ages I1(x) and I2(x), (where I(x) denotes the intensity at the spatial location
x = (x, y) ∈ [0, 1] × [0, 1]) a transport operator T is a mapping that acts in the
following fashion:

I2(x) = I1(x + T (x)). (1)
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Figure 2: Euclidean distance between images on an IAM can be meaningless. (a-d) Images of a
translating disk over a white background. (e) The L2 distance between two images depends on the
amount of overlap between the the disks. However, the overlap is zero when the distance between
centers exceed 2R; in the figure above, d(I1, I3) = d(I1, I4). Hence, the distance between two im-
ages can be written as η(min(2R, ‖c1−c2‖2)), where η(·) is a monotonically increasing function.
Conventional manifold learning techniques, which rely heavily on meaningful local distances, do
not work unless the sampling on the manifold is dense.

Instead of relying on the linear tangent space that accounts only for infinitesi-
mal transformations, nonlinear transport operators can be well-defined over larger
regions on the IAM.

For certain classes of articulations, the associated transport operators have al-
gebraic structure in the form of a Lie group [11, 10, 12, 4]. In such instances, it
is possible to explicitly compute transport operators that capture the curved geo-
metric structure of an IAM. An example of this is the case of affine articulations,
where the transport takes the form

I(x) = I0(Ax + t).

In this case, the transport operator T (·) is of the form T (x) = (A− I)x + t; this
can be modeled as the group of two-dimensional (2D) affine transformations. The
affine group has found extensive use in tracking [12] and registration [14]. Miao
and Rao [10] learn affine transport operators for image ensembles using a matrix
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exponential-based generative model and demonstrate improved performance over
locally linear approximations. Culpepper and Olshausen [4] extend this frame-
work using a more complex model on the transport operator in order to model
paths on image manifolds.

Other common examples of articulations in computer vision are the projective
group (used to model homographies and projective transformations) and diffeo-
morphisms (used to model 1D warping functions, density functions) [15]. How-
ever, while algebraic transport methods are mathematically elegant, they are appli-
cable only to a very restrictive class of IAMs. Many IAMs of interest in computer
vision and image processing applications, including those corresponding to 3D
pose articulations and non-rigid deformations ([13]), possess no explicit algebraic
structure.

1.4. Optical flow-based transport
In this paper, we study a specific class of transport operators that are generated

by the optical flow between images (we introduced this notion empirically in [13]).
Given two images I1 and I2, the optical flow between them is defined to be the
tuple (vx, vy) ∈ L2([0, 1]2)× L2([0, 1]2) such that

I2(x, y) = I1(x+ vx(x, y), y + vy(x, y)). (2)

A common assumption in computing the optical flow between images is bright-
ness constancy [16], where the spatial intensity is assumed to not change between
I1 and I2. Since the pioneering work of Horn and Schunk [16], there has been
significant progress towards the robust estimation of optical flow between image
pairs [17, 18].

Optical flow is a natural and powerful transport operator to transform one im-
age into another. In the context of image manifolds, the collection of all optical
flow operators at a point on an IAM is a manifold of the same dimension as the
IAM [13]. In other words, at any reference image on an IAM, there is a corre-
sponding manifold of optical flow operators that transports the reference image
along the IAM. This new operator manifold, which we christen the optical flow
manifold (OFM), can be used to obtain a canonical chart for the IAM [13]; this
enables significantly improved navigation capabilities on the IAM compared to
previous methods. In particular, OFM-based transport is well-defined even in
instances when the transport operators cannot be modeled as a Lie group; an ex-
ample of this is the pose manifold (the IAM associated with rigid body motion).

To see the efficacy of optical flow-based transport, consider again the case of
image interpolation, but now with optical flow as the transport operator (see Fig.
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Figure 3: Optical flow based transport on an IAM leads to accurate image interpolation. Consider
again the interpolation task in Fig. 1. While locally linear transport on IAMs lead to inaccurate
interpolation results, the path γ(t) generated using optical flow provides an accurate approximation
to the true path between I1 and I2. Moreover, if the IAM is generated via Lie group actions, then
the path generated coincides with the geodesic.

3). Here, the path γ(t), t ∈ [0, 1] generated on the IAM via optical flow is a better
representative of a path on the IAM, i.e., γ(t) ∈M for all t. Moreover, if the IAM
is generated via Lie group actions, then this path coincides with the geodesic.

As discussed earlier, IAMs composed of images with sharp edges and textures
lack smoothness and hence do not support locally linear modeling. In contrast, for
a large class of interesting articulations, including affine transformations and 3D
pose, the corresponding OFMs are smooth (see Appendix A and [13]) and support
local linear modeling. Moreover, we can define the distance between two optical
flows to measure the amount of motion required to articulate from one image to
another. These properties suggest that machine learning techniques (such as LLE,
ISOMAP, etc.) should be able to extract a considerable amount of geometrical
information about an image ensemble when applied to its OFMs.

1.5. Related work
OFMs fall under the category of deformation modeling, which has been stud-

ied in many different contexts, including active shape [19] and active appearance
models [20]. However, there are significant differences between OFMs and tra-
ditional deformation modeling approaches. Morphlets [21], for example, provide
a multiscale modeling of and interpolation across image deformations, but their
treatment is limited to image pairs. In contrast, OFMs apply to image ensembles
consisting of a potentially large number of images. Beymer and Poggio [22] have
argued for the use of motion-based representations for learning problems. How-
ever, their goal is image synthesis, and therefore they offer no insights into the
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geometric nature of manifold-valued data. Jojic et al. [23] use a layered represen-
tation to represent videos by separating the appearance of moving objects from
their motion and then representing each using subspace and manifold models,
respectively. This simple, yet powerful, representation can model and synthesize
complex scenes using simple primitives, but it is not intended to go beyond simple
manifolds such as those generated by translations and affine transformations.

1.6. Specific contributions
The main aim of this paper is to develop the mathematical foundation of op-

tical flow-based transport operators for image manifolds, which were introduced
empirically [13].

We first define a metric on an IAM using its corresponding OFMs. Each OFM
has a natural metric that is a locally isometric function of the corresponding pa-
rameter values. We consider the induced metric on the IAM, which we dub the
flow metric, and show that the flow metric between two points of the IAM is a
measure of the distance between the corresponding parameter values. Next, us-
ing the flow metric, we develop analytic notions of curvature, optical flow fields,
and parallel transport. We analyze in detail the case of optical flow fields defined
along a fixed curve. In particular, we define a unique function associated to each
such flow field, which we dub the motion function, using which we can define
the notion of parallel flow fields. We answer the natural question of how one can
optimally approximate a non-parallel field by a parallel field and thereby induce
uniform motion along the curve. We also construct a monoid structure on the set
of all flow fields along a fixed curve. Under certain conditions on the curvature of
a curve, we show that the space of parallel optical flow fields along the curve is a
submonoid that comes with a convenient multi-scale structure.

We envision that the theory developed in this paper will enable a large class
of practical applications involving image manifolds, especially under sparse sam-
pling of images from the manifold. We believe that this paper provides the first
solid step towards a complete theory of manifolds for arbitrary classes of signals.
Moreover, by developing theoretical and computational tools for IAMs using op-
tical flow, we set the stage for analogous treatments of more general manifolds
with appropriate transport operators.

1.7. Organization
The remainder of the paper is organized as follows. In Section 2, we introduce

OFMs and, using a fixed metric on the OFMs, study the induced flow metric on
the corresponding IAM. We provide several examples that highlight the practical
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use of the flow metric such as non-isometric dimensionality reduction, parameter
estimation and Karcher mean estimation in Section 3. Specifically, we provide
simulations that show the efficacy of the flow metric as opposed to the Euclidean
metric, using experiments on real-world data. Using the flow metric, we develop
geometric tools on the IAM in Section 4. We also develop error bounds on ap-
proximating non-parallel flow fields by parallel flow fields and illustrate the idea
with the example of video resampling. We conclude in Section 5 with a brief
discussion.

2. OFMs and the Flow Metric

In this section, we define and study the basic properties of OFMs correspond-
ing to an IAM M . Much of the section is concerned with a formal introduction to
OFMs, first defined in [13], leading towards the development of our fundamental
tool, the flow metric on an IAM.

2.1. Optical flow manifolds
The optical flow between two images on an IAM measures the apparent mo-

tion between the two images and thus reflects the corresponding parameter change
between the two images. For a fixed base image m ∈M , consider any neighbour-
hood N(m) of m. If for m′ ∈ N(m) there exist flow vectors (vx, vy) such that m′

can be obtained from m using the flow vector, i.e., m′(x, y) = m(x+ vx, y+ vy),
then we say that optical flow exists from m to m′. We denote this situation as
φvx,vy(m) = m′ or simply φ(m) = m′.

In practice, occlusion or boundary effects (i.e., veiling of certain portions of
an image due to changes in the background or interferers in the scene) may lead to
undefined estimates for the flow vectors. However, one can mitigate these issues
by incorporating additional consistency tests to ensure that only the meaningful
flow vectors are retained. Suppose we are given a pair of images m1 and m2. We
use (2) to compute the flow φ from m1 to m2, and the flow φ′ from m2 to m1. The
composite flow φ′′ = φ′ ◦φ reveals inaccuracies due to occlusion and other errors.
We identify pixels where φ′′ is more than 1 pixel. Such pixels are discarded, and
the flow values at the pixel are not used in subsequent computations.

The set of all points m′ ∈M for which optical flow from m ∈M to m′ exists
is a neighborhood of m, which we denote by

Bm = {m′ ∈M : m′(x, y) = m(x+ vx, y + vy)}.

We refer to the neighborhood Bm is called the flow neighborhood around m.
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As hinted at in [13], the neighborhoods Bm can be used to form a chart for
the corresponding IAM. Indeed, the results of [13] indicate that a collection of
“template” points m1, · · · ,mn ∈ M on the IAM, along with their flow neigh-
borhoods Bm1 , ..., Bmn can be used as a chart for the entire IAM. A fundamental
trade-off exists, of course, between the number of template points chosen and the
computational difficulty of the optical flow estimation.

For our discussion, we will indeed assume that the collection {Bm : m ∈M}
forms a system of coordinate neighborhoods, i.e., an atlas for (the K dimensional
IAM) M . In other words, for each Bm there exists a homeomorphism Ψm that
maps Bm into an open subset of RK , so that the collection {(Bm,Ψm) : m ∈M}
forms an atlas for M .

Now, for a fixed m ∈ M , consider the flow neighborhood Bm at m. If
m′ ∈ Bm, then there exists an optical flow φ such that φ(m) = m′. It will be con-
venient to consider all flows satisfying this relation as equivalent (i.e., φ1 = φ2) if
φ1(m) = φ2(m) = m′. Now, the collection of all flows with this equivalence is
clearly in one-to-one relation with points in Bm. Indeed, m′ ∈ Bm implies there
exists a flow φ such that φ(m) = m′, and by the equivalence mentioned above,
all such flows are identified with φ itself. We can therefore denote the (unique,
equivalent) flow φ such that φ(m) = m′ as φm′ . Henceforth, we will use the word
“optical flow” between m and m′ to mean the equivalent flow φm′ .

We can now define the optical flow manifold (OFM) Om at m as follows.

Definition 2.1. Let M be a K-dimensional IAM. Given m ∈M , the Optical Flow
Manifold Om is defined as the set of equivalent optical flows φm′ between m and
points m′ ∈ Bm

Om = {φm′ = (vx, vy) : φm′(m) = m′,m′ ∈ Bm}.

It is immediately clear that Om is nonlinear, i.e., an arbitrary OFM is not
always a linear vector space. Our first task is, however, to show that any OFM is
always a topological manifold.

Proposition 2.2. Let M be a K-dimensional IAM. Then Om has the structure of
a topological manifold homeomorphic to Bm for each m ∈M .

Proof. We will construct a topology on Om such that, with this topology, Om

is homeomorphic to Bm. Consider the map g : Bm → Om that sends a point
m′ ∈ Bm to the equivalent flow φm′ ∈ Om such that φm′(m) = m′. As we noted
earlier, the map g is 1-1. g is also onto by definition, since the elements of Om are
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parametrized by the elements of Bm, and hence g is a bijection between Bm and
Om.

We now define a set V ⊂ Om to be open in Om if g−1(V ) is open in Bm. This
is the so-called quotient topology with respect to g. With this topology on Om, g
is a continuous map. To show that g is a homeomorphism, it remains to be shown
that g is an open map, i.e., if U ⊂ Bm is open, the the image of U in Om, (i.e.,
g(U)) is open in Om.

To see this, let U ⊂ Bm be open in Bm. Since g is a bijection, we have
U = g−1(g(U)). Let V = g(U). We thus need to show V is open in Om.
However, by the quotient topology on Om, we have that g−1(V ) = U is open in
Bm and therefore, V is open in Om, and we conclude that Om is homeomorphic
to Bm.

We lastly need to show that Om can be given the structure of a topological
manifold. Since {(Bm,Ψm) : m ∈ M} forms an atlas for M , and Om is home-
omorphic to Bm, we see that the composition Ψm ◦ g−1 provides the necessary
homeomorphism between Om and an the open set Ψm ◦ g−1(Om) = W ⊂ RK , so
that Om is covered by the single chart {(Om,Ψm ◦ g−1)}.

The OFM at a point m ∈ M can therefore be viewed as a surrogate for the
tangent space at m ∈M , since the true tangent space does not exist at m.

We make a few preliminary observations. First, Om1 is homeomorphic to Om2

for any m1,m2 ∈ M since, from 2.2, Omi
is homeomorphic to Bmi

for i = 1, 2,
and the Bmi

are homeomorphic respectively to open balls in RK due to the Bmi

being coordinate neighborhoods of M . Also, the trivial element φ0 ∈ Om that
maps m to itself in Bm acts a natural “origin” in Om.

To see the relationship between the OFM and tangent space more clearly, let us
now consider the case of a smooth IAM (one obtained say, by multiscale smooth-
ing of the corresponding images as in [2][1]). For a smooth IAM, one can define
tangent spaces Tm at m ∈M and the OFM Om at m is homeomorphic to a neigh-
borhood of 0 ∈ Tm. To see this fact, recall that the exponential map defined on
Tm is a diffeomorphism (hence a homeomorphism) between a neighborhood U0 of
0 ∈ Tm and a neighborhood of Vm of m. We also have a homeomorphism g from
Bm to Om by definition. Now, Bm is open and there is an open ball B0 j U0 on
which g ◦exp is a homeomorphism, being a composition of two homeomorphism.

We have thus constructed a topological structure on Om. Since Om is covered
by a single chart, we can endow Om with a smooth structure given by pulling
back the smooth structure on W = Ψm ◦ g−1(Om) ⊂ RK . However, the smooth
structures of OFMs at different points m1,m2 ∈M are not always compatible, as
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the smooth structures change with the maps Ψm. Intuitively, although all OFMs
can be given smooth structures, the smooth structures of distinct OFMs cannot
be compared, as OFMs consist of flow operators corresponding to distinct base-
images, and flow operators are specific to base-images. This is to be expected
though, since the OFM at m ∈ M is a substitute for the tangent space at m,
and distinct tangent spaces are not comparable in general (without additional re-
quirements such as affine connections etc.). However, the fact that OFMs can be
given smooth structures makes them amenable to dimensionality reduction meth-
ods such as ISOMAP/LLE etc. [5],[6]. The ability to use these computational
tools greatly enhances our ability to do analysis on IAMs, as we will see in later
sections.

2.1.1. Example: Translational Manifold
We now consider a concrete example to explain the above ideas. Consider

again the translational manifoldMT from Section 1.2 obtained by imaging a black
disk on an infinite white background. Note that the parameter space in this case is
Θ = R2. Since there is no occlusion between any two images on MT , it follows
that given any m,m′ ∈ MT , there exists a φ ∈ Om such that φ(m) = m′. Since
this is true for any pair of images in MT , we conclude that Om = R2 ∀m ∈ MT

and hence, Bm = MT ∀m ∈ MT . More generally, we note that for an IAM M
generated by Lie group actions without occlusion between images, the OFM Om

at any point m ∈ M can be identified with the parameter space Θ and neighbor-
hood Bm at each point is the entire manifold M . In particular, one can recover
the geodesic path between any two points m,m′ ∈ M by using appropriate flow
operators in Om to generate the geodesic path from m to m′. This shortest path
corresponds to the geodesic in the parameter space between the parameter values
corresponding to m,m′ as well. We will return to this example in future sections
and show how our more general formulation contains the algebraic methods such
as [11, 10, 12, 4] as special cases.

Thus, we see that OFMs are manifolds consisting of flow operators that are
defined pointwise on the corresponding IAM. The action of flow operators at a
base point on the IAM results in motion along the IAM, as opposed to linear
transport that results in motion off the manifold.

The key property that makes the study of OFMs interesting is that, for a large
class of useful IAMs, the associated OFMs are smooth and exhibit meaningful
metric properties [13]. We summarize these in Appendix A. These two prop-
erties, namely smoothness and isometry, are in turn used to define a meaningful
distance on the IAM. We discuss this next.
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2.2. Metric structure on an IAM via its OFMs
Consider again the translational manifold MT , where the OFM Om at each

point m ∈MT can be identified with R2. Being isometric with R2, we can endow
each Om with the Euclidean metric that we denote as dO(·, ·). Let θ1, θ2 ∈ R2 be
a pair of parameters such that m1 = i(θ1),m2 = i(θ2); note that there exists a
φ ∈ Om1 such that φ(m1) = m2. It then follows that dO(φ0, φ) = C‖θ1 − θ2‖
for some C > 0. As the results of [13] indicate, the above discussion holds
analogously for generic OFMs, i.e., each Om has an associated metric dO(·, ·) and
this metric is locally isometric to a corresponding metric on the parameter space
Θ. We indicate this as

dO(φ0, φ) ∝ dΘ(θ1, θ2),

where φ0 is the unique operator in Om1 such that m1 = φ0(m1).
We now briefly describe how we numerically compute the metric for generic

OFMs, as outlined in [13]. Given flows φ1, ..., φm ∈ Om, we first compute the
low-dimensional embedding of these flows using tools such as ISOMAP/LLE
[5][6]. It is here that we use the fact that the OFMs can be given smooth struc-
tures: without a smooth structure, the dimensionality reduction methods cannot
be used. The new, low-dimensional representations of the φi, denoted by ei, re-
side in Euclidean space, i.e., ei ∈ RK and we can compute the distance between
the ei using the Euclidean norm. We can then measure distances between flows
using the corresponding distances between their Euclidean embeddings. We refer
to [13] for further results and discussion.

Our main focus in the remainder of this section is to define a corresponding
metric for IAMs using the metric dO(·, ·) on Om. The resulting metric on M
inherits the property of being locally isometric to the changes in parameters. As
a first step, we locally “push forward” the metric from Om onto Bm as follows.
For points m1,m2 ∈ M with m2 ∈ Bm1 , we have a unique operator φ1 such that
m2 = φ1(m1) so that we can define the distance dM(m1,m2) as the corresponding
distance between φ0 and φ1

dM(m1,m2) := dO(φ0, φ1).

Moreover, if m1 = f(θ1) and m2 = f(θ2) for parameters θ1, θ2 ∈ Θ then we have

dM(m1,m2) ∝ dΘ(θ1, θ2).

However, this definition does not readily extend to the case where m1 and m2 are
not “optically related”, i.e., m2 /∈ Bm1 . In this case, we first connect m1 and m2
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by a path c such that c(0) = m1, c(1) = m2. We then partition the domain of c by
a partition P = {0 = t0 < t1 < · · · < tn = 1} such that the intermediate points
along the path are optically related i.e., c(ti) ∈ Bc(ti−1), where we assume that, for
a fine enough partition, we can obtain such a nesting. We then define the distance
along c to be

d(c,m1,m2) = sup
P

n−1∑
i=0

dM(c(ti), c(ti+1)),

where the supremum is over all partitions of the path. By taking the infimum over
all possible paths, we obtain a metric on M , i.e.,

dM(m1,m2) = inf
c

n−1∑
i=0

dM(c(ti), c(ti+1)). (3)

In summary, we first define distance over a fixed curve and then take the infi-
mum over all the possible paths (see Fig.4).

Proposition 2.3. For an IAM M , the distance dM(·, ·) in (3) is a metric on M .

Proof. Positivity of dM(·, ·) is clear, as is the fact that dM(m,m) = 0.
If m1 6= m2, then for every path c between m1 and m2, we have that
n−1∑
i=0

dM(c(ti), c(ti+1)) 6= 0 and hence, dM(m1,m2) 6= 0. Symmetry follows

from the fact that along c, c(ti) ∈ Bc(ti−1) and hence, dM(c(ti), c(ti+1)) =
dM(c(ti+1), c(ti)). For the triangle inequality, we note that given paths c1 and
c2 from m1 to m2 and m2 to m3 respectively, the path c1 ∗ c2 obtained by travers-
ing c1 and c2 in succession at twice the rate (i.e. c1 ∗ c2(t) = c1(2t) for 0 5 t 5 1

2

and c1 ∗ c2(t) = c2(2t− 1) for 1
2

5 t 5 1) is a path from m1 to m3 and

n−1∑
i=0

dM(c1(ti), c1(ti+1))+
n−1∑
i=0

dM(c2(ti), c2(ti+1)) =
n−1∑
i=0

dM(c1∗c2(ti), c1∗c2(ti+1)).

(4)
By taking the infimum over all such paths, we verify the triangle inequality.

Recall that the metric on Om satisfies dO(φ0, φ) ∝ dΘ(θ1, θ2), with φ ∈ Om

and θ1, θ2 the parameters corresponding to m and φ(m), respectively. From the
above result, we see that, with the metric dM(·, ·) on M , we have

dM(m1,m2) ∝ dΘ(θ1, θ2),
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Figure 4: A pictorial representation of the OFMs and the flow metric for an IAM. Each OFM is
mapped homeomorphically onto the flow neighborhood Bm of the corresponding base point. The
optical flow distance between two points is computed by considering the infimum over all possible
curves of the piecewise flow distance dM (c(ti), c(ti+1)).

wherem1 andm2 are points onM corresponding to the parameter values θ1 and θ2

respectively under the assumption that the monotonicity of dO(·, ·) over different
{Om} is universal, i.e., the distance between two points m1 and m2 does not
change between flow neighborhoods. We refer to this metric on M as the flow
metric. We note that the flow metric is dependent on the OFMs Om. We can now
state the main result of this section.

Theorem 2.4. Let M be an IAM and let dM(·, ·) be the associated flow metric.
Then, dM(m1,m2) ∝ dΘ(θ1, θ2) as defined in (3) with m1 and m2 points on M
corresponding to the parameter values θ1 and θ2 respectively.

The flow metric dM(·, ·) is our substitute for the Riemannian distance, just
as OFMs are our substitute for tangent spaces. However, there are obvious dif-
ferences between the two. First, the flow metric does not use the (non-existent)
differentiability of the IAM, but rather, the smooth structure on OFMs, via di-
mensionality reduction. Second, the Riemannian metric is naturally linked with
the concept of zero-acceleration curves (geodesics), whereas we have no natural
zero-acceleration analogue in our theory. Finally, our flow metric relies on a par-
ticular transport operator, namely optical flow, whereas the Riemannian distance
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is a more general construct. However, given that our intention is to analyze IAMs,
the flow metric is a natural choice for measuring distances.

3. Applications of the Flow Metric

In this section, we show how the flow metric can be profitable used for a
variety of practical applications. In particular, we focus on non-linear isometric
dimensionality reduction, parameter estimation and Karcher mean estimation.

3.1. Non-linear isometric dimensionality reduction
For many manifolds, the flow metric is isometric, at least locally, to a physi-

cally meaningful articulation space. Examples include translations, affine trans-
formations, and rigid body motions. In such cases, we can use the flow metric
to learn near-isometric non-linear embeddings. Such embeddings are extremely
useful for visualizing an image collection as well as geometric processing, such
as computing geodesic paths and manifold means.

Given a set of images {m1, . . . ,mn}, we can compute the flow metric between
any two images d(mi,mj) by selecting a set of reference images and using (3).
Recall that this distance, by definition, is the shortest distance along the OFMs
used to chart the IAM associated with the image collection. We can now use non-
linear dimensionality reduction techniques such as ISOMAP or MDA to obtain a
lower-dimensional Euclidean representation {l1, . . . , ln}, li ∈ RQ such that ‖li −
lj‖2 ≈ d(mi,mj).

Figures 5 and 6 show examples of low-dimensional embeddings for challeng-
ing image datasets. Such embeddings are extremely useful for charting a collec-
tion of images. We can define shortest paths between image pairs on the manifold
by constructing the shortest path in the embedded space (assumed to be Euclidean)
and then pulling back the path associated with the shortest path onto the manifold
(see Figure 3 for an example of this). We next discuss two additional applications
of learning low-dimensional embeddings: first, the ability to estimate parameters
associated with images and second, to compute the “manifold mean” of a collec-
tion of images.

3.2. Parameter estimation
We consider the problem of estimating θ ∈ Θ, such that i(θ) = m for a

given m ∈ M . Let m1, · · · ,mn ∈ M be a finite number of template points with
neighborhoodsBm1 , · · ·Bmn that coverM . As a motivating special case, consider
first the situation when M = MT , the translational manifold with Θ = R2 and
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(b) Matrix of pairwise flow metrics (c) ISOMAP embedding

Figure 5: OFM-based embedding of images of a deforming object [24]. The collection of images
correspond to frames of a video of the object deforming from image 1 to image 70. (a) Shown are
sample images along with color-coded optical flow maps with respect to a reference image. (b)
Matrix of pairwise flow metric (Legend: blue=small, red = large). The predominantly diagonal
structure demonstrates empirically that the flow metric is near-isometric. (c) Embedding using
ISOMAP reveals the dominant 1D structure of the manifold.
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(a) A few images from an IAM

(b) Image Euclidean distance (c) Flow metric

Figure 6: Dataset of two bears translating independently on two different straight lines. We obtain
196 images by letting each bear take one of 14 fixed locations in each of the images. Note that
the IAM associated with this is a product manifold of two 1D translation manifolds. (a) A few
images from the dataset. (b, c) Shown are 2D embeddings obtained using ISOMAP with both
image Euclidean distances and the Flow metric. The flow metric produces a 2D grid that better
represents the product manifold of two 1D translation manifolds. Hence, the embedding obtained
using the flow metric is both accurate and corresponds to the physical process underlying data
generation.
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a single template point m′. A similar problem has been dealt with in [10, 4]
where the authors estimate the Lie group generators corresponding to the IAM.
Given the parameter value θ′ = (c′1, c

′
2) of the base image m′, we can compute the

parameter θ corresponding tom as follows. First, we find the unique flow operator
φ = (φ1, φ2) ∈ R2 such that φ(m′) = m. The parameter value θ corresponding to
m is then obtained as θ = (c′1 + φ1, c

′
2 + φ2).

An entirely similar result holds for generic IAMs generated by Lie group ac-
tions. From this simple example, we see that finding the optimal θ is equivalent to
finding the optimal flow operator φ that minimizes dM(φ(m′),m) with φ ∈ Om′ .

We return to the general case with n template images and seek the op-
timal flow operator φ ∈ Omi

that minimizes dM(φ(mi),m), i = 1, · · · , n.
Here, a single neighborhood does not cover the entire IAM, and, hence, to
estimate φ we first find the neighborhood Bm̃ ∈ {Bm1 , · · ·Bmn} such that
m̃ = arg minm′∈{m1,··· ,mn} dM(m,m′). Our search is then restricted to the neigh-
borhood Bm̃. Within this neighborhood, we find the optimal φ ∈ Om̃ as above,
i.e., φ = arg minφ̃∈Om̃

dM(φ̃(m̃),m). In essence, we first find the optimal tem-
plate point and then search within the corresponding OFM for the optimal flow
operator. If a single template point generates the entire IAM, then this procedure
clearly reduces to the Lie group case discussed earlier. See Fig.7 for an illustrative
example of OFM-based parameter estimation.

3.3. Karcher Mean Estimation
As another example highlighting the use of the flow metric, we now consider

the computation of the “Karcher Mean” of a set of images. The Karcher mean
of a finite set of points {m1, ...,mn} = S on a manifold is defined to be the
point(s) that minimizes the sum of geodesic distances from each point in S , i.e.,
the Karcher mean

mKM = arg min
m∈M

n∑
i=0

d(m,mi)
2,

where d(·) denotes the geodesic distance.
In the case of IAMs, a Karcher mean of a set of images roughly corresponds

to a “mean” image i.e., the mean image is the best representative of the collection
of images. The ability to robustly estimate the Karcher mean of a set of images
has vital applications in robust statistical inference, model building and data visu-
alization.

However, for IAMs, we do not have the usual geodesic distance available to
us and hence replace it with the flow metric. In this case, given points mi ∈ Bm,
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(a) A few images from an IAM

(b) Image Euclidean distance (c) Flow metric

Figure 7: We collected 196 images of a mug on 14 × 14 grid on the floor; the associated IAM
is a 2D projective manifold. (a) A few images from the dataset. Note the perspective effects on
the mug due to non-linear imaging; this shows that the manifold is not a 2D translation manifold.
(b, c) 2D embeddings obtained using ISOMAP with both image Euclidean distances and the Flow
metric. The flow metric produces a 2D grid corresponding to the rough placement of the cup
used to collect the dataset. In addition to training data, we collected a test dataset — separate
from the 196 training images — by placing the mug along the shape of an “R”. We now perform
parameter estimation using the Euclidean distances as well as the flow metric. The black dots in
(b, c) show the estimated parameters in each case. It is clear that the flow metric is superior in both
dimensionality reduction as well as parameter estimation.
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(a) Sampling of images from an IAM 

(d) OFM-based  
Karcher mean 

(c) IAM-based  
Karcher mean 

(b) Ground truth 

Figure 8: Karcher mean estimation for 20 images generated by the rotation of an object about a
fixed axis [13]. The images are from the COIL dataset [25]. (a) Sample images from the IAM
showing a few images at various rotations. We estimate the Karcher mean using local linear trans-
port on the IAM and the OFM. Shown above are (b) the ground truth Karcher mean of the images,
(c) the Karcher mean estimated using local linear transport on the IAM, and (d) the Karcher mean
estimated using local linear transport on the OFM. The accuracy of the estimate obtained from the
OFM showcases the validity of local linear transport on the OFM.

i = 1, ..., N with m ∈ M , we compute the corresponding flows φmi
∈ Om

and compute their low-dimensional embedding ei ∈ RK . We then estimate the

“mean” as emean = ( 1
N

)
n∑
i=0

ei, and obtain the corresponding flow φmean. Using

the mean flow, we then estimate m′ = φmean(m). This procedure is repeated until
convergence of m′ to the Karcher mean mKM .

While such convergence is not guaranteed, empirical results indicate that the
procedure converges to a “mean” image (see Figure 8). Moreover, the procedure is
robust to initialization, i.e., different intitial starting images yield identical Karcher
mean estimates (see Figure 9). The ability to estimate Karcher means on IAMs is,
therefore, an important tool for IAM analysis, made possible by the flow metric.

The remainder of the paper is devoted to developing geometric tools for IAMs
that leverage the flow metric. Note that, unlike the tangent space, the OFM has no
linear structure and, hence, we do not have at our immediate disposal tools such
as parallel translation, covariant derivatives etc. We will construct analogous tools
for our purposes via the flow metric and hence open up a vista for IAM analysis.

21



Initialization ConvergedIntermediate points

Figure 9: Karcher mean estimates for the dataset in Fig. 5. Shown are estimates from two different
initializations — the first and last frame of the dataset, respectively. In both cases, the estimated
mean is almost identical to the midpoint image of the video.

4. Geometric Tools for IAMs via the Flow Metric

In this section, we develop the basic tools needed to analyze the structure
of IAMs using the flow metric. We will pay special attention to flow operators
defined along curves on the corresponding IAMs. Keeping computations in mind,
these tools will open the door to a variety of applications as mentioned in the
Introduction and beyond.

4.1. Flow radius
We first seek an appropriate measure of the size of an OFM and the corre-

sponding flow neighborhood. In classical differential geometry, one measures the
radius at a point in terms of the injectivity radius [9] using the Riemannian metric.
In a similar fashion, we will measure the radius of a point m in an IAM M in
terms of the flow metric.

4.1.1. Flow Radius at m ∈M
Definition 4.1. Given an IAM M and m ∈M define the flow radius or simply the
radius rm at m as

rm = sup
n∈Bm

dM(m,n).

We may regard rm as a function from M to R+ i.e. r(m) = rm is a map
from M into the non-negative reals. Moreover, it is continuous as a function of
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m. Consider the variations of rm as m varies. If rm is large, then one can find
a suitable operator φ ∈ Om that transports m to a far away point, with distance
measured using the flow metric. Conversely, a small rm indicates that m can only
be transported within a small region, or said differently, m obstructs transport on
the IAM. Moreover, rapid changes in the magnitude of rm within a small neigh-
borhood indicate that the manifold is not well-behaved near m. In particular, this
indicates that there are several points close to m that obstruct transport, while
there are also several points that enable flow over large distances on the IAM.

4.1.2. Flow radius for Lie groups
A class of IAMs for which rm is very well behaved, indeed for which rm is

a constant, are those generated by a Lie group action. As a motivating example,
consider again the translational manifold MT . We note that as Om = R2 for each
m ∈ MT , it follows that rm = ∞. If the parameter space Θ is compact, for
instance, if Θ = S1 and we consider affine rotations of a base image m generating
the IAM M , then we again have that Bm = M and rm is a constant 0 < c < ∞.
For a generic IAM M generated by Lie group actions with Bm = M , it follows
that the flow radius is a constant whose exact value depends both on the object
being imaged and the nature of the articulation.

4.1.3. Flow curvature
The curvature of a manifold is an important piece of information about the

manifold. For smooth manifolds, the notion of curvature is defined in a variety of
ways, all of which use the linear structure of tangent spaces.

In the case of IAMs which lack tangent spaces, we seek an appropriate ana-
logue of curvature using OFMs in place of tangent spaces. It should be noted,
however, that any OFM based notion of curvature, more appropriately called “op-
tical curvature”, is not related to the usual notion of curvature of smooth mani-
folds.

Intuitively, given a base image m ∈ M (with M a generic K dimensional
IAM), the flow radius rm is a measure of how much m can be transported along
the IAM using flow operators in Om. If rm is small, then we cannot transport
m along the IAM for large distances (measured using the flow metric). In other
words, for small rm, there is a certain obstruction to the flow from m to other
points in Bm due to the inherent lack of appropriate flow operators in the OFM at
m. From the point of view of optical flow, this means that small rm indicates that
m is close to an “optical peak”, or the manifold is “optically curved” at m. The
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opposite is true for large rm, where m is on an “optical plateau”, or the manifold
is “optically flat” near m.

The reciprocal Km = 1
rm

of the radius at m is thus a good candidate for the
notion of optical curvature that we seek. Indeed, a largeKm, and therefore a small
rm, indicates that the IAM has high “optical curvature” at m, which tallies with
our earlier discussion. The case of small Km also follows similarly.

Definition 4.2. Given an IAM M and m ∈M define the flow curvature or simply
the curvature at m as Km = 1

rm
.

Henceforth, we use the word “curvature” to mean the above notion of flow
curvature.

Again, we reiterate the fact that the notion of flow curvature is not related to
the usual notion of curvature of Riemannian manifolds. Instead, the flow curva-
ture depends on both the base point as well as its neighborhood properties. For
instance, for a one-dimensional manifold (a curve), the largest (Euclidean) dis-
tance between a point and its neighbors (which in this case is the length of the
curve segment) is certainly not an appropriate measure of the (Euclidean) curva-
ture. However, in the case of a one-dimensional IAM, we measure the optical cur-
vature in a completely different domain, namely, the optical flow domain. Here,
as mentioned previously, we are interested not in how the IAM is geometrically
curved in image space, but rather how the IAM behaves from the point of view of
optical flow.

As a simple corollary, we can now see that if M is generated by a Lie group
then M has constant curvature, as the optical curvature Km is constant for all
m ∈ M . The class of IAMs with constant curvature will play a prominent role in
our later analysis.

4.2. Optical flow fields
In this section, we focus on a construct motivated by differential geometry,

namely the idea of a vector field on a manifold. Recall that a vector field is a
section of the the tangent bundle, i.e., a vector field is a map σ : M → TM such
that π ◦ σ = idM , where π is the natural projection from the tangent bundle and
idM is the identity map on M . In an analogous fashion, we define an optical flow
field, or simply a flow field, as a (continuous) assignment of a flow operator to
each point on the IAM.

While vector fields are defined generically on manifolds, the special class of
vector fields along curves is especially important in differential geometry. Vector
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fields along curves give rise to tools such as parallel translation, Jacobi fields, etc.
[9]. In the case of IAMs, which in general lack analytic structure, we will define
optical fields along curves on an IAM and recover similar geometric tools using
the flow metric. As we assign operators to points on the curve, we intuitively
would like the transport induced by the operator to remain along the curve so that
the collection of flow operators induces motion along the curve. This special class
of optical fields will be our main object of study for the rest of the paper.

Definition 4.3. Let M be an IAM and let c be a smooth curve passing through
m1,m2 ∈ M . Define Bc(t)

⋂
c = {c(t′) ∈ Oc(t) : t′ ≥ t}. An optical field

from m1 to m2 along c with m1,m2 /∈ ∂c is a map V : t 7→ Oc(t) such that
V (t) := Vt ∈ Oc(t) and Vt(c(t)) ∈ Bc(t)

⋂
c, where by Vt(c(t)) we mean the point

on the curve obtained by the action of Vt on c(t).

In other words, an optical field along c is an assignment of a flow operator Vt
with Vt an element of the OFM at c(t) such that such that the action Vt on c(t)
remains on the curve. Thus, the action of Vt on the base point c(t) at time t induces
motion along the curve. When m1 and m2 are clear from the context, we simply
refer to Vt as the optical field along c.

In essence, the curve Vt traces a curve in the space of all OFMs as t varies
with a consistent action on c(t). By Bc(t)

⋂
c we mean the intersection of the

K-dimensional flow neighborhood Bc(t) with the 1D curve c starting at c(t) and,
hence, Bc(t)

⋂
c is a 1D embedded curve in Bc(t) i.e., Bc(t)

⋂
c is a 1D “slice” of

Bc(t), where we assume that Bc(t)

⋂
c is connected.

To measure the distance traveled by the action of Vt on c(t), we define a radius
rt restricted along the curve as opposed to the complete flow radius rc(t) at c(t)

rt = sup
n∈Bc(t)

T
c

dc(c(t), n),

where dc(·, ·) is the flow metric restricted to the curve c. Likewise, the curvature
Kt along c is the ratio

Kt =
1

rt
.

Since Bc(t)

⋂
c is connected and 1D, the distance dc(c(t),m) between c(t) and

m ∈ Bc(t)

⋂
c characterizesm in the following sense. Given any positive constant

0 ≤ η ≤ rt there is a unique m ∈ Bc(t)

⋂
c with dc(c(t),m) = η. Thus, by

specifying the distance along the curve c, we effectively characterize the curve.
Lifting this observation into Oc(t), we have the following result.
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Theorem 4.4. Let M be an IAM, let c be a curve passing through m1,m2 ∈ M ,
and let Vt be an optical field from m1 to m2 along c. Then, Vt is completely
characterized by the function hV (t) = dc(Vt(c(t)), c(t)) in the sense that, for any
non-negative function h(t) bounded pointwise by rt, there exists a unique optical
field Vt such that hV (t) = h(t).

Proof. That 0 ≤ hV (t) ≤ rt is clear from the definitions above. Let h(t) be any
non-negative function bounded by rt. Then, for fixed t = t0 we have that 0 ≤
h(t0) < rt0 . By the remark made previously, we have a unique mt0 ∈ Bc(t0)

⋂
c

with dc(c(t0),mt0) = h(t0). Now, as mt0 ∈ Bc(t0)

⋂
c, in particular, mt0 ∈ Bc(t0),

and hence there exists a unique φt0 ∈ Oc(t0) such that

φt0(c(t0)) = mt0 .

As t0 was arbitrary, as t varies, we can define Vt = φt. Moreover,

hV (t) = dc(Vt(c(t)), c(t)) = dc(φt(c(t)), c(t)) = dc(mt, c(t)) = h(t)

so that h(t) characterizes Vt.

Recall that we view an optical flow field Vt along c as a curve in the space
of all OFMs. Theorem 4.2 states that this curve is characterized by the function
hV (t) in the sense that, for a given Vt along the (fixed) curve c, the function hV (t)
contains all the information about the motion induced by Vt on the curve i.e.,
hV (t) measures the distance to which Vt transports c(t) in Bc(t)

⋂
c. Since this

function is of prime importance, we make the following definition.

Definition 4.5. Given an optical field Vt along a curve c, define its motion function
as

hV (t) = dc(Vt(c(t)), c(t)).

Note that, by continuity of the metric dc(·, ·) and c(t), the function hV (t) is
also continuous.

4.3. Parallel flow fields
There is a very natural geometric interpretation of the motion function hV of

an optical flow field Vt along a curve c. Namely, it is a measure of the distance
travelled along the curve at time t by c(t) when acted upon by Vt. Thus, it is natural
to think of instantaneous changes in hV in t as a measure of the velocity of the
motion induced by Vt on c(t). In classical geometry, the class of constant velocity
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curves is especially important; they correspond to uniform motions. Similarly, we
will be interested in the class of constant motion functions hV . These correspond
to optical flow fields Vt along c that induce uniform motion along c, where by
uniform motion we mean the distance travelled along c is constant for all time.

Another key link with classical differential geometry is the notion of parallel
transport (or parallel translation) of tangent vectors [9]. Parallel transport is a key
tool for “moving” tangent vectors from different tangent spaces while preserving
direction/orientation along the curve. Parallel transport utilizes the inherent linear
structure of the tangent space to define a linear map between tangent on points
along the curve. We aim to develop a similar analytic tool for IAMs. However,
an immediate stumbling block is the clear lack of linear structure in the OFM.
We therefore take a different approach to defining parallel translation in the OFM
case using motion functions.

To motivate our definition, we recall that a vector field along a curve c on a
manifold is parallel if its covariant derivative along c vanishes. The covariant
derivative is in essence a way of differentiating the vector field along c. The rela-
tion between parallel translation and parallel vector fields is that, given a tangent
vector v in the tangent space of a point c(t) on the curve c, it is possible to extend
v along c by parallel translation to yield a parallel vector field along c. In the OFM
case, we have the motion function of an optical flow field along c at our disposal,
and we use it to characterize parallelism of the field along the curve.

Definition 4.6. An optical flow field Vt along a curve c, is parallel if the deriva-
tive of its motion function with respect to t is zero, or equivalently, if the motion
function is constant along c, i.e., hV (t) is a constant.

In all that follows, we will denote by Ω(c,m1,m2) the space of all optical
fields through m1 and m2 along the curve c passing through m1,m2 ∈ M . When
m1,m2 are understood from context, we simply refer to this space as Ω(c). The
subclass of parallel fields along c will be denoted by ω(c).

A few facts are immediate from the above definition. First, since hV (t) ≤ rt
for all t, it is clear that if Vt is to be parallel along c, then hV (t) must be a constant
hV independent of t and hV ≤ inft rt. Therefore, in the future, we will suppress
the argument t in the motion function hV (t) of a parallel flow field. Second, since
Vt is characterized by hV , we see that, for any constant δ such that 0 ≤ δ < inft rt,
there is a parallel optical flow field along c(t) such that hV = δ. Such a parallel
optical flow field can be obtained, for example, by choosing for each t a flow
operator φt ∈ Oc(t) with dc(φt(c(t)), c(t)) = δ. The existence of such an optical
field φt is guaranteed by the above theorem. Given φ ∈ Oc0 we aim to extend φ
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throughout the curve to obtain a flow field Vt such that Vt is parallel along c with
hV = dc(φ(c0), (c0)). The following result allows for such parallel translation of
flow operators along a curve.

Proposition 4.7. Let M be an IAM, and let c be a curve through m1,m2 ∈ M .
Let ε = inft rt. Then, given any φ ∈ Oc(t0) with δ = dc(φ(c(t0)), c(t0)) < ε there
exists a unique parallel optical field along c(t) with hV (t) = δ.

Proof. As δ < ε, it follows that δ < rt. Thus, invoking Theorem 4.2 for the
special case of the constant function h(t) = δ, we have the existence of a unique
optical field Vt along c(t) such that hV (t) = δ. Moreover, since hV (t) is constant,
Vt is parallel.

In contrast with the classical case, parallel transport along a curve is dependent
on the nature of the flow operator, i.e., an arbitrary flow operator φ ∈ Oc0 cannot
be parallel translated along c unless dc(φ(c0), c0) < inft rt. This constraint is
related to the nature of the curve; parallel transport along a curve that contains
points with high curvatureKt is limited to those flow operators that induce smaller
motion along the curve. Moreover, the possibility of parallel transport of φ ∈ Oc(t)

has a global dependence, i.e., it depends on the curvature of the entire curve, not
only the curvature Kt at the point c(t).

Thus, we are naturally led to study those curves for which parallel translation
of an operator φ at a single point c(t0) ensures the existence of parallel translation
of operators at any other point on the curve. Clearly, the necessary condition is
the invariance ofKt with respect to t, and, therefore, we are led to consider curves
for which the curvature Kt is independent of t, i.e., a constant. This special class
of curves has a very rich structure that we explore in the following sections.

4.4. Approximation of arbitrary flow fields by parallel flow fields
In this section, we consider the problem of approximating an arbitrary Vt ∈

Ω(c) by elements in ω(c). Consider an optical field Vt ∈ Ω(c) (not necessarily
parallel) along a curve c of constant flow curvature. A natural question to ask
is how far away Vt is from being parallel. One way to do this is to seek the
“best” approximation of Vt by a parallel field Wt ∈ ω(c) along c. To quantify the
approximation, we consider the following error:

e(t) = dc(Vt(c(t)),Wt(c(t))).

In words, e(t) is a measure of how the action of Vt on c(t) differs from the action
of Wt on c(t). Note that e(t) is bounded above by hV (t) + hW since e(t) =
dc(Vt(c(t)),Wt(c(t))) ≤ dc(Vt(c(t)), c(t)) + dc(c(t),Wt(c(t))) = hV (t) + hW .
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While e(t) is a pointwise error, we will need to consider the total error over
the entire curve. To this end, a natural choice of error metric is

E(V,W ) =

∫ b

a

e(t)dt,

where the domain of c is the interval (a, b). Thus, our goal is to find a parallel
optical field Wt ∈ ω(c) that minimizes E(V,W ), i.e.,

W ∗ = arg min
W

E(V,W ).

In general, a minimizer may not exist, or it may not be unique if one exists. How-
ever, the greatest issue is the strong dependence of the error e(t) on the flow
metric, which prevents a generic solution to the minimization problem since we
cannot infer the convexity of the problem as stated. We can, however, obtain a
universal lower bound on the error independent of the flow metric as follows

|hV (t)− hW | = |dc(Vt(c(t)), c(t))− dc(W (c(t)), c(t))| ≤ e(t).

Therefore, we seek a minimizer of
∫ b

a

|hV (t) − hW |dt. Note that since Wt is

parallel, hW is a constant, say h ≥ 0. Moreover, since c is a path of constant
flow curvature, rt is a constant r > 0. Since h characterizes Wt, a minimizer h∗

yields a lower bound for E(V,W ). Our goal then, is to find an optimal constant

h∗ that minimizes Ẽ(h) =

∫ b

a

|hV (t) − h|dt. We claim that a solution h∗ is a

certain “median” of hV (t). We first define Ak = {t ∈ (a, b) : hV (t) > k} and
Bk = {t ∈ (a, b) : hV (t) ≤ k} for some k. We claim that an optimal constant ĥ
is such that λ(Aĥ) = λ(Bĥ), where λ(S) denotes the measure of a set S.

Theorem 4.8. Let ĥ be the constant such that λ(Abh) = λ(Bbh). Then, ĥ minimizes

Ẽ(h).

Proof. Note that the function Ẽ(h) is convex in h with h ∈ (a, b). Therefore, we
are guaranteed a minimizer h∗. Now, without loss of generality, we assume that
h∗ < ĥ. We evaluate the cost over the two regions Abh and Bbh

Ẽ(h∗) =

∫ b

a

|hV (t)− h∗|dt =

∫
Abh
|hV (t)− h∗|dt+

∫
Bbh
|hV (t)− h∗|dt.
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Define B1 = {t : h∗ < hV (t) < ĥ} and B2 = {t : hV (t) < h∗} and note that

λ(Abh)− λ(B1)− λ(B2) = 0. We can now express Ẽ(h∗) in terms of Ẽ(ĥ) as

Ẽ(h∗) = ẼAbh(ĥ) + (ĥ− h∗)λ(Abh) + ẼBbh(ĥ)− (ĥ− h∗)λ(B2)− α,

where ẼX(ĥ) denotes the cost function restricted to the subset X ⊆ (a, b) and α
is a positive constant that measures the difference of ĥ − h∗ on the set B1. The
maximum value of α is (ĥ− h∗)λ(B1) and hence

Ẽ(h∗) ≤ ẼAbh(ĥ) + (ĥ− h∗)(λ(Abh)− λ(B1)− λ(B2)) + ẼBbh(ĥ).

Since λ(Abh)− λ(B1)− λ(B2) = 0, we conclude that

Ẽ(h∗) ≤ Ẽ(ĥ)

and hence h∗ = ĥ. The case of h∗ > ĥ follows from symmetry.

Case study: We illustrate the approximation of non-parallel flow fields by paral-
lel flow fields with the example of video resampling where we consider a video I
to be a curve on an IAM, i.e., a video I = {It, 0 ≤ t ≤ T} with T > 0. This ap-
plication is related to the problem of dynamic time warping (DTW) [26, 27, 28],
where one is interested in measuring the similarity between two sequences that
vary in time or speed. As we shall see, this can be used for matching or aligning
video sequences with a warped time axis [27, 28].

Consider the IAM generated by imaging a black disk on an infinite white
background starting with an initial velocity v0 and accelerating with constant ac-
celeration a along a fixed direction. For instance, the disk can be thought of as
undergoing freefall off an infinitely high cliff. The IAM is a 1D curve c and
homeomorphic to R+, the non-negative reals. Note that the curvature is every-
where zero since rt = ∞. Given an arbitrary flow field Vt along c, our goal is
to analytically construct a parallel field Ṽt such that Ṽt is the unique parallel flow
field that minimizes Ẽ(h). We first consider the video obtained by the action of Vt
i.e. I = {Vt(c(t))}. Since Vt is not parallel, the video will show the disk moving
with non-uniform motion. Our goal is to make the video uniform, i.e., to generate
a new video Ĩ from Ṽt that shows the disk moving with uniform motion.

From the physics of the problem, it is clear that dc(c(t), c(t+ δt)) = K(vtδt +
1
2
aδ2

t ) for some positive constant K and any time increment δt with vt being the
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velocity at time t. Now, since Ṽt is to be a parallel flow field, we have that hṼ is
a constant denoted by h. Thus, dc(Ṽt(c(t)), c(t)) = dc(c(t), c(t+ δt)) = h so that
K(vtδt + 1

2
aδ2

t ) = h. Rearranging this equation, we arrive at

δ2
t +

2vt
a
δt −

2h

aK
= 0.

Solving for δt, we obtain two real roots δ1,2
t = −vt

a
±
√

(vt

a
)2 + 2h

aK
of which the

(physically meaningful) positive root δ1
t = −vt

a
+
√

(vt

a
)2 + 2h

aK
> 0 is retained.

Thus, by defining Ṽt such that Ṽt(c(t)) = c(t + δ1
t ), we see that Ṽt is the unique

parallel flow field that minimizes Ẽ(h). The new video Ĩ = {Ṽt(c(t))} will
thus show the disk moving with constant velocity. With this, we have effectively
linearized the motion and made it independent of the acceleration of the disk.

To summarize, under curvature conditions on a curve c, it is possible to ap-
proximate an arbitrary flow field by a parallel one. This is especially useful when
we need to deal with multiple instances of the same video and where the rate of
execution of the video across each instance of the video. An example of this was
in the video targeting example. Parallel flow fields enjoy other properties as well.
In Appendix B, we illustrate a multiscale representation for parallel flow fields.
Similar to the multiscale representation that wavelets provide for natural images,
such a multi-scale representation could potentially pave the way for “lossy com-
pression” of arbitrary flow fields by storing only the relevant scales as well as
savings in computations.

5. Discussion

In this paper, we have developed the mathematical foundations of optical flow-
based transport operators for image manifolds, which were introduced empirically
[13]. Our main theoretical contribution was the development of the flow metric
for using the ambient metric on the OFMs. Using the flow metric, we derived
differential geometric analogues of, vector fields, parallel transport, curvature etc.
When the IAM is generated by Lie group parameters, we showed that the OFM
framework includes previous algebraic methods as a special case. Moreover, since
the flow neighborhood at each point is the entire IAM, we can obtain geodesics
between any two images using flow operators.

Our simulations showed the utility of the flow metric in practical applica-
tions such as non-isometric dimensionality reduction, parameter estimation and
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Karcher mean estimation. These examples set the stage for further use of the flow
metric and related ideas to more robust applications. For instance, non-isometric
dimensionality reduction allows us to build charts and geodesics for the IAM.
Karcher mean estimates can be used in classification and recognition under sparse
sampling conditions.

A clear assumption in our analysis has been that optical flow is the transport
operator of choice for IAMs. While this is true for a majority of IAMs gen-
erated by motion-induced parameter changes such as translations, rotations and
unstructured plastic deformations, there are classes of IAMs for which the choice
of transport operator is not immediately clear. For instance, for illumination man-
ifolds obtained by variations in the illumination of an object, optical flow may not
be the transport operator of choice, since such manifolds do not in general obey
the brightness constancy requirement needed in optical flow computations. More-
over, in cases where there is significant self-occlusion during the imaging process,
optical flow may not be a practical transport operator. However, by regularizing
the optical flow computation to handle occlusions by removing flow operators
that lead to undefined motion between pixels, one can partially circumvent this
issue, and the methods of this paper can be profitably applied. However, these
are aspects of a more computational nature, and we reserve them for an alternate
forum.

A number of avenues for future work exist. First, our work hints that it
should be possible to develop additional geometric tools such as affine connec-
tions, holonomy, etc. using flow operators. These will complete the IAM anal-
ysis toolbox. Second, although our development has been specific to the case
of IAMs with optical flow, the basic model is extensible to a wide variety of
signal ensembles with appropriately defined transport operators. For instance,
a manifold model for speech signals has been proposed in [29] where appropriate
transport operators and the analog of OFMs may involve a frequency domain ap-
proach. Once the “right” transport operator has been identified for the application
in hand, one can conceivably define and study metrics similar to our flow metric
and thereby develop analytic tools for further analysis.
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Appendix A. Smoothness and Distance Properties of OFMs

In this appendix, we establish the smoothness and isometry properties of
OFMs associated with two interesting classes of IAMs: the affine articulation
manifold and the pose manifold.

Appendix A.1. Affine articulation manifold
Affine articulations are parameterized by a 6D articulation space Θ = R6;

each articulation θ can be written as θ = (A, t), with A ∈ R2×2 and t ∈ R2. Any
image belonging to the IAM can thus be written as

I1(x) = Iref ((A+ I)x + t) , (A.1)

where x = (x, y) is defined over the domain X = [0, 1]× [0, 1] and where Iref is a
reference image.2 The optical flow field fθ associated with the transport operator
can be written as fθ(x) = fA,t(x) = Ax + t. Now, recall that the OFM at Iref is
defined as

OIref = {fθ : θ = (A, t), A ∈ R2×2, t ∈ R2}.

The linear dependence of the optical flow field on both A and t implies that the
OFM, which is the collection of optical flows at Iref , is infinitely smooth. Finally,
noting that the OFM is independent of the reference image, we can establish the
following result.

Lemma 1. For affine articulations, the OFM at any reference image is infinitely
smooth.

Next, we consider distances between optical flows and establish that the OFM
is isometric.

Lemma 2. For affine articulations, the OFM at any reference image is globally
isometric.

2Boundary-related issues are always an concern when we define images over a finite domain.
Here, we circumvent this by assuming that the regions of interest are surrounded by a field of
zeros. This allows us to assign undefined values to zero and satisfy (A.1)
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Proof. Given two articulations θ1 = (A1, t1) and θ2 = (A2, t2), the Euclidean
distance between them is given by

(d(fθ1 , fθ2))
2 =

∫
x∈X
‖fθ1(x)− fθ2(x)‖2

2 dx

=

∫
x∈X
‖(A1 − A2)x + (t1 − t2)‖2

2 dx

= (θ1 − θ2)TΣ(θ1 − θ2),

where

Σ =

∫
x∈X

([
x
1

] [
xT 1

])
dx.

For X = [0, 1]× [0, 1], it is easily shown that Σ is full-rank and positive definite.
Hence, we have

d(fθ1 , fθ2) = ‖θ1 − θ2‖Σ,

where ‖·‖Σ is the Mahalanobis (or weighted Euclidean) distance defined using the
matrix Σ. This implies that the OFM is Euclidean and, hence, globally isometric.

Appendix A.2. Pose manifold
The pose manifold is the IAM corresponding to the motion of a camera observ-

ing a static scene. It is well-known that the articulation space is 6D, with 3 degrees
of rotation and 3 degrees of translation of the camera, i.e., Θ = SO(3)× R3. We
assume that the optical flow is the (unique) 2D projection of the motion flow of
the scene induced due to the motion of the camera.

Without loss of generality, we assume the reference articulation θref =
(R0, t0) = (I,0) and that the camera’s internal calibration is known and accounted
for [30]. At the reference articulation θref , let the depth at a pixel x be given by
λref(x). Under an articulation θ = (Rθ, tθ), the optical flow observed at the pixel
x is given by

f(θ)(x) = P

(
λref(x)Rθ

[
x
1

]
+ t

)
− P

(
λref(x)

[
x
1

])
(A.2)

where P (·) is a projection operator such that P (x, y, z) = (x/z, y/z). Note that
P is a well-defined and infinitely smooth function provided z 6= 0.

The OFM O is the image of the map f(θ) = {f(θ)(x) : x ∈ X}, where X
is the image plane. We now establish the smoothness of the OFM.
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Lemma 3. Consider the OFM corresponding to a pose manifold of a scene with
depth map (at the reference articulation θref) strictly bounded away from zero, i.e,
∀ x, λref(x) > λ > 0. Then there exists a neighborhood of θref where f(θ) =
{f(θ)(x); x ∈ X} is an infinitely smooth map.

Proof. The smoothness of f(θ) follows from the smoothness of f(θ)(x), which
in turn follows from the smoothness of the projection operator P . Note that
P (x, y, z) = (x/z, y/z) is well defined and infinitely smooth only if z 6= 0.
When all points in the scene have depth bounded away from zero, then there is
guaranteed a neighborhood of Θ around θref wherein all points continue to have
depth bounded away from zero. This ensures that the projection of all points is
well defined, and hence, f(θ) is infinitely smooth in this neighborhood.

Note that, in contrast to affine articulations, where the corresponding OFM is
smooth globally, the OFM associated with the pose manifold is smooth only over
a neighborhood of the reference point.

Next, we consider distances between optical flows and establish that the OFM
is locally isometric. We begin by defining the following representation for rotation
matrices. Let ω = (ωx, ωy, ωz) ∈ R3, and let Ωω ∈ R3×3 be the skew-symmetric
matrix defined as

Ωω =

 0 −ωx ωy
ωx 0 −ωz
−ωy ωz 0

 .
Noting that the matrix exponential eΩω is a rotation matrix, we define our articu-
lations as θ = (ω, t) ∈ R6, with t = (tx, ty, tz).

Before we state a formal result, we need to introduce two assumptions that
will help in simplifying the derivation. First, we assume that the imaging model
is well-approximated by a weak perspective model [30]. In the weak perspective
model, it is assumed that the variations in the scene depth are significantly smaller
than the average depth of the scene. In such a case, the projection map P (x) =
(x/z, y/z) can be well-approximated by

Pwp(x) = (x/zav, y/zav),

where zav is the average scene depth. As a consequence, translations along the z-
axis are unobservable [30]; hence, we restrict the articulation space to the rotation
of the camera and translation along x and y axes alone. Second, we assume that
the rotation undergone by the camera is small. This enables us to approximate the
matrix-exponential eΩω ≈ I + Ωω. As a consequence of this assumption, we only
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obtain a local isometry result. With these two assumptions, we are ready to state
a result on the distances between optical flows.

Lemma 4. Consider the pose manifold under the assumption of the weak per-
spective imaging model. Then the OFM is locally isometric.

Proof. Without loss of generality, we denote our reference articulation as θref = 0,
which corresponds to identity rotation matrix and null translation vector. We are
interested in the distance between two optical flow fields f(θ1) and f(θ2). Under
our assumptions of weak perspective imaging model and small rotation, we can
compute the distance between the optical flows to be

f(θ1)(x)− f(θ2)(x)

= Pwp

(
λrefR1

[
x
1

]
+ t1

)
− Pwp

(
λrefR2

[
x
1

]
+ t2

)
=

1

zav

[
(−λref(ω1,xy − ω1,y) + t1,x)− (−λref(ω2,xy − ω2,y) + t1,x)

(λref(ω1,xx− ω1,z) + t1,y)− (λref(ω2,xx− ω2,z) + t2,y)

]
=

1

zav

[
−λref(ω1,x − ω2,x)y + λref(ω1,y − ω2,y) + (t1,x − t2,x)
λref(ω1,x − ω2,x)x− λref(ω1,z − ω2,z) + (t1,y − t2,y)

]
.

Notice that both t1,z and t2,z are absent in the expression above. As noted above,
this is due to the assumption of weak perspective imaging model which makes the
translation of the camera along the z-axis unobservable. A key observation is that
the articulation parameters θ1 = (ω1, t1) and θ2 = (ω2, t2) can be expressed as a
function that is linear in the expression above. Hence,

f(θ1)(x)− f(θ2)(x) = A(x)

[
ω1 − ω2

t1 − t2

]
.

Finally, summing over x ∈ X , we obtain

d(f(θ1), f(θ2))2 = (θ1 − θ2)T
(∫

x∈X
AT (x)A(x)dx

)
(θ1 − θ2).

Hence, the OFM is locally isometric.

Appendix B. Multiscale Structure of Parallel Flow Fields

As indicated in the Section 4, the set of parallel optical fields is a very special
subset of the set of all optical fields along a fixed curve c. In this section, we
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will construct a monoid structure (i.e., a set with an associative operation and
identity) on the set of all optical fields along a fixed curve c and show that the
class of parallel fields forms a submonoid of this set under some conditions on
the curvature along the curve. Moreover, the monoid operation yields a multiscale
structure on the set of parallel optical fields.

Appendix B.1. Monoid structure on Ω(c)

As noted previously in Section 2, a clear disadvantage in dealing with the
space of all optical flow fields along a curve is the lack of a linear, or more gen-
erally, any algebraic structure. In order to remedy this situation, we will define
a binary operation on the set of optical fields that yields a monoid structure. We
first fix a curve c passing through m1,m2 ∈M .

Recall that a generic Vt ∈ Ω(c) is characterized by its motion function hV (t).
Thus, operations defined on motion functions hV (t) translate to operations on
Vt ∈ Ω(c). With this in mind, we define for Vt,Wt ∈ Ω(c) the sum Vt +Wt to be
the unique optical field with motion function

hV+W (t) = min(hV (t) + hW (t), rt).

Since hV+W (t) ≤ rt for all t, we see that hV+W (t) corresponds to a unique flow
field that we define to be Vt + Wt. This operation is clearly commutative. Note
also that the trivial (parallel) field Zt defined to be the field that acts trivially on
c(t); i.e.,

Zt(c(t)) = c(t)

is characterized by the motion function hZ(t) = 0 since hZ(t) =
dc(Zt(c(t), c(t)) = dc(c(t), c(t)) = 0. Moreover, for any Vt ∈ Ω(c), we have
that

Zt + Vt = Vt.

We see that Zt acts as the identity element in Ω(c). In addition to this, there is also
the unique optical field Ut characterized by

hU(t) = rt

that satisfies
Vt + Ut = Ut

for all Vt ∈ Ω(c) and hence acts as the “absorbing” element of Ω(c).
Clearly, we do not have “inverses” with respect to “+” in the sense that, given

a generic Vt ∈ Ω(c), there does not exist a Wt such that Vt + Wt = Zt. However,
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we do have “conjugates” with respect to “+” in the following sense. Given any
Vt ∈ Ω(c), there is a unique V ∗t ∈ Ω(c) such that

Vt + V ∗t = Ut.

V ∗t is defined by its motion function

hV ∗(t) = rt − hV (t).

We refer to V ∗t as the conjugate of Vt. Moreover,

(V ∗t )∗ = Vt.

Finally, we note that Ut and Zt are conjugates.

Proposition Appendix B.1. Ω(c) is a monoid under the operation “+” defined
in (22).

Proof. We only verify associativity, since Zt provides the identity. Given
Vt, Xt, Yt ∈ Ω(c), we consider the sums (Vt + Xt) + Yt and Vt + (Xt + Yt).
If hV (t), hX(t), hY (t) are such that hV (t) + hX(t) + hY (t) < rt then both sides
are clearly equal. If on the other hand, hV (t) + hX(t) + hY (t) ≥ rt then we must
have that either the sum hV (t)+hX(t)+hY (t) taken two factors at a time exceeds
rt or that the combined sum of all three factors exceeds rt with the sum of no two
factors exceeding rt. In the first case, we assume that hV (t) + hX(t) ≥ rt, which
implies the sum

(Vt +Xt) + Yt = Ut

with (Xt + Yt) 6= Ut, i.e.,

hX(t) + hY (t) < rt.

However, Vt + (Xt + Yt) is characterized by

min(hV (t) + min(hX(t) + hY (t), rt), rt) = min(hV (t) + hX(t) + hY (t), rt) = rt

which shows that
Vt + (Xt + Yt) = Ut

as well. The other cases follow by similar arguments.
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Appendix B.2. Parallel fields along curves of constant curvature
The addition operation defined above restricts to the set ω(c) of parallel

fields along c(t). However, for generic c(t), the sum Vt + Wt of two parallel
fields Vt,Wt ∈ ω(c) may result in a non-parallel field. For instance, consider
hV (t), hW (t) such that hV (t0) + hW (t0) < rt0 but hV (t1) + hW (t1) ≥ rt1 for
some t0, t1. Clearly, the sum is not parallel since in the first case, hV+W (t0) =
hV (t0) + hW (t0) < rt0 while hV+W (t1) = rt1 so that hV+W (t) is not constant.

However, if rt is constant along c, i.e., the flow radius is constant along the
path, then the above situation is vacuous. Since Kt = 1

rt
is the curvature along

the curve c, we are essentially requiring the curvature to be constant along c. We
formally record the above observation.

Proposition Appendix B.2. Let c be a curve with constant curvature Kt. Then,
the operation “+” restricted to ω(c) is well defined and ω(c) is a submonoid of
Ω(c).

Proof. We need only verify closure of “+” in ω(c) since Zt ∈ ω(c). If Vt ∈ ω(c),
then hV (t) is a constant and we will therefore suppress the argument t in hV (t).
Note that since c is of constant curvature, rt is a constant r > 0. Thus, if Vt,Wt ∈
ω(c), then hV+W = min(hV + hW , r). If hV + hW < r then as hV and hW are
both constant so is their sum hV + hW and

hV+W = hV + hW .

If hV + hW ≥ r, then

hV+W = min(hV + hW , r) = r.

In either case, hV+W is constant and hence

Vt +Wt ∈ ω(c).

Thus, curves c that have constant curvature at all points are very special; not
only is parallel transport determined by a single point on the curve, but ω(c) is
also a submonoid of Ω(c).
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Appendix B.3. Multiscale structure of ω(c)

In this section, we look for finite submonoids of ω(c). We would like the
submonoids to be canonically defined, by which we mean that they depend only
on the geometry of the constant curvature curve c. In particular, we construct for
each positive integer k, a collection of finite submonoids Vn,k of ω(c) with n a
non-negative integer and c a constant curvature path. Moreover, we will see that
this collection is naturally nested, i.e.,

V0,k ⊂ V1,k ⊂ · · ·

In essence, this provides a multi-scale view of ω(c).
Since ω(c) consists of parallel optical fields, we will simply denote the motion

function hV (t) of Vt ∈ ω(c) as hV . Moreover, we will suppress the subscript t
when referring to elements of Vt ∈ ω(c). Also, for V ∈ ω(c), we mean by V

k
the

element in ω(c) with motion function being the constant hV

k
. Recall also that ω(c)

possesses two canonical elements Z,U ∈ ω(c) ∩ Ω(c) that act as the trivial and
absorbing elements of ω(c) respectively.

We begin now with the construction of Vn,k. Fix a positive integer k and set

V0,k = {Z,U}.

Next, we inductively set

Vn,k =
{
Z, U

kn ,
2U
kn , ...

(kn−1)U
kn , U

}
.

Now, it is clear that

V0,k ⊂ V1,k ⊂ ....

Moreover, by the constant curvature condition, the sum of any two elements in
Vn,k remains in Vn,k while associativity is obtained from the corresponding prop-
erty in ω(c). Finally, since Z ∈ Vn,k for all n, k, we conclude that each Vn,k is a
finite submonoid of ω(c).

We have thus obtained a sequence of finite submonoids of ω(c). Moreover,
with increasing n, it is clear that an arbitrary V ∈ ω(c) can be uniformly approx-
imated by Ṽ ∈ Vn,k in the sense that |hV − heV | can be made arbitrarily small by
choosing larger n. In other words, the sequence Vn,k is “dense” in ω(c). Finally,
since the basic generators of Vn,k are Z,U ∈ ω(c) ∩ Ω(c), this construction is
canonical in the sense that it depends only on the set of {Z,U}, which are in turn
characterized by the global geometry of the curve c.
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In Section 4, we saw that, under curvature conditions on a curve c, it is possible
to approximate an arbitrary flow field by a parallel one. The results presented
above show that one can further approximate a parallel flow field with a finite
collection of “template” elements from ω(c). This is very much similar to the
multiscale representation that wavelets provide for natural images. Indeed, the
multiscale structure inherent to monoids paves the way for “lossy compression”
of arbitrary flow fields by storing only the relevant scales Vn,k. In addition to
compression, the multiscale structure can potentially enable fast computations on
the flow fields. Operations on the flow fields can equivalently be mapped to those
on the Vn,k without loss in accuracy while gaining significantly in the number of
computations required.
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