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Abstract—We propose algorithms for constructing linear embed-
dings of a finite dataset V ⊂ Rd into a k-dimensional subspace
with provable, nearly optimal distortions. First, we propose an
exhaustive-search-based algorithm that yields a k-dimensional
linear embedding with distortion at most εopt(k)+δ, for any δ > 0
where εopt(k) is the smallest achievable distortion over all possible
orthonormal embeddings. This algorithm is space-efficient and can
be achieved by a single pass over the data V . However, the runtime
of this algorithm is exponential in k. Second, we propose a convex-
programming-based algorithm that yields an O (k/δ)-dimensional
orthonormal embedding with distortion at most (1 + δ)εopt(k).
The runtime of this algorithm is polynomial in d and independent
of k. Several experiments demonstrate the benefits of our approach
over conventional linear embedding techniques, such as principal
components analysis (PCA) or random projections.

I. INTRODUCTION

In applications dealing with high dimensional metric spaces,
an extremely useful tool is the notion of an embedding into
a space of low dimension [1]. Such embeddings constitute a
concise, yet faithful representation of the original metric space,
and consequently enable the use of very efficient algorithmic
tools and techniques in the smaller space.

In this paper, we consider inputs consisting of a set V of
n vectors in Rd, and seek embeddings of the form f : Rd →
Rk, where k � d, n. Here, we will consider the domain Rd
and codomain Rk as being equipped with the Euclidean norm.
Our goal is to minimize the distortion of the embedding f .
Specifically, a function f : Rd → Rk is said to have distortion
ε > 0 if, for every x ∈ V ,

1− ε ≤
‖f(x)‖22
‖x‖22

≤ 1 + ε. (1)

Our goal is to construct embeddings with as small a value of
ε as possible. As intuition would suggest, there is a tradeoff
between k, the number of dimensions of the embedding,
and ε, the distortion. A celebrated result by Johnson and
Lindenstrauss [2] states that given any set V of n vectors in Rd
and ε > 0, if k = O(logn/ε2), then there exists an embedding
f : Rd → Rk that satisfies (1). In fact, the embedding in
this theorem is constructed by choosing a random orthonormal
projection from Rd to Rk, scaled by an appropriate factor;
such functions f may be called J-L embeddings. The random
dimensionality reduction technique plays a foundational role
in several areas, including high-dimensional similarity search
and compressive sensing. (See Section I-B for more details.)

Unfortunately, the bound guaranteed by a J-L embedding
cannot be improved (by much): by the result of [3], there exist

sets of n points that necessarily require Ω(logn/ε2 log(1/ε))
dimensions in order to be embedded with distortion at most ε.
However, real-world data often exhibit some low-dimensional
structure, which can be potentially exploited to obtain an
embedding of distortion ε using fewer dimensions. Thus, an
intriguing question emerges: given a particular set V possess-
ing some hidden low-dimensional structure, is it possible to
examine V and find an embedding into fewer than O(logn/ε2)
dimensions, while still obtaining distortion ε?

A. Our Contributions

In this paper, we focus on orthonormal embeddings. These
are embeddings that correspond to an orthonormal projection
of Rd on a k-dimensional subspace. Note that for such embed-
dings, the right-hand-side inequality of Eq. 1 trivially holds, as
projection does not expand distances by definition. It therefore
suffices to focus on the left-hand-side inequality (i.e., the lower
bound) in Eq. 1. Also, we can assume without loss of generality
assume that all vectors in V have unit norm.

For a fixed set set V ∈ Rd, we define εopt(k) to be the
smallest achievable distortion over all possible orthonormal
embeddings of V into Rk. Our specific contributions are:
• We propose an exhaustive-search-based algorithm that finds

a linear embedding with distortion at most εopt(k) + δ, for
any δ > 0. This algorithm is space-efficient and can be
achieved by a single pass over the data V . However, the
runtime of this algorithm is exponential in k and 1/δ.
• We propose a convex-programming-based algorithm that

yields an O (k/δ)-dimensional orthonormal embedding with
distortion at most (1 + δ)εopt(k). Concretely, our algorithm
produces a 2k-dimensional orthonormal embedding with
distortion at most 2εopt(k). The runtime of this algorithm
is polynomial in n and d, and independent of k.
• Several numerical experiments demonstrate the benefits of

our approach over conventional linear embedding techniques.

B. Applications

The so-called curse of dimensionality poses a central chal-
lenge in various signal processing problems including sensing,
storage, transmission, and inference. Therefore, an efficient
method to transform high dimensional data into more compact
representations would have an impact on a number of applica-
tions that currently use random projections. This includes:
• Neighborhood-preserving projections and hashes: Suppose

that given a high dimensional data set and a set of queries,



one wishes to find the nearest neighbors of those queries
in the data set. For a set V of n points in Rd, a naı̈ve
point query would incur O (nd) computations. On the other
hand, one can bring this computational cost down to O (nk),
if one can reduce the dimensionality from d to k. This
approach forms the core of locality sensitive hashing (LSH),
a popular technique for pattern recognition and information
retrieval [4]. Indeed, random linear functions that resemble
J-L embeddings play a pivotal role in building space- and
time-efficient hash functions.
• Compressive signal acquisition: Instead of acquiring (or

recording) a high dimensional signal (or image) x ∈ Rd, the
technique of compressive sensing (CS) prescribes recording
only a few linear projections (or measurements) y = Φx.
A rich, extensive theory specifying the types of allowable
projection matrices Φ, as well as efficient algorithms for
recovering x from y, has been developed; see, for example,
the papers of [5–7]. Here too, the concept of low-dimensional
random projections plays a pivotal role.

C. Prior Work

The classical method to construct lower dimensional data
representations is principal components analysis (PCA), which
involves orthogonally projecting a dataset into the subspace
spanned by the top few eigenvectors of its covariance matrix.
However, a global spectral technique such as PCA can poten-
tially contract specific local distances, and hence cannot offer
near-optimal distortion guarantees in general.

The optimal trade-offs between distortion and dimensions
have been studied for many metrics [1]. Although most of
those results were focused on the worst case distortion (along
the line of the J-L theorem), there have been several works
focused on designing algorithms that approximate the best
distortion (see [8] and references therein). With the exception
of [9], however, this research has focused on minimizing the
distortion of non-linear embeddings, a much harder task. In
particular, the minimum distortion of a non-linear embedding
into a fixed-dimensional space is NP-hard to approximate, even
up to a polynomial factor [10]. In contrast, our focus on linear
embeddings enables us to obtain strong algorithmic results.

II. EXHAUSTIVE SEARCH

First, we develop an algorithm that yields linear embeddings
in `k2 having distortion arbitrarily close to the optimal distortion
of any orthonormal embedding. Since the running time of the
algorithm is exponential in k, its applications may be limited
to cases where an embedding into a very small number of
dimensions is desired. However, the algorithm exhibits many
characteristics of a polynomial time approximation scheme
(PTAS), so it is of theoretical interest.

Formally, our goal shall be to construct a linear embedding
f into Rk having distortion at most εopt(k)+δ for an arbitrary
δ > 0. Our embedding will not necessarily be orthonormal; it
will instead be the the composition of a random J-L embedding
and another linear embedding. We establish the following:

Theorem 2.1: Given a set V consisting of n points in
Rd, a positive integer k < d, and a parameter δ > 0,

there exists an algorithm A that returns an embedding f of
V into Rk having distortion at most εopt(k) + δ, in time
O(n2)(k/δ)O(k2 log(n)/δ2).

Proof: Our algorithm is similar to that used by Badoiu et
al., who solve a variety of geometric optimization problems by
first reducing the dimension of the input, and then performing
a brute force search on the lower dimensional space [11].
Define U to be a k-dimensional subspace of Rd such that
an orthonormal projection into U yields an embedding with
the optimal distortion εopt(k). We let {u1, . . . , uk} be an
orthonormal basis for U . The first step of our algorithm is
to perform a regular J-L embedding g : Rd → Rq on the
input. We need to ensure that g does not distort the angles
between vectors in U and V too much; specifically, it suffices
to obtain the following for every unit basis vector ui and each
unit vector v ∈ V :

〈g(ui), g(v)〉2 = 〈ui, v〉2 ±
δ

2k
. (2)

Here, the ‘±’ symbol is used to denote worst case deviations.
Such a mapping g can be performed on V with high probability
of success, using a codomain having q = Θ(log(n)k/δ2)
dimensions. Note that the bound still holds for squared inner
products, because U and V consist entirely of unit vectors.
Note also that the high probability of success holds even though
we don’t know what U is.

Next, we do a brute force search over the unit
sphere of Rq to approximately guess the transformed basis
{g(u1), . . . , g(uk)}. This may seem formidable, but fortu-
nately for our purposes, it suffices to consider only k-tuples of
candidates in a δ

4k
-net N over unit vectors in Rq . A standard

volume-packing argument states that it is possible to construct
N with cardinality at most

(
4k
δ

)Cq for some absolute constant
C. We simply iterate over all possible k-tuples of vectors in
N . Suppose W = (w1, . . . , wk) are the vectors considered
in a particular iteration of the search, and define MW to be
the k × q matrix whose rows are the vectors (w1, . . . , wk).
Among all such k-tuples W ∈ Nk, we identify the k-tuple
that minimizes the maximum of the right-side distortion

RightDistortion(W) = max
v∈V

(
‖MW · g(v)‖22 − 1

)
,

and the left-side distortion

LeftDistortion(W) = max
v∈V

(
1− ‖MW · g(v)‖22

)
.

We let W∗ = (w∗1 , . . . , w
∗
k) be the minimizing set of vectors

in Nk, and let M∗ be the corresponding matrix. Our algorithm
shall output the final linear transformation f(v) = M∗ · g(v),
the composition of the linear transformation implied by M∗

with the J-L mapping g.
We now show that f has distortion at most εopt(k) + δ.

For all i, define w′i to be the element of N that is closest in
direction to g(ui). Vector w′i is then a unit vector whose angle
from g(ui) is at most δ

4k
, since N is a δ

4k
-net. It follows that

〈w′i, g(v)〉 = 〈g(ui), g(v)〉 ± δ

4k
,



and hence, for all v ∈ V ,

〈w′i, g(v)〉2 = 〈g(ui), g(v)〉2 ± δ

2k
= 〈ui, v〉2 ±

δ

k
,

where the latter equality uses the bound in (2). Summing over
all values of i, we see that

‖M∗ · g(v)‖22 =

k∑
i=1

〈w′i, g(v)〉2 =

k∑
i=1

〈ui, v〉2 ± δ.

By our choice of U and the fact that orthonormal projections
are contractive, the value of

∑k
i=1〈ui, v〉

2 must lie in the range
[1− εopt(k), 1], and hence:

1− εopt(k)− δ ≤ ‖f(v)‖22 ≤ 1 + δ.

From this, it follows that f has distortion at most εopt(k) + δ.
The time complexity is dominated by the time required

to compute the worst case right- and left-side distortions for
each k-tuple of vectors (w1, . . . , wk) in our δ/4k-net N .
Naı̈vely, there are O(n) vectors in V , and O((k/δ)qkC) k-
tuples for some constant C ∈ O(1), giving a total running
time of O(n)(k/δ)O(k2 log(n)/δ2). The running time could
be potentially reduced by pruning the brute-force search (for
example, by only considering k-tuples of vectors in N that are
approximately mutually orthogonal), but we do not pursue that
direction here.

III. CONVEX PROGRAMMING

Next, we develop an alternate approach for constructing
orthonormal embeddings that are close to optimal. We start
by recasting the problem as an optimization program. Recall
that V = {v1, . . . , vn} ⊂ Rd is a given set of unit vectors.
We wish to find Φ ∈ Rk×d with orthonormal rows such
that maxi∈[1,...,n]

∣∣‖Φvi‖2 − 1
∣∣ is minimized. This problem is

highly non-convex and its exact solution appears to require ex-
ponential time. However, we can achieve various approximate
solutions in polynomial time as follows.

Since Φ is non-expansive, we can drop the absolute value
constraint and stipulate the matrix of minimal distortion as the
solution of the optimization

εopt(k) = min ε (3)

subject to 1− ε ≤ ‖Φvi‖22 , i ∈ [n]

ΦΦT = Ik×k.

Consider the semidefinite program

γopt(k) = min γ (4)

subject to vTi Xvi ≤ γ, i ∈ [n]

trace(X) = d− k, 0 � X � I.

Clearly, γopt(k) ≤ εopt(k). This is easily proved as follows:
consider any orthonormal Φ that is feasible to (3) and con-
struct an ortho-basis Φ⊥ spanning the nullspace of Φ. Then,
X = ΦT⊥Φ⊥ is feasible to (4) and the result holds. However,
the program (4) is precisely the program used to estimate the
outer (d − k)-radius of the point set V [12]. Moreover, the
authors of [12] also propose an efficient scheme, based on

randomized rounding (RR), that produces a matrix Φ̂⊥ with
d−k orthonormal rows, with cost γ at most O (logn)·γopt(k).

Immediately, we obtain the following algorithm (that we call
SDP+RR): (i) solve the semidefinite program (4); (ii) apply the
randomized rounding scheme of [12] to the solution of (4) to
obtain an orthonormal (d−k)×d matrix Φ̂⊥; (iii) construct any
ortho-basis of the nullspace of Φ̂⊥, for example, using Gram-
Schmidt orthogonalization. This yields a matrix Φ that achieves
a O (logn)-approximation factor for the original problem (3).
Formally, we have:

Lemma 1: Given a set V with n points in Rd, there exists
a polynomial-time algorithm A that returns an orthonormal
embedding f of V into Rk with distortion at most O (logn) ·
εopt(k).

This guarantee is vacuous when εopt(k) and log(n) are
large. However, we prove the following guarantee, which is
somewhat stronger when k is small.

Theorem 3.1: Given a set V with n points in Rd, there exists
a polynomial time algorithm A that returns an orthonormal em-
bedding f of V into Rk with distortion at most (k+1)εopt(k).

Proof: Let X∗ =
∑d
j=1 λjuju

∗
j be any optimizer in (4).

Suppose that 1 ≥ λ1 ≥ . . . ≥ λd ≥ 0 be the n eigenvalues of
X∗. By construction, we have

∑d
j=1 λj = d − k, and for all

v ∈ V , we have vTX∗v =
∑d
j=1 λj〈uj , v〉

2 ≤ γopt(k). First,
observe that the largest eigenvalues λd−k−i ≥ 1

k+1
for i ≥ 1.

If this were not the case, then we would have λd−k+j < 1
k+1

for all j ≥ 0; however, this would imply that∑
j

λj =

d−k−1∑
j=1

λj +

d∑
j=d−k

λj

< d− k − 1 + (k + 1)
1

k + 1
= d− k,

violating the trace constraint in the optimization. Therefore:
d∑
j=1

λj〈uj , v〉2 ≥
d−k∑
j=1

λj〈uj , v〉2 ≥
d−k∑
j=1

1

k + 1
〈uj , v〉2,

or
d−k∑
j=1

〈uj , v〉2 ≤ (k + 1)γopt(k).

In other words, any ortho-basis spanning the range of the k
least significant eigenvectors of X∗ yields a distortion at most
(k + 1) · γopt, and by construction, at most (k + 1) · εopt.

We call this algorithm SDP+DR, where the suffix stands for
deterministic rounding. Again, this approximation guarantee
becomes vacuous when εopt or k are large. But however, notice
that λd−2k−i ≥ 1

2
for i ≥ 0. Else, as above, we would have∑

j

λj < d− 2k − 1 + (2k + 1)
1

2
< d− k,

violating the trace constraint. Therefore, as above, we have
d∑
j=1

λj〈uj , v〉2 ≥
d−2k∑
j=1

1

2
〈uj , v〉2, implying that

d−2k∑
j=1

〈uj , v〉2 ≤ 2γopt(k).
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Fig. 1. Experimental results with orthonormal embeddings. (a) Subspace dataset: variation of embedding dimension m vs. distortion δ produced
by different types of embeddings. (b) Example images from the MNIST dataset. (c) MNIST dataset: variation of m vs. δ.

As above, construct an ortho-basis spanning the range of
the smallest 2k eigenvectors and we are done. Essentially,
this result states that we can deterministically achieve, in
polynomial time, an orthonormal embedding that offers at most
twice the optimal distortion εopt(k) provided we pay a factor
of 2 in the embedding dimension. In fact, the above method to
obtain the bicriteria (two-sided) guarantee can be generalized
to the case of asymmetric constants on either side. We omit
the proof due to space constraints and summarize the result:

Theorem 3.2: Given a set V with n points in Rd and δ > 0,
there exists a polynomial time algorithm A that returns an
orthonormal embedding f of V into Rq with distortion (1 +
δ)εopt(k), where q = d(1 + 1/δ)ke.

IV. EXPERIMENTS

We present two sets of numerical experiments. First, let
d = 64; then, we construct a simple synthetic dataset V ∈ Rd
as follows: we sample q = 500 vectors from a random
subspace of dimension r = 10, add d-dimensional Gaussian
perturbations of small magnitude, and scale the vectors to have
unit `2-norm. We then construct orthonormal embeddings of V
into m dimensions using the SDP-RR and SDP-DR methods;
for both, we solve (4) using a variant of NuMax, an efficient
algorithm for solving SDP’s with rank-1 constraints [13]. We
also construct an m-dimensional orthonormal embedding by
considering the first m normalized principal components of
V , as well as an m-dimensional orthonormal J-L embedding.
Figure 1(a) displays the variation of the distortion δ with
increasing values of m. We observe that SDP-DR achieves the
lowest distortion (in particular, far lower than PCA and random
projections). Further, we see a levelling-off effect for m ≥ 10
for our proposed algorithms, implying that we have correctly
recovered the underlying subspace structure of the dataset.

Next, we consider a more challenging experiment with real-
world data. The MNIST dataset [14] contains a large number
of digital images of handwritten digits of size 28× 28, and is
commonly used as a benchmark for various machine learning
algorithms. We collect n = 200 images of the digit ‘5’, and
construct the set V by calculating all

(
n
2

)
pairwise difference

vectors (normalized to unit norm). We then orthonormally
embed this set into dimension m using different projection

methods, and measure the distortion. The results of this experi-
ment are plotted in Fig. 1(c). Once again, we observe that SDP-
DR offers the lowest distortion among the different methods.
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