
LIE OPERATORS FOR COMPRESSIVE SENSING

Chinmay Hegde†, Aswin Sankaranarayanan‡, Richard Baraniuk∗

†Massachusetts Institute of Technology, Cambridge MA, USA
‡Carnegie Mellon University, Pittsburgh PA, USA

∗Rice University, Houston TX, USA

ABSTRACT

We consider the efficient acquisition, parameter estimation, and re-
covery of signal ensembles that lie on a low-dimensional manifold in
a high-dimensional ambient signal space. Our particular focus is on
randomized, compressive acquisition of signals from the manifold
generated by the transformation of a base signal by operators from a
Lie group. Such manifolds factor prominently in a number of appli-
cations, including radar and sonar array processing, camera arrays,
and video processing. Leveraging the fact that Lie group manifolds
admit a convenient analytical characterization, we develop new the-
ory and algorithms for: (1) estimating the Lie operator parameters
from compressive measurements, and (2) recovering the base sig-
nal from compressive measurements. We validate our approach with
several of numerical simulations, including the reconstruction of an
affine-transformed video sequence from compressive measurements.

1. INTRODUCTION

In recent years, the notion of sparsity as a model for data has come
to the fore. Data vectors of length-N are said to be K-sparse if only
K of their N entries are nonzero; geometrically, the set of all sparse
vectors can be identified with a particular union of K-dimensional
subspaces in RN . Sparsity lies at the heart of Compressive Sens-
ing (CS), an emergent alternative to the classical Shannon/Nyquist
framework for signal acquisition. CS theory stipulates that instead
of recording each of the N entries (or samples) of a data vector
x ∈ RN , the data acquisition system records the values obtained
by performing M � N inner products (or measurements) with
x, such that y = Φx where Φ ∈ RM×N . If x is K-sparse in a
known orthonormal basis Ψ, then it can be exactly recovered from
the M measurements y provided that the entries of the vectors φi
are drawn independently from certain probability distributions and
M = O(K logN/K); further, this recovery can be performed effi-
ciently in polynomial time. [1, 2].

Thus, CS can be viewed as a data acquisition framework that
exploits a low-dimensional geometric model (sparsity) to motivate
low-complexity sampling and reconstruction using random mea-
surements. However, in several applications, the geometry of the
data can be better modeled by a nonlinear low-dimensional man-
ifold. Manifolds have been used as effective models in a range
of machine learning applications, including supervised and semi-
supervised classification and regression on different data types
including images, audio, and text. The problem of specializing CS
to manifold-modeled data has been examined in the literature both
from a theoretical as well as an algorithmic standpoint [3–7].

In this paper, we focus our attention on geometric models in
which the nonlinear manifold can be specified by matrix transforma-
tion operators, or Lie operators. Manifolds defined by Lie operators

are widely encountered in practice. For instance, such models can
be used for families of 1D signals formed by shifting, scaling and di-
lating a fixed base signal x0 (applicable to radar, sonar and antenna
arrays); families of 2D images subjected to transformations such as
translation, rotation, scaling, and illumination change (applicable to
multi-view camera networks); and a temporally varying sequence of
images (applicable to video acquisition) [8,9]. Specifically, we study
and solve two problems pertaining to CS sampling and recovery in
this context:

• Parameter estimation. Given a base signal x0, a manifold L pa-
rameterized by a Lie group, and compressive measurements y of
a signal x = T (z)x0 ∈ L we develop an algorithm to accurately
estimate the unknown manifold parameter vector z. Our algorithm
is algebraic in nature and involves solving a system of multivariate
polynomials. We study the case of a one-dimensional (1D) mani-
fold of shifted signals, and show how it can be extended to higher
dimensional manifolds.

• Base signal estimation. Given parameter values zj , j =
1, . . . , J , and corresponding compressive measurements of the
corresponding signals xj , we develop an algorithm to estimate
the unknown base signal x0. We also calculate the number of
measurements required to stably recover the base signal.

We validate our approach with numerical simulations on both syn-
thetic and real data studying the performance of our algorithms and
their stability with respect to noise.

2. BACKGROUND

2.1. Lie Operators

Consider a data vector x0 belonging to a space S. Consider a (non-
linear) transformation of x0 to another point x ∈ S, so that x =
Tx0. Consider a family of transformation operators T such that
T ∈ T . In this paper, we focus on sets T which are endowed with
an additional group structure, i.e., T satisfies the standard group ax-
ioms: (i) for T1, T2 ∈ T , the composite operator T1◦T2 also belongs
to T ; (ii) T contains the identity transformation I; (iii) the transfor-
mations in T are associative, i.e., (T1◦T2)◦T3 = T1◦(T2◦T3); (iii)
for every T ∈ T , there exists T ′ ∈ T such that T ◦T ′ = T ′◦T = I .

Suppose further that the space of transformations T is differen-
tiable with respect to a suitably-defined distance measure dT (·, ·).
Then, T assumes the structure of a differentiable manifold and is
termed a Lie group [10]. We restrict our attention to finite dimen-
sional Lie groups, i.e., we assume that T can be constructed by a
finite set of transformation operators {T1, . . . , TL} ⊂ T (elements
of this finite set are also known as generators). Consider the set

L = {x ∈ S | x = Tx0, T ∈ T }. (1)



We can identify L as being an L-dimensional manifold embedded in
S. For the rest of the paper, we will concern ourselves with finite-
dimensional data vectors (S = RN ), so that the Lie transformation
operators T reduce to matrix operators of size N ×N .

Suppose that the Lie group T can be parameterized by a L-
dimensional vector z = (z1, . . . , zL); thus, T = T (z) for each
T ∈ T . Then, the group structure endowed on T enables the fol-
lowing convenient formula: x =

(∏
k e

zkGk
)
x0, where Gk repre-

sents the matrix logarithm of the kth generator Tk [8]. Note that the
transformation operators will not be commutative in general. This
restriction, in turn, is captured in the non-commutativity of the terms
in the matrix exponential.

2.2. Compressive Sensing (CS)

A data vector x ∈ RN is said to be K-sparse in the orthonormal
basis Ψ ∈ RN×N if the basis representation u = ΨTx has only
K nonzeros. Classical data acquisition has been largely based on
the Shannon/Nyquist paradigm, where the signal x is first sampled
(or recorded) at a rate specified by its Fourier bandwidth, and sub-
sequently compressed using a nonlinear encoding scheme. Com-
pressive Sensing (CS) obviates the need for this “two-step” proce-
dure in the following manner. Suppose we create a matrix Φ ∈
RM×N , M < N , such that the elements of Φ are drawn randomly
and independently from certain probability distributions (such as a
Gaussian or a Bernoulli distribution). Then, a CS acquisiton sys-
tem records inner products (or measurements) yi = 〈φi, x〉, i =
1, . . . ,M (where φi denotes the ith row of Φ), without ever having
access to the full original signal x.

The key premise in CS is that if xwereK-sparse in a given basis
Ψ, then with merely a number of measurements M = O(K log N

K
),

the full signal x = Ψu can be stably recovered in polynomial time [1,
2]; in fact, this is achieved by solving the `1-optimization problem:

min ‖u‖1, s.t. y = ΦΨu. (2)

This core framework has been extended in various ways. In partic-
ular, parallel CS frameworks have been built for general union-of-
subspaces models [11], structured sparsity models [12], and multi-
signal models [13].

2.3. CS for Manifold Models

A limited amount of progress has been made in extending the CS
acquisition framework to nonlinear manifold models. It is known
that for data belonging to a L-dimensional submanifoldM of RN ,
merely M = O(L logN) random projections are sufficient to pre-
serve both Euclidean distances as well as geodesics between points
inM [3,4]. The type of results rely on the values of certain geomet-
ric parameters (such as manifold curvature) that are hard to either
analytically compute or estimate from training data.

The simplest type of algorithms for signal recovery typically rely
on a variation of gradient descent [4]. Consequently, the risk of en-
countering local minima is severe, and guarantees on algorithm per-
formance and convergence are hard to achieve. More sophisticated
algorithms for manifold-based recovery assume the availability of an
orthogonal projection operator onto the manifold [6, 7]; for general
nonlinear manifolds, these can be rather hard to construct. A non-
parametric Bayesian approach to manifold-based CS recovery has
also been proposed in [14].

Each of the above-listed methods applies to generic manifold
models. In contrast, we focus on the special case when the underly-
ing manifolds possess richer additional structure (specifically, a Lie

group structure). In the rest of the paper, we develop a CS framework
for this specific case that is useful in a range of applications.

3. LIE OPERATORS FOR CS

Suppose a signal x ∈ L ⊂ RN is such that x = T (z)x0, where
L is a submanifold of RN and T ∈ T is a Lie operator. As in the
usual CS setting, suppose we are only given access to M � N
compressive measurements of x:

y = Φx = ΦT (z)x0. (3)

A fundamental CS task is to recover x from y. In the most general
case, Φ has a nullspace of dimension N −M and thus there is no
unique solution for x. Nonetheless, the problem can be solved with
the aid of some additional information. For example, the recovery
scheme might possess knowledge of the base signal x0, the Lie op-
erator T (·), the parameter vector z, or some combination of these
quantities. We study two subproblems within this broad setup.

3.1. Parameter Estimation

Suppose that only the base signal x0 and the generators of the Lie
group T are known. Then, the CS recovery problem reduces to solv-
ing for the unknown parameter vector z = (z1, . . . , zL) in (3). In the
case of general manifolds, this is a hard problem, and optimization-
based tools such as Newton’s method (or gradient descent) will often
fail to converge to the correct solution.

Alternatively, consider the mth measurement ym. Then,

ym = 〈φm,
L∏
k=1

ezkGkx0〉 = 〈φm,
L∏
k=1

Vke
zkΛkV −1

k x0〉,

where VkΛkV
−1
k corresponds the eigendecomposition of Gk. Note

that Λk is a diagonal eigenvalue matrix and thus eDk is well-defined.
Represent the N diagonal entries of Λk by λkj , j = 1, 2, . . . , N .
Then, we observe that for any fixed λkj , ym is linear in eλkjzk .
Consequently, ym is a multi-linear function of the exponential terms
eλkjzk :

ym =
∑
i

ci
∏
j,k

eλkjzk . (4)

The coefficients ci can be computed in closed form by expanding the
matrix equations in each eigenvalue decomposition and collecting-
ing the corresponding terms. We can further simplify (4) as follows:
we perform a Taylor series expansion of each exponential term, and
truncate each expansion to d terms. Thus, we obtain a multivariate
polynomial in z of total degree Ld:

ym =
∑
α

cαz
α, m = 1, . . . ,M, (5)

where the sum is over non-negative integer L-tuples (α1, . . . , αL)

such that
∑L
i=1 αi ≤ Ld. Thus, for every measurement ym, we ob-

tain a new multivariate polynomial in the unknown parameter vector
z.

We have reduced the general nonlinear system of equations (3)
to a system ofM polynomials in L variables. Solving such a system
of equations can be carried out, for example, by computing a Groeb-
ner basis for the ideal generated by the M polynomials using Buch-
berger’s algorithm, followed by back substitution [15]. We omit the
details of the complex machinery used to solve the above polynomial



system, and instead remark that thanks to recent advances in com-
putational algebraic geometry, accurate software solutions for such
problems exist in packages such as MAPLE.

The set of common solutions satisfying the system of M poly-
nomial equations is called an affine variety. It is known that the di-
mension of the affine variety of a system ofM polynomial equations
(5) inL variables is at mostL−M ; ifL = M and the coefficients of
the polynomial system are random, then the set of solutions is of di-
mension 0 or finite [16]. Therefore,M = L+1 equations are in fact
sufficient to uniquely determine the parameter vector z. As opposed
to general descent-based methods on the manifold, this approach is
guaranteed to produce accurate parameter estimates. However, it
could still be computationally expensive (akin to the `0 minimiza-
tion problem in standard CS). The worst case complexity bounds
for Buchberger’s algorithm are doubly exponential in the number of
variables L. However, for small values of L (≤ 3) this approach is
still viable.

To provide an illustration of our approach, we consider the sim-
ple case where the manifold of interest is 1-dimensional, i.e., L = 1.
An example of such a manifold is the set of shifted versions of a
base 1D signal. In such cases, the Lie group T is specified by a
single matrix transformation operator T and a corresponding matrix
logarithm G. Given random compressive measurements of a vector
x ∈ T , we have that

ym = 〈φm, ezGx0〉 = 〈φm, V ezΛV −1x0〉

= 〈φm,
N∑
j=1

(vj v̂j
Tx0)ezλj =

N∑
j=1

(φTmvj)(v̂j
Tx0)eλjz,

where G = V ΛV −1 and vj , v̂j denote the j th column of V, V −1,
respectively. Thus, the mth measurement equals a weighted linear
sum of exponential functions in z. This sum of exponentials in turn
can be approximated to arbitrary precision by a polynomial (of suf-
ficiently high degree d) in z. The value of the parameter can sub-
sequently be estimated by solving for the common real root of the
system of M polynomial equations.

3.2. Base Signal Estimation

Suppose now that the parameter vector z and the generators of the
Lie group T are known, but that the base signal x0 is unknown. Sup-
pose also that the base signal is sparse in a known orthonormal ba-
sis Ψ. Further suppose that we observe compressive measurements
y = ΦT (z)x0. Then, CS recovery can be achieved by solving the
`1-optimization problem

min ‖u0‖1, s.t. y = ΦT (z)Ψu0,

where u0 = ΨTx0.
This formulation is particularly useful in multi-signal acquisi-

tion scenarios as follows. Consider an ensemble of signals xj =
T (zj)x0, j = 1, . . . , J lying on the manifoldL. Suppose we obtain
M measurements yj = Φjxj of each signal xj . Adopting standard
approaches [5, 17], we may stack the measurements and factor out a
composite “measurement” matrix Φ̃ to obtain:

ỹ =

 y1

...
yJ

 = Φ̃

 T (z1)
...

T (zJ)

x0 = Φ̃T̃Ψu0. (6)

This can be again solved using `1 methods, with the important
distinction that the NJ × N matrix of Lie operators T̃ (and corre-
spondingly, the transformed sparsifying dictionary T̃Ψ) is no longer

orthonormal. Therefore, in general (6) is much harder to solve
than standard CS recovery via `1-optimization (2), and conventional
bounds on the number of compressive measurements, as well as
guarantees on algorithmic performance, no longer apply.

Nevertheless, recent theoretical results [18,19] indicate that sta-
ble CS recovery in the case of redundant dictionaries using `1 opti-
mization is feasible under a certain restriction relating the maximum
value of the dictionary coherence.1 Thus, we arrive at the following
proposition regarding base signal recovery.

Proposition 1. Suppose that x0 isK-sparse in a given orthonormal
basis Ψ and that we observe M random Gaussian measurements
yj = ΦjT (zj)x0 for each j = 1, . . . , J . Let µ be the coherence
of the matrix T̃ . If K < 1 + 16µ−1, then with high probability
x0 can be recovered by solving an `1-optimization, provided M =
O
(
c(µ)K

J
log JN

K

)
.

This proposition can be derived in a straightforward fashion by
combining Theorem II.2 and Corollary II.4 in [18]. We make two
remarks on Proposition 1. First, M is inversely proportional to the
number of signals J . Therefore, for sufficiently high J , we only
need a constant number of measurements for each signal, irrespec-
tive of the sparsity (or complexity) of the base signal x0. In scenarios
(such as high-speed video acquisition) where the size of the signal
ensemble is large and the budget for the number of measurements
per signal is short, our proposed formulation can be particularly use-
ful. Second, certain combinations of T and z may result in a poorly
conditioned T̃ , thus effectively negating the possibility of ever re-
covering x0 irrespective of the number of measurements required.
This intuition can be useful during acquisition system design, since a
careful analysis of the operator matrix T̃ may reveal “good” choices
for the parameters z in order to favor better reconstruction of the
overall ensemble of signals.

4. NUMERICAL EXPERIMENTS

4.1. Parameter Estimation

We test our parameter recovery algorithm via polynomial root-
finding on a simple 1D manifold L of shifts of a randomly generated
base signal x0 of length N = 128. The base signal is circularly
shifted by an amount z = 6 and compressively acquired using
merely M = 25 random measurements. The shift parameter z is
then estimated using two methods: our proposed polynomial root
finding method (with degree parameter d = 20), and gradient de-
scent on the manifold L with an initial starting guess of ẑ = 0. The
signal is reconstructed using the estimated value of the shift.

Instead of adopting the computationally intensive Groebner ba-
sis approach, we computed the real roots of each polynomial equa-
tion (of degree d) and constructed a simple histogram of the set of all
such estimated roots; the peak of the histogram was chosen as the es-
timate of the parameter z. The complexity of this algorithm is given
by O(Md2 log2(d)) [20]. The results of the estimation procedure
are displayed in Fig. 1(a). Our method yields an accurate estimate of
the shift, in contrast with the gradient descent, which gets stuck in a
local minimum close to z = 0.

In order to quantitatively analyze our proposed algebraic ap-
proach for extracting parameter estimation from compressive mea-
surements, we conduct a Monte-Carlo study consisting of E = 100

1The coherence µ is defined as the maximum absolute value of the pair-
wise inner products among all (normalized) columns of the dictionary and
takes on values between 0 and 1.
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Fig. 1. (a) Sample signal reconstruction results using different meth-
ods. (b) Monte Carlo performance comparison of parameter estima-
tion using different methods.

trials. For each trial, we generate a 1D base signal of lengthN = 64
with random coefficients and subject it to a (possibly non-integer)
random shift z chosen uniformly between 0 and zmax = 10. We ac-
quireM compressive measurements, and assuming that the base sig-
nal (and correspondingly, the 1D manifold L) is known, estimate the
shift parameter z from the measurements using our proposed polyno-
mial root-finding approach, as well as gradient descent on the mani-
fold with an initial shift guess of z = 0. The variation in the relative
parameter estimation error with increasing number of measurements
M for the two methods is plotted in Fig. 1(b). Due to the highly
nonconvex structure of L, gradient descent often gets stuck in local
minima, and its performance is poor even for high M . However, our
proposed approach degrades gracefully in performance with increas-
ing M and gives fairly accurate results for M > 20.

4.2. Base Signal Estimation

We test our base signal estimation algorithm using signals belonging
to a 1D manifold of shifted Gaussian pulses. We conduct a Monte
Carlo run ofE = 100 trials to study the quality of base signal recon-
struction with the number of acquired measurements per signal. For
each trial, we generated J = 5 signals that were random shifts of a
truncated Gaussian pulse (N = 512,K = 15) and acquiredM mea-
surements per signal. Then, we used (6) to estimate the base signal
jointly from the aggregate measurements, and compared the recon-
struction error with the average error obtained by performing inde-
pendent estimation from each set of M measurements. The gains of
employing our approach can be visualized in Fig. 2, particularly for
very low measurement rates M/K.

Finally, we test our approach on real images from the DARPA
VIVID database. These images comprise a video sequence of J =
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Fig. 2. Monte Carlo performance comparison of base signal estima-
tion using different methods. Our joint recovery formulation (Eq. 6)
results in superior estimates than independent signal recovery, par-
ticularly for small values of measurement rates.

Ground truth M
N

= 0.15%, SNR = 15.97dB

Fig. 3. CS recovery of UAV images using Lie operators. N =
160× 120 = 19200, J = 600. Accurate base signal reconstruction
can be performed with measurement rates as low as M/N = 0.3%.

600 frames of size N = 120 × 160 acquired by a camera mounted
on an unmanned aerial vehicle (UAV). Due to the altitude of the
imaging apparatus, the scene depth can approximately be modeled
as constant across all pixels in all frames, and hence the each im-
age can be approximately modeled as an affine transformation of a
base image x0 (L = 6). We assume that the affine parameters z are
known for each image frame; these are precomputed using a simple
affine registration algorithm. (In practice, these can be assumed to
be available using an auxiliary source of information, such as a GPS
or an accelerometer mounted on the UAV.) We convert the images
to grayscale and compute M measurements per frame and estimate
the base signal using our proposed formulation (6), assuming that
the base image is sparse in the 2D-wavelet basis specified by the
Daubechies-4 filter. Once the base image is estimated, we can re-
construct each of the images via (1). Sample recovered images as
well as average reconstruction SNR values are displayed in Fig. 3.
We observe that excellent recovery of the base image can be ob-
tained using just M = 120 measurements per frame, corresponding
to a compression ratio N/M of 160.

An interesting question is whether both parameter estimation
and base signal estimation can be performed simultaneously from
compressive measurements (via, say, alternating methods, similar to
those developed in [21, 22]). We defer this to future work.
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