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Abstract

Despite the promise of low-dimensional manifold models for image processing, computer
vision, and machine learning tasks, their utility has been hamstrung in practice by two fun-
damental challenges. First, practical image manifolds are non-isometric to their underlying
parameter space, while the state-of-the-art manifold modeling and learning frameworks as-
sume isometry. Second, practical image manifolds are strongly perturbed by nuisance
parameters such as illumination variations, occlusions, and clutter. In this paper, we de-
velop new theory and practical algorithms for manifold modeling, learning, and processing
that directly address these challenges. To address the isometry challenge, we show that the
Earth Mover’s Distance (EMD) is a more natural metric for inter-image distances than the
standard Euclidean distance and use it to establish the isometry of manifolds generated
by translations and rotations of a reference image. To the best of our knowledge, this
is the first rigorous result on manifold isometry for generic grayscale image familes. To
address the nuisance parameter challenge, we advocate an image representation based on
local keypoint features and use it to define a new keypoint articulation manifold (KAM).
We employ the KAM framework on a number of real-world image datasets acquired “in
the wild” to demonstrate its improved performance over state-of-the-art manifold model-
ing approaches. A particularly compelling application of our approach is the automatic
organization of large, unstructured collections of photographs gathered from the internet.

1. Introduction

A host of problems in vision, machine learning, and pattern recognition involve efficient
analysis, modeling, and processing of signal and image ensembles. Effective solutions to
many such problems require exploiting the geometric relationships among the data in the
ensemble of nterest. In classical signal processing and statistics, for example, the data form
linear subspaces of the ambient space, which leads to simple, linear processing algorithms.

One important class of image ensembles arises in situations where there exists a param-
eter vector θ that controls the appearance of the objects within each image Iθ. Examples
include: translation, specifying the location of an object in a scene; orientation, specify-
ing its pose; or illumination, specifying the 3D location of the light source (or sources)
present in a scene. Instead of the more prosaic linear subspaces, such image families form
low-dimensional nonlinear manifolds in the high-dimensional ambient space. Under certain
conditions, such a family forms an image articulation manifold (IAM). The dimension K of
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an IAM equals the number of free parameters in the articulation parameter θ. For example,
the image translation manifold is two dimensional (2D), corresponding to horizontal and
vertical translations) and can be interpreted very roughly as a two-dimensional “surface”
in the high-dimensional ambient space RN . Hence an IAM can be a very concise model for
the images it comprises.

Manifold-based models have long been used for applications involving data ensembles
that can be described by only a few degrees of freedom. The promise of such models lies in
their ability to potentially break the so-called “curse of dimensionality”, a common problem
in most practical machine learning tasks. Consequently, the last decade has witnessed
great theoretical and algorithmic advances in this regard, and manifold models have been
successfully applied to tasks such as data visualization, parameter estimation, transductive
learning, and compact data representations (Tenenbaum et al., 2000; Roweis and Saul, 2000;
Donoho and Grimes, 2003; Belkin and Niyogi, 2003).

However, the significant theoretical advances in manifold-based image processing have
not led to commensurate success in practice. The reasons for this stem from two funda-
mental challenges:

1. Lack of isometry: A common IAM desideratum is that the underlying manifold is
locally isometric to the underlying parameter space, i.e., small changes in the articu-
lation parameter θ generate images that are “nearby” in terms of Euclidean distance.
Unfortunately, this assumption breaks down for anything except the simplest of IAMs.
Donoho and Grimes (2005) have shown that for anything more complicated than a
simple white object moving over a black background, local isometry does not hold.

2. Nuisance variables: In addition to the small number of degrees of freedom in the
articulations of interest, real-world images ensembles often exhibit a potentially large
number of other, nuisance articulations, such as illumination variations, changing
backgrounds and clutter, and occlusions due to foreground objects. See Fig. 1 for an
illustrative example.

This mismatch between theoretical assumptions and practical realities has diminished the
impact of manifold models for real-world machine learning and vision problems.

In this paper, we propose a new framework for manifold-based image modeling, learn-
ing, and processing that addresses the two challenges. Our contribution is threefold. First,
to address the isometry challenge, we rigorously prove that the classical Earth Mover’s
Distance (EMD) between images can be used to establish isometry for image ensembles
generated by translations and rotations of a reference image. This result makes no restric-
tive assumptions and holds even when the images under consideration are highly textured
grayscale images. To the best of our knowledge, this is the first analytical result proving
the isometry of manifolds of generic grayscale images.

Second, to address the nuisance variable challenge, we advocate a new image represen-
tation for manifold modeling, learning, and processing. Given a set of articulating images,
we represent each image using a set of local features (or keypoints). Such an approach is
ubiquitous in practical computer vision approaches. A keypoint typically consists of a 2D
location in the image domain and a higher-dimensional descriptor summarizing the local
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Learning Manifolds in the Wild

Figure 1: An image ensemble gathered from the wild. Example images of the Notre Dame Cathedral

gathered from FlickR (Snavely et al., 2006). Such a real-world image ensemble cannot be

easily modeled via a strictly low-dimensional parametric representation; occlusions are

significant, illlumination variations are dramatic, and imaging artifacts such as varying

field-of-view, skew, and white balance abound. As a consequence, conventional manifold

learning methods fail when applied to such ensembles.

statistics of the grayscale values of the image. We will require that the keypoint loca-
tions and descriptors satisfy certain stability criteria (explained further in Section 4). Our
running example will be the image features generated by the well-known Scale Invariant
Feature Transform (SIFT) (Lowe, 2004), but other image features are also possible within
this framework. Under this new representation, we show that the transformed set of images
can be viewed as a low-dimensional manifold that we dub the keypoint articulation manifold
(KAM). In fact we prove that, under a suitable modification of the EMD metric, the KAM
is smooth and isometric to the underlying parameter space. By moving to this alternate
representation, we implicitly promote robustness to various nuisance parameters (such as
varying illumination, backgrounds, occlusions, and clutter). Therefore, our proposed KAM
modeling approach alleviates both of the challenges encountered in practical applications.

Third, to mitigate computational complexity concerns related to the EMD, we propose
a fast EMD approximation based on similarity kernels between the keypoint representa-
tions. We validate the approximation on several real datasets and manifold-based learning
problems and demonstrate improved manifold embeddings, improved parameter estimation
on affine articulation manifolds using gradient descent, and a fast, efficient, and automatic
organization of large unordered collections of photographs.

This paper is organized as follows. In Section 2, we review the existing literature on
the nonlinear dimensionality reduction of image manifolds. In particular, we highlight some
efforts geared towards addressing some of the fundamental challenges towards practical use
of image manifolds, and discuss their limitations. In Section 3, we describe how the EMD
ensures isometry of manifolds for simple classes of articulations. In Section 4, we extend the
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EMD to be applicable to a local feature-based image representation that enables robustness
to undesirable articulations. In Section 5, we illustrate the performance of our approach on
a range of manifold modeling and processing applications, and validate our technique on a
number of image ensembles. In Section 6, we conclude with a discussion and highlight some
directions for future research.

2. Background

2.1 Image articulation manifolds

In this paper, we are interested in image ensembles that are generated by varying an ar-
ticulation parameter θ ∈ Θ. If Θ is a space of dimension K, then the ensemble of images
forms a K-dimensional nonlinear image articulation manifold (IAM) M⊂ RN :

M = {Iθ : θ ∈ Θ}. (1)

We adopt two complementary representations for images. First, we can model images as
continuous functions on R2, i.e., I : R2 �→ R. In such situations, if Θ is a space of dimension
K, then the ensemble of images forms a K-dimensional image articulation manifold (IAM)
M⊂ L2(R2). Second, we can model images as discretized functions defined over a domain
of size n×n. In such situations, the ensemble of images are modeled as points in RN , where
N = n2. We will use these two representations interchangeably when the context is clear.

Manifold learning is a nonlinear dimensionality reduction technique that aims to re-
cover a faithful approximation to the underlying parameters {θ1, θ2, . . . , θM} given example
images Iθ1 , Iθ1 , . . . , IθM } ⊂ M. Two common assumptions made by several practical mani-
fold learning algorithms are that M is smooth, and that M is isometric to the underlying
parameter space.

1. Smoothness: Informally, an IAM M is said to be smooth if a well-defined notion
of tangent space exists at every point Iθ ∈ M. Formally, given an IAM, we can
define tangent vectors at the point Iθ0 by studying curves passing through it. Let
ωθ : [0, 1] �→ M be a curve on the IAM such that ωθ(0) = Iθ0 where θ is a K–
dimensional parameter vector. The tangent vector associated with this curve at Iθ0

is given by
d

dt
ωθ(t)|t=0 = [∇θ1Iθ0 · · · ∇θK Iθ0 ] (θ − θ0). (2)

The tangent space at Iθ0 is defined as the linear span of∇θIθ0 = [∇θ1Iθ0 , · · · ,∇θK Iθ0 ].
If this linear vector space is invariant to choice of the curve ω, then M is said to be
be smooth at Iθ0 .

2. Isometry: The mapping I : θ �→ Iθ is said to be locally isometric if Euclidean
distances between images in a small neighborhood on the manifoldM are proportional
to the corresponding distances in the articulation space:

dM(Iθ1 , Iθ0)
.= �Iθ1 − Iθ0�2 = C�θ1 − θ0�2. (3)

If this property holds for all local neighborhoods on M, then M is said to be isometric
to Euclidean space.
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Learning Manifolds in the Wild

A host of computational techniques for efficient nonlinear dimensionality reduction have
been developed, and several of these assume one or both of the above two assumptions.
Some well-known techniques include Locally Linear Embedding (Roweis and Saul, 2000),
ISOMAP (Tenenbaum et al., 2000), Laplacian Eigenmaps (Belkin and Niyogi, 2003), Hes-
sian Eigenmaps (Donoho and Grimes, 2003), Maximum Variance Unfolding (Weinberger
and Saul, 2006), and Diffusion Maps (Coifman and Lafon, 2006),

2.2 Negative results for image manifolds

In spite of the elegance and promise of manifold modeling and learning, it has been rig-
orously shown that practical IAMs are neither smooth nor isometric. In most practical
situations, the images under consideration have sharp edges that transform according to
the articulation parameter θ. Donoho and Grimes (2005) show that such transformations
induce a non-Lipschitz relationship between the distance metric dM(·, ·) and the Euclidean
distance defined on vectors in Θ; specifically,

dM(Iθ1 , Iθ0) = �Iθ1 − Iθ2�2 ≥ C�θ1 − θ2�
1/2

2
, (4)

for a constant C independent of θ1, θ2. Due to the Lipschitz regularity exponent 1/2 (instead
of 1), the function θ �→ Iθ is non-smooth everywhere. From a geometric perspective, the
manifold of images containing moving edges is nowhere differentiable. This inherent non-
smooth nature of image manifolds impedes the application of standard differential geometry-
based tools used in nonlinear manifold modeling.

Efforts have been made to alleviate the non-differentiability of image manifolds (Donoho
and Grimes, 2005; Wakin et al., 2005). The basic approach is to define a smoothing func-
tional that acts on the individual images I; for instance, this can be a 2D Gaussian kernel
φs of scale s. By applying φs to all images in the manifold M, we obtain a new set of
images that do not contain any sharp edges; this results in a differentiable manifold Ms

that is more amenable to analysis. The parameter s can be viewed as a scale parameter;
computations can be performed at a sequence of different values for s, paving the way to
multiscale numerical methods. This is particularly useful for common numerical tasks such
as manifold-based parameter estimation using gradient descent (Wakin et al., 2005).

While multiscale smoothing can render a manifold differentiable, it does not necessary
lead to isometry. Donoho and Grimes (2005) have shown that isometry is guaranteed only
for manifolds of black-and-white images exhibiting certain types of restrictive symmetries.
However, for a pair of generic grayscale images Iθ1 , Iθ2 belonging to M, the distance metric
dM(θ1, θ2) computed between the images smoothed at scale s is not necessarily proportional
to �θ1 − θ2� for any choice of the parameter s. This hampers the performance of any and
all manifold-based algorithms that hinge upon the isometry assumption.

2.3 Local image features

Modern image processing and computer vision algorithms often eschew the pixel intensity
representation for a more convenient, feature-based representation. Such a feature-based im-
age modeling approach has found widespread use in a multitude of practical applications,
including object recognition (Sivic and Zisserman, 2003), multi-view 3D scene reconstruc-
tion (Furukawa and Ponce, 2010), and manipulating and visualizing massive photo collec-
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tions (Snavely et al., 2006). For an introduction to image features and their properties,
see Mikolajczyk and Schmid (2004) and Tuytelaars and Mikolajczyk (2008).

Perhaps the most popular feature-based representation of images is obtained by the
Scale Invariant Feature Transform (SIFT) (Lowe, 2004). The core idea underlying the
SIFT technique is the notion of scale space (Witkin, 1987). The scale space of an image I

is the 3D scalar-valued function L : R2×R �→ R obtained by convolving I with an isotropic
Gaussian smoothing kernel of scale s so that

L(x, s) = φs ∗ I. (5)

Rich information about an image can be gleaned by analyzing the Laplacian of the scale
space of the image, or ∇2L(x, s). Indeed, extensive testing (Mikolajczyk and Schmid, 2004)
has shown that the locations of maxima and minima of ∇2L(x, s) (denoted by a list of
2D locations and scales S = {xi, si}) are extremely stable to small affine deformations of
the image. The SIFT technique leverages this property of scale space to extract distinctive
features from images.

Numerically, the SIFT technique proceeds as follows. An image I is operated upon to
obtain a set of 2D locations called keypoint locations {xi, i = 1, . . . ,M}; these are precisely
the extrema of the Laplacian of the scale space of I. Each keypoint location xi is assigned
a scale si, and an orientation θi. Once the set of keypoint locations are identified, certain
special image statistics around each keypoint are computed and aggregated in the form
of histograms. Such histograms are stored as high-dimensional vectors known as keypoint
descriptors {f i

, i = 1, . . . ,M}.
It has been both theoretically and empirically demonstrated that the SIFT keypoint

locations are covariant to affine articulations, while the SIFT keypoint descriptors are in-
variant to a wide range of imaging parameters, including translations, in-plane rotations,
scale, and illumination changes (Lowe, 2004; Morel and Yu, 2011). Let IA and IB be two
images with keypoints given by S(IA) = {xi

A} and S(IB) = {xj
B}, respectively. If the two

images are related by an affine transformation (Z, t), then the keypoints are related by the
same affine transformation (ignoring quantization and boundary artifacts):

IB(x) = IA(Zx + t) =⇒ ∀i,∃j such that xj
B = Zxi

A + t. (6)

Therefore, by obtaining one-to-one correspondences between the keypoint descriptors of IA

and IB, we can solve for the affine transformation (Z, t) linking the two images.
We have nominally chosen to focus on the SIFT as our flagship approach for generating

image features, but other feature extraction techniques can also be applied in the framework
developed below (for example, see Wallraven et al. (2003); Zhang et al. (2007); Dalal and
Triggs (2005)). In general, we will require that any such technique should yield image
feature keypoints whose locations are covariant to the articulations of interest, and whose
descriptors are invariant to the keypoint location, as well as other nuisance articulations.1

The covariance-invariance properties help mitigate several phenomena such as unknown
illuminations, occlusion, and clutter as detailed further below in Sections 4 and 5.

1. Naturally, the trivial (zero) feature descriptor also satisfies this invariance requirement. Our theoretical

results below will continue to be valid for such degenerate cases; however, a meaningful feature descriptor

that concisely represents local image statistics is obviously the better choice in practice.

6



Learning Manifolds in the Wild

The large majority of manifold learning methods do not leverage the feature-based ap-
proach for representing images. To the best of our knowledge, the only reported manifold
learning method that explicitly advocates feature-based image representations is the Local
Features approach (Torki and Elgammal, 2010). Given a collection of images, this approach
extracts a set of local features from each of the images, and then learns a low-dimensional
parametric embedding of each extracted feature. This embedding is constrained to pre-
serve the spatial configuration of features. Further, similarity kernels are used to construct
similarities on the keypoint locations and descriptors, and embeddings of the keypoints are
learnt. This method has been shown to be robust to illumination, occlusions, and other
artifacts, and thus shares many of the goals of our proposed approach. However, its theo-
retical development is somewhat ad hoc, its computational costs are potentially high, and
the reported applications are mainly restricted to object detection and classification. We
will discuss and compare our results to the Local Features approach in detail in Section 5.

3. Manifold Isometry via the Earth Mover’s Distance

The central results of Donoho and Grimes (2005) advocating the multiscale smoothing
approach for enabling manifold isometry were derived based on the assumption that images
are modeled as functions defined on R2 equipped with the L2-norm. However, this modeling
assumption is comes up short in a key respect: L2-distances between images are known to
be poorly correlated with perceptual differences between images. For example, given images
of a single translating white dot on a black background, the L2-distance between any pair
of images remains constant regardless of the translation parameters of the images.

3.1 The Earth Mover’s Distance (EMD)

To address the pitfall caused by L2-distances, researchers have proposed a multitude of
alternate, perceptually meaningful distance measures on images. An important and useful
metric used in image retrieval and analysis is the Earth Mover’s Distance (EMD) (Rubner
et al., 2000). Classically, the EMD is defined between distributions of mass over a domain,
and represents the minimal amount of work needed to transform one distribution into an-
other. In this context, the amount of work required to move a unit of mass from a point
x1 ∈ R2 to a point x2 ∈ R2 is equal to the L2-norm between x1 and x2.

For ease of exposition we will assume that images are defined over a discrete grid in
R2, while noting that the results hold mutatis mutandis for continuous domain images.
Formally, consider images I1, I2 as non-negative functions defined on a domain of size n×n.
Define a feasible flow as a function γ : [n]2× [n]2 → R+ that satisfies the mass conservation
constraints, i.e., for any pair of pixel locations xi,yj ∈ [n]2,

�

yk∈[n]2

γ(xi,yk) = I1(xi),
�

xk∈[n]2

γ(xk,yj) = I2(yj).

Then, we define

EMD(I1, I2) = min
γ

�

xi,yj∈[n]2

γ(xi,yj)�xi − yj�2, (7)
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as the minimum cost flow from X to Y over all feasible flows. If the sum of the absolute
values of the intensities of X and Y are equal, i.e., if �X�1 = �Y �1, then it can be shown
that EMD(X,Y ) is a valid metric on the space of images. In this section, we will assume
the equality of the �1 norms of X and Y ; however, the metric property of the EMD holds
even when this assumption is relaxed (Rubner et al., 2000). Unless otherwise specified we
will assume that the EMD is always computed between images of equal �1 norm.

The EMD provides a powerful new angle for studying the geometric structure of image
manifolds. As opposed to modeling images as functions in L2(R2), we instead represent
images as elements of the normed space LEMD(R2). Under this geometry, we can prove the
isometry of a much larger class of image ensembles; we discuss now some representative
examples.

3.2 Case study: Translation manifolds

We prove the global isometry of image manifolds in LEMD(R2) formed by arbitrary trans-
lations of a generic grayscale image. Consider a grayscale image I0, and denote Mtrans as
the IAM generated by 2D translations of I0, where θ ∈ Θ ⊂ R2 represents the translation
parameter vector:

M = {I : I(x) = I0(x− θ), θ ∈ Θ}.

In order to avoid boundary and digitization effects, we will assume that the space of trans-
lation parameters Θ is compact, that the image has been sufficiently zero-padded, and that
the images are of high resolution. It follows that the �1 norm of any image belonging to
Mtrans remains constant.

Proposition 1 For an arbitrary base image I0, the translation manifold Mtrans is globally
isometric to the parameter space Θ under the EMD metric.

Proof: Consider any pair of images

I1(x) = I0(x− θ1), I2(x) = I0(x− θ2)

that are elements of Mtrans. We will prove that EMD(I1, I2) is proportional to the L2

distances between the corresponding parameter vectors �θ1− θ2�2. Let x̌ denote the center
of mass of the image I(x):

x̌ =
1
�I�1

�

xk∈[n]2

xkI(xk).
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Then, we have the following relations between the centers of mass of I1, I2 and any feasible
flow f :

�x̌1 − x̌2�2 =
����

�
i xiI1(xi)
�I1�

−

�
j yj I2(yj)
�I2�1

����
2

= C

������

�

i

xiI1(xi)−
�

j

yjI2(yj)

������
2

= C

������

�

i

xi

�

k

γ(xi,yk)−
�

j

yj

�

k

γ(xk,yj)

������
2

= C

������

�

i,k

γ(xi,yk)xi −
�

j,k

γ(xk,yj)yj

������
2

= C

������

�

i,j

γ(xi,yj)(xi − yj)

������
2

≤ C

�

i,j

γ(xi,yj)
��xi − yj

��
2
,

where the last inequality is a consequence of the triangle inequality. Taking the infimum
over all possible feasible flows, we have that

�x̌1 − x̌2�2 ≤ C · EMD(I1, I2). (8)

However, in the case of images that are 2D translations of one another, there always
exists a feasible flow that achieves this infimum. This can be represented by the set of flows
parallel to x̌1 − x̌2 originating from the pixel xi and terminating at the corresponding yj .
We simply rewrite the vector x̌1− x̌2 as the difference in translation vectors θ1−θ2, thereby
implying that

EMD(I1, I2) ∝ �θ1 − θ2�2.

Global isometry of Mtrans is an immediate consequence. �
We numerically illustrate the validity of Proposition 1 in Fig. 2. Figure 2(a) displays

several sample images from the manifold formed by translations of the well-known Camera-
man test image. We form 100 example pairs of such images, record the distance between
the translation parameter vectors (the “distance in articulation space”), and compute the
Euclidean (�2) distance and EMD between the corresponding images. We compute the
EMD using the FastEMD solver (Pele and Werman, 2008). Figure 2(b) clearly indicates
that the �2 distance is largely uninformative with respect to the articulation distance, while
the EMD almost perfectly correlates with the articulation distance over the entire range of
translations (global isometry).

3.3 Case study: Rotation manifolds

We prove the local isometry of image manifolds formed by rotations of a generic grayscale
image. The IAM Mrot is generated by pivoting an image I0 by an angle θ ∈ Θ ⊂ [−π, π],
around a fixed point in R2. We assume without loss of generality that the pivot point is

9



2 4 6 8 10

2

4

6

8

10

Distance in Articulation Space

D
is

ta
nc

e 
in

 Im
ag

e 
Sp

ac
e

 

 
Euclidean
EMD

(a) (b)

Figure 2: (a) Sample images from a translation manifold. (b) Variation of the Euclidean distance

and the EMD as a function of the distance in the articulation space. The EMD correlates

linearly with articulation distance for the entire range of articulations (global isometry).

the origin. Then, the manifold Mrot is given by

M = {I : I(x) = I0(Rθx), θ ∈ Θ}, where

Rθ =
�
cos θ − sin θ

sin θ cos θ

�
,

i.e., Rθ is a orthonormal rotation matrix. Once again, we assume that the images are
sufficiently zero padded and that their �1 norms remain constant.

Proposition 2 For an arbitrary base image I0, the rotation manifold Mrot is locally iso-
metric to the parameter space Θ under the EMD metric.

Proof: Consider any pair of images

I1(x) = I0(Rθ1x), I2 = I0(Rθ2x)

that are elements of Mrot. Since the set of rotations in R2 forms a group (called the special
orthogonal group SO(2)), we have the relation

I2(x) = I1(Rθ1−θ2x) = I1(R∆θx). (9)

Once again, we denote the locations of the centers of mass of I1 and I2 as x̌1 and x̌2

respectively. Observe that the centers of mass of I1 and I2 also obey the relation x̌2 =
R∆θx̌1. Hence, we have

�x̌2 − x̌1�2 = �R∆θx̌1 − x̌1�2 =
����

��
cos ∆θ − sin∆θ

sin∆θ cos ∆θ

�
− I2×2

�
x̌1

����
2

.

To establish local isometry, we need to show that the EMD between a pair of images
exhibits a linear relationship with the magnitude of the distance in articulation space ∆θ in
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the regime where ∆θ is small. In such a regime, we can perform a first-order Taylor series
expansion to obtain

�x̌2 − x̌1�2 ≈

����

��
1 −∆θ

∆θ 1

�
− I2×2

�
x̌1

����
2

=
����

�
0 −∆θ

∆θ 0

�
x̌1

����
2

= |∆θ| �x̌1�2.

However, the quantity �x̌1� represents the distance of the center of mass of image I1 from
the origin, which is constant for images belonging to Mrot. Further, we established in (8)
that the distance between the centers of a pair of images is upper bounded by a constant
times the EMD between the images. Hence, for some constant α > 0, we have the following
lower bound:

EMD(I1, I2) ≥ α|∆θ|. (10)

We now prove a similar upper bound on the EMD. By definition, the EMD is calculated
by considering the minimum over all feasible flows from I1 to I2. Consider the (feasible)
flow f corresponding to the bijective mapping between I1(x) .= I1(R∆θy) and I2(y), i.e.,

γ(xi,yj) =

�
I1(xi), xi = R∆θyj

0, otherwise.

For small values of ∆θ, the magnitude of the displacement of the pixel xi induced by
this flow can be approximated as

�xi − yj�2 ≈ |∆θ| �xi�2,

and hence the cost of the flow f can be computed by evaluating the right hand side of (7).
This quantity provides an upper bound for the EMD between images I1 and I2 as follows:

EMD(I1, I2) ≤

�

i,j

γ(xi,yj)�xi − yj�2

=
�

i

I(xi) |∆θ| �xi�2.

The �2-norm of x is invariant with respect to rotation, and hence the quantity
�

i I(xj) �xj�2

is constant across all images I belonging to Mrot. Therefore, for some constant β > 0, we
have the following upper bound:

EMD(I1, I2) ≤ β|∆θ|. (11)

Combining (10) and (11), we obtain that the manifold Mrot is approximately isometric to
Θ under the EMD metric. �

We numerically illustrate the validity of Proposition 2 in Fig. 3. Figure 3(a) displays
several sample example images formed by rotations of the Cameraman test image. As
above, we form 100 example pairs of such images, record the distance between the rotation
parameter vectors (the “distance in articulation space”), and compute the Euclidean (�2)
distance and EMD between the corresponding images. Figure 2(b) clearly indicates that
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Figure 3: (a) Sample images from a rotation manifold. (b) Variation of the Euclidean distance

and the EMD as a function of the distance in the articulation space. The EMD corre-

lates nearly linearly with articulation distance for the entire range of articulations (local

isometry).

the �2 distance is largely uninformative with respect to the articulation distance, while the
EMD closely correlates with the articulation distance (local isometry).

Thus far, we have rigorously proved — for arbitrary translation and rotation manifolds
containing images with sharp edges and complex textures — that replacing the �2 with
the EMD surmounts the non-isometry challenge that has plagued the majority of mani-
fold modeling and learning frameworks to date. We now turn to the second challenge of
nuisance variables caused by real-world artifacts in the imaging enterprise, such as varying
illumination, non-stationary noise and blur, unknown backgrounds, and occlusions.

4. Keypoint Articulation Manifolds

Consider the set of images generated by a translating a white in front of a black background
under an unknown, spatially varying illumination. Because of the varying illumination, the
pixel intensities of the disk will not be constant across the images. In this case, the minimum-
cost flow in (7) will not be mass-preserving, and the EMD will not be isometric to the
translation parameter distance. The standard practical approach to handling illumination
variations is to transform the image into a feature-based representation that is robust to
such variations. In this section, we propose a systematic framework for analyzing families
of articulating images not in terms of their pixel intensities but rather in terms of their local
features). As we will see, a number of theoretical and practical advantages result.

4.1 Feature-based representations for images

We consider local feature representations that consist of a set of image keypoints and a
corresponding set of descriptors. Given an image I defined as a real-valued function over a
domain Ω ⊂ R2, we compute the set of keypoint locations X(I) = {xi, i = 1, . . . , N} ⊂ Ω
using a local feature extraction algorithm A. At the computed keypoint locations, we
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compute keypoint descriptors F (I) = {f i, i = 1, . . . , N}; each f i ∈ F typically can be
described as a vector in high-dimensional space RD. Thus, instead of representing an N -
pixel image I as a vector in RN , we represent it as a set of keypoint location-descriptor pairs
I ∼ {(xi,f i), i = 1, . . . , N}, or informally, a “bag of keypoints.” Each keypoint location-
descriptor pair is an element of an abstract space X that can be identified with R2 × RD.
Note that X in itself does not constitute a normed vector space, primarily because the space
F is typically not closed under the usual operations of addition and scalar multiplication.

We require that the local feature extraction algorithmA possess the following properties:
(P1) The keypoint locations are covariant to the articulation parameters of interest. For
example, in the case of translation, a global translation applied to an image must induce
an equivalent, global translation in every computed keypoint location.
(P2) The keypoint descriptors are invariant to the image articulation parameters of interest.
(P3) The keypoint extraction is stable, i.e., no spurious keypoints are detected or missed
across different images on the manifold.

Of course, a keypoint extraction algorithm A exactly satisfying these three properties
is hypothetical and may not exist in practice. However, several efficient feature extraction
methods have been extensively explored and shown to possess (P1)–(P3) to a close ap-
proximation. The most celebrated is the Scale Invariant Feature Transform (SIFT) (Lowe,
2004), which approximately possesses (P1)–(P3) for the case of affine articulations (Morel
and Yu, 2011) . We will focus on this technique in our computations below without loss of
generality.

Definition 1 Given a keypoint extraction algorithm A that satisfies properties (P1)–(P3)
and an IAM M = {Iθ : θ ∈ Θ}, the keypoint articulation manifold (KAM) is defined as
K = {Iθ ∼ {(xi,f i)}M

i=1
: Iθ ∈M} .

We seek an appropriate metric on the set K. Consider a grayscale image I0(x) ∼
{(xi,f i)}M

i=1
. Define the keypoint location image as

K0(x) =
M�

i=1

δ(x− xi),

where δ(·) is the Kronecker delta function. The keypoint location image can be viewed as
a non-negative function over the discrete domain, i.e., K ∈ RN

+ . Therefore, it is possible to
define the EMD between any pair of keypoint location images, which induces a metric on
the KAM K. That is, for any pair of images Iθ1 , Iθ2 ∈ M, we define the keypoint distance
dκ as the EMD between their corresponding keypoint location images:

dκ(Iθ1 , Iθ2) = EMD(Kθ1 , Kθ2).

It should be obvious from the properties (P1)–(P3) that the KAM generated by an
ideal keypoint extraction algorithm A is smooth and globally isometric to any parameter
space for which the covariance property (P1) holds. We now showcase the power of the
invariance property (P2).
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4.2 Case study: Illumination variations

We prove the following proposition about the geometry of the KAM generated by applying
an idealized SIFT-like transformation.

Proposition 3 Consider an IAM M generated by images of an arbitrary object as it under-
goes 2D translations and in-plane rotations and is then illuminated by an unknown spatially
varying illumination. Let K be the KAM generated by applying a keypoint extraction algo-
rithm A that is covariant to translation and in-plane rotation, and invariant to illumination.
Then K, endowed with the keypoint distance dκ, is globally isometric to the parameter space
Θ.

Proof: We will describe the case where the articulations comprise 2D translations; the ex-
tension to in-plane rotations is straightforward and mirrors the derivation in Proposition 2.
Any image I ∈M corresponding to the translation parameter θ can be expressed in terms
of a base image I0 as

I(x) = LθI0(x− θ),

where Lθ represents an unknown linear operator representing the illumination corresponding
to θ. Consider any pair of images

I1(x) = Lθ1I0(x− θ1), I2(x) = Lθ2I0(x− θ2),

that are elements of M. Denote the keypoint location image of I0 as K0(x) =
�M

i=1
δ(x−

xi). By assumption, the algorithm A stably extracts keypoint locations in a covariant
manner, and also is invariant to the illumination operators Lθ1 , Lθ2 . Therefore,

K1(x) = K0(x− θ1), K2(x) = K0(x− θ2),

where K1, K2 are the corresponding keypoint location images of I1, I2. The keypoint dis-
tance dκ(I1, I2) is equal to the EMD between K1 and K2, computed using (7). How-
ever, in this case the minimum cost flow γ is nothing but a permutation (since K1, K2

are the superposition of an identical number M of Kronecker delta functions). Denote
π : X(Iθ1) → X(Iθ2) as a feasible permutation. Therefore,

EMD(K1, K2) = min
γ

�

xi,yj∈[n]2

γ(xi,yj)�xi − yj�2 (12)

= min
π

M�

i=1

�xi − π(xi)�2. (13)

The optimization (13) can be calculated, for example, via the Hungarian algorithm (Kuhn,
1955). However, note that, for any permutation π,

�

i

�xi − π(xi)� ≥

�����
�

i

xi −
�

i

π(xi)

�����
2

= M

����

�
i xi

M
−

�
i π(xi)
M

����
2

= M�x̌1 − x̌2�2,
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where x̌1, x̌2 are the centers of mass of the keypoint location images K1, K2. Repeating
the argument in the proof of Proposition 1, we have that this minimum cost permutation
is achieved by mapping the keypoint in K1 at location xi to the corresponding keypoint
in K2 at location yi ∼ xi + θ1 − θ2 (due to the covariance property, this correspondence
always exists).

Therefore, EMD(K1, K2) is proportional to the distance between the centers of mass of
K1 and K2, which equals θ1 − θ2. The isometry of the KAM is an immediate consequence.

�

4.3 Practical computation of the keypoint distance

In order to realize the promise of Proposition 3 in practice, we must address three practical
concerns:

1. Noise and numerical errors will render properties (P1)–(P3) approximations, at best.

2. Real-world phenomena such as occlusions and clutters will also invalidate (P1)–(P3).
Indeed, accurate detection and filtering of spurious keypoints reduces to establishing
exact correspondences between the keypoints, which remains a highly challenging
problem in machine vision.

3. The computational complexity of the EMD computation (12) is cubic in the number of
extracted keypoints M , and real-world high-resolution images typically yield several
hundreds or even thousands of keypoints (Lowe, 2004).

In order to address these challenges, we now propose a computationally efficient approx-
imation to the EMD-based keypoint distance dκ in (12) between any pair of images. We
leverage the fact that the keypoint descriptors, {f i}

M
i=1

⊂ RD, calculated from an image Iθ

are (approximately) invariant to the articulation parameter θ (recall property (P2)). By
evaluating a suitably defined similarity kernel, S : RD×RD → R, on every pair of keypoint
descriptors, we can rapidly establish approximate correspondences between the keypoints.
A weighted average of the distances between the corresponding keypoint locations yields
the EMD approximation.

The full calculation proceeds as follows. Given a pair of images I1 ∼ {(xi,f i), i =
1, . . . ,M1} and I2 ∼ {(yj , gj), j = 1, . . . ,M2}, we define the approximate keypoint distance
between I1 and I2 as:

�dκ(I1, I2) = α
−1

M1,M2�

i,j=1

S(f i, gj)�xi − yj�2, where (14)

α =
�

i,j

S(f i, gj).

The normalization factor α ensures that the approximate keypoint distance does not de-
pend on the number of detected keypoint pairs M1×M2. The ideal similarity kernel would
yield a value of 1 for every pair of corresponding keypoint locations and zero for all other
pairs. In the case when all the keypoint descriptors of the reference image I0 are distinct,
the similarity kernel S(f i, gj) would be nonzero only when f i ≈ gj , thereby efficiently
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approximating the minimum cost flow γ(xi,yj) in (12) without an explicit minimization.
Consequently, the complexity of evaluating the approximate keypoint distance can be re-
duced from O

�
M3

�
to O

�
M2

�
, a significant advantage for practical real-world calculations.

We demonstrate this computational advantage numerically in Section 5.
The choice of similarity kernel S(·, ·) is somewhat flexible. However, to account for

numerical discrepancies in the descriptors extracted by the algorithm A, we will focus on
the Gaussian radial-basis kernel for S(·, ·). For any descriptor pair (f , g) and bandwidth
parameter σ > 0, the similarity kernel S(·, ·) is given by

S(f , g) = e
−

‚‚‚‚f−g
‚‚‚‚
2

σ2 . (15)

The optimal value of σ in (15) depends on the numerical stability of the algorithm A used to
extract feature keypoints from the images. In practice (and for all the experiments below)
with SIFT feature keypoints, the value σ = 150 gave excellent numerical results; moreover,
performance is stable to small changes around this value for σ.

Other choices of similarity kernels S(·, ·) are also possible. There exist several extensive
surveys in the literature on the efficient design of similarity kernels based on local image
features (Lyu, 2005; Grauman and Darrell, 2005). We elaborate on this topic further in
Section 6.

5. Experiments

This experimental section has dual aims. First, we back up the theoretical results on KAM
smoothness and isometry using several real-world datasets. Second, we push the KAM
technique out of its theoretical comfort zone with new, challenging applications involving
a number of real-world datasets acquired “in the wild.” Our intention is to convincingly
demonstrate that manifold methods are not just elegant but also of considerable practical
utility in real applications.

For all experiments that follow, we use the fast approximation to the EMD proposed
in (14). We use SIFT as the keypoint extraction algorithm A, the Gaussian radial basis
function with σ = 150 for the similarity kernel S, and ISOMAP (Tenenbaum et al., 2000)
with k = 8 neighbors for obtaining the low-dimensional embeddings from the distances
computed from (14). We will refer to this procedure as the “KAM approach”.

5.1 Confirming smoothness and isometry

Figure 4 extends the synthetic experiment in Fig. 2 by using both the approximate EMD
from (14) and real data. We extracted 400 patches of size 80 × 80 centered at points of
a grid of uniformly-spaced locations in the highly textured photograph in Fig. 4(a)) and
replicated the experimental steps of Fig. 2. Figure 4(b) clearly indicates that the Euclidean
(�2) inter-image distance is largely uninformative with respect to the articulation distance,
while the approximate EMD almost perfectly correlates with the articulation distance over
the entire range of translations (practically confirming global isometry).
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Figure 4: Confirmation of the results of Fig. 2 using both the approximate EMD from (14) and

real data. (a) Sample images from a translation manifold. (b) Variation of the Euclidean

distance and the approximate EMD as a function of the distance in the articulation space.

The approximate EMD correlates linearly with articulation distance for the entire range

of articulations (practically confirming global isometry).

(a) ISOMAP (b) Lap. Eigenmaps (c) Local Features (d) KAM

Figure 5: Continuation of the experiment in Fig. 4, plotting 2D embeddings of the translated images

using various state-of-the-art manifold learning methods. The KAM approach recovers

the underlying parametrization perfectly (modulo a rotation).

5.2 Manifold embedding

We now showcase the invariance and stability properties of the KAM approach with a
number of challenging manifold learning (nonlinear dimensionality reduction) examples in-
volving real imagery acquired “in the wild.”

5.2.1 Highly textured translation manifold

Figure 5 continues the example of Fig. 4 from Section 5.1. Given the sampling of 400
highly textured, translated test images, we ran three state-of-the-art manifold learning
algorithms (ISOMAP, LLE, and Local Features). None of them is able to recover the
nonlinear projection into the 2D parameter space as well as our KAM-based ISOMAP.
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(a) Example images (b) Camera orientations (c) Ground truth embedding
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Figure 6: Manifold learning in the wild I: Duncan Hall indoor scene. (a) Samples from a set of

160 images obtained from an approximately static hand-held camera that span a 360◦

panorama of an indoor scene. (b) Camera orientation vectors obtained from a state-of-

the-art SfM algorithm (Snavely et al., 2006) to provide precise camera orientation vectors

(grey arrows) for each of the images; these can be considered as the “ground truth” values

of the underlying parameter space. (c) 2D ISOMAP embedding of the ground truth

camera orientation vectors. (d) 2D ISOMAP embedding of the IAM using the �2 metric.

(e) 2D KAM embedding; it is virtually equivalent to the optimal embedding using the

ground truth (up to an arbitrary rotation). (f) Embedding SNR vs. fraction of available

images, indicating that the performance of the KAM approach degrades gracefully with

manifold subsampling.

5.2.2 Duncan Hall indoor scene

Using a static handheld camera, we collected a set of 160 high-resolution indoor photographs
that formed a 360◦ panoramic view of the walls and ceiling of a large atrium in Rice Uni-
versity’s Duncan Hall (see Fig. 6). The images are governed not only by an underlying
dominant articulation parameter (the viewing angle of the camera), but also by several
other degrees of freedom (camera shake and significant lighting variations, including bright
sunlight glints). We applied the state-of-the-art structure-from-motion (SfM) Bundler al-
gorithm (Snavely et al., 2006) to estimate, up to an arbitrary rotation, the 3D camera
orientation vector for each sample image. We will regard these vectors as the “ground
truth” articulation parameters for each image.

Figure 6 displays the low-dimensional (2D) embeddings obtained by ISOMAP using
both the classical IAM (using the Euclidean inter-image distance) and the proposed KAM
approach (using the approximate EMD inter-image distance). We note that the KAM
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(a) Diffusion Maps (b) LLE (c) Lap. Eigenmaps (d) Local Features

Figure 7: Manifold learning in the wild I: Duncan Hall indoor scene. Additional results for the

dataset in Figure 6. (a, b, c) State-of-the-art manifold learning algorithms based on �2-

distances between images perform poorly. (d) The Local Features (LF) approach fares

better. However, the KAM approach (Fig. 6(e)) still significantly outperforms the Local

Features approach in terms of fidelity to the parameter space.

embedding recovers a near-perfect approximation (modulo a rotation) of the underlying
parametrization, whereas the IAM approach yields poor quality results. Figure 7 displays
additional embeddings produced by four other maninfold learning algorithms, including the
Local Features approach (Torki and Elgammal, 2010). Clearly the KAM approach is much
improved over all of these techniques. This demonstrates that the KAM approach is robust
to camera jitter and changing lighting conditions.

We now demonstrate that the KAM approach is robust to the sampling of the manifold.
Define the embedding signal-to-noise-ratio (SNR) as the negative logarithm of the L2-error
of the 2D KAM embedding measured with respect to the ground truth. Figure 6(f) shows
that the embedding SNR degrades gracefully even when the KAM-based manifold learning
algorithm is presented with only a random fraction of the 160 available images.

5.2.3 McNair Hall outdoor scene

We collected a set of 180 images of the front facade of Rice University’s McNair Hall
by walking with a handheld camera in an approximately straight trajectory; therefore, the
underlying parameter space is topologically equivalent to a subset of the real line R1. Several
sample images are shown in Fig. 8(a). We used the SfM Bundler software to estimate the
camera locations and orientations; the results are displayed in Fig. 8(b). As above, we
computed low-dimensional embeddings of the images using ISOMAP on the set of pairwise
Euclidean and approximate EMD image distances. The embedding obtained using the
KAM approach closely resembles the “ground truth” embedding and successfully recovers
the 1D topology of the image dataset.

5.2.4 Brochstein Pavilion outdoor scene

We performed a similar, but more challenging, experiment by collecting a set of 400 images
of two adjoining facades of Rice University’s Brochstein Pavilion using a hand-held video
camera (see Fig. 9(a)). In this case as well, the underlying parameter space is topologically
equivalent to a subset of R1 with a kink. However the scene was dynamic; images were
captured in different illumination conditions, and several images feature significant occlu-
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(a) Sample images

(b) Bundler estimates (c) Bundler embedding (d) IAM embedding (e) KAM embedding

Figure 8: Manifold learning in the wild II: McNair Hall outdoor scene. (a) Samples from a set of 180
images obtained by moving a hand-held camera in an approximately straight trajectory.
The image ensemble is topologically equivalent to a 1D manifold. (b) Camera location
ground truth obtained from the SfM Bundler algorithm ((Snavely et al., 2006)). Camera
locations are noted in red and their orientations with grey arrows. (c) 2D ISOMAP
embedding of the ground truth camera orientation vectors. (d) 2D ISOMAP embedding
of the IAM using the �2 metric. (e) 2D KAM embedding is a close approximation to the
ground truth embedding.

(a) Sample images (b) IAM embedding (c) KAM embedding

Figure 9: Manifold learning in the wild III: Brochstein Pavilion outdoor scene. (a) Samples from

a set of 400 images obtained by moving a hand-held video camera along two adjoining

facades. The image ensemble is topologically equivalent to a 1D manifold with a kink

but is complicated by changing illumination and occlusions. (b) 2D ISOMAP embedding

of the ground truth camera orientation vectors. (d) 2D ISOMAP embedding of the IAM

using the �2 metric. (c) 2D KAM embedding is reflective of the fact that two facades

were photographed.

sions. Due to these non-idealities, the SfM Bundler software exited without converging to a
consistent explanation. However, Fig. 9 shows that the KAM approach successfully recovers
the underlying 1D topological structure of the data set, in contrast to the IAM appraoch.
This demonstrates that the KAM approach is robust to some degree of foreground and
background clutter.
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5.3 Parameter estimation

We study the effectiveness of the KAM approach for articulation parameter estimation.
Given a sample image Iθ ∈M, θ ∈ Θ, our aim is to estimate the underlying vector θ. The
non-differentiability of IAMs of images with sharp edges renders IAM-based approaches in-
effective for this problem. However, limited progress to date has been made using multiscale
smoothing and gradient descent (Wakin et al., 2005); our goal here is to demonstrate the
robust performance of a simple and direct KAM-based estimate.

We consider the 400-image translation manifold dataset from Section 5.1 and Fig. 4 as
a “training set”. Then, we select a target image patch at random and attempt to estimate
its 2D translation parameters by finding the closest among the training set images via a
multiscale gradient descent method; the technique used is similar to the method proposed
in Section 6.4.1 of Wakin et al. (2005). The articulation parameters of the retrieved training
image serve as the estimate. We repeat this procedure using both the Euclidean (IAM) and
approximate EMD (KAM) distances and record the magnitude of the error between the
true and estimated target translation parameters.

Figure 10 displays the results of a Monte-Carlo simulation over 40 independent trials.
Thanks to the smooth and isometric structure of the KAM, we obtain accurate estimation
results even when initializing the gradient descent method far from the target translation
value (over 70 pixels, which is significant considering that the images are of size 80 × 80
pixels). In contrast, the IAM approach suffers from large estimation errors even then
starting relatively close to the target value.

We do not claim that this method of estimating the translation parameters via gradient
descent on the KAM constitutes a state-of-the-art image registration algorithm. Rather,
our aim is merely to show that the smoothness and isometry of the KAM support even
näıve information extraction algorithms, in contrast to IAMs.

5.4 Organizing photo collections

We now explore how KAMs can be used to automatically organize large collections of im-
ages, particularly collections that can be well-modeled by an essentially small number of
parameters. An example is the set of photos of a tourist landmark captured by different in-
dividuals at different times. The intrinsic variability of this set of photos might be extremely
high, owing to occlusions (trees, vehicles, people), variable lighting, and clutter. However,
the essential parameters governing the images can be roughly identifed with the 3D camera
position, orientation, and zoom. We postulate that the KAM approach will help enforce
this intrinsic low-dimensionality of the photos and thus provide a meaningful organization.
In colloquial terms, we are organizing the photographs by solving a complicated “image
jigsaw puzzle” in high-dimensional space by exploiting its low-dimensional geometry

One approach to organize photo colections is the Photo Tourism method (Snavely et al.,
2006), which runs the SfM Bundler algorithm to accurately estimate the position of each 3D
point in the scene and then infers the 3D camera locations and orientations corresponding
to each photograph. Unfortunately, while powerful, this algorithm is computationally very
demanding and takes several days to execute for a dataset comprising even just a few
hundred images.
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Figure 10: Parameter estimation performance for the translation manifold in Fig. 4. The x axis

corresponds to the 2D Euclidean distance between the initial translation parameters

of the gradient descent and those of the target image. The y axis corresponds to the

magnitude of the error between the estimated and target articulations. Gradient descent

on the KAM converges accurately for a wide range of initial displacement magnitudes,

while gradient descent on the IAM does not yield accurate results for even small values

of initial displacement.

As an alternative, we propose a far simpler approach: simply extract the keypoints
from each of the images, compute the keypoint distances between all pairs of images, and
then estimate the geodesics along the KAM. If the low-dimensional manifold assumption
holds, then the images corresponding to the nearest neighbors along the geodesics will be
semantically meaningful.

5.4.1 Notre Dame

We test our hypothesis on the well-known Notre Dame dataset, a collection of 715 high-
resolution images of the popular Parisian tourist trap chosen randomly from FlickR. From
each photo, we extract SIFT keypoint locations and descriptors. Using the approximate
keypoint distance (14), we construct the matrix of pairwise keypoint distances. As in the
ISOMAP algorithm, we use this matrix to construct a k = 12-nearest neighbor graph, which
we use to estimate the geodesic between any given pair of query images.

Figure 11(a) shows the great promise of this proposed technique. We display the seven
(geodesic) nearest neighbors for four different query images; it is clear that the retrieved
nearest neighbors are closely semantically related to the query image. For comparison
purposes, we performed an identical experiment by computing pairwise image distances
using the Local Features method (Torki and Elgammal, 2010) and display the results in
Fig. 11(b). It is evident that the KAM approach results in more semantically meaningful
groupings than the Local Features method.

Going one step further, given a pair of starting and ending images, we display the
intermediate images along the estimated KAM geodesic in Fig. 12. Once again, we observe
that the estimated “path” between the photos is both intuitive and interpretable. For
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example, the images in the bottom row of Fig. 12 can be interpreted as zooming out from
the inset sculpture to the cathedral facade. Our method took less than 3 hours to execute
in MATLAB.

5.4.2 Statue of Liberty

We repeat the Notre Dame experiment on a database of 2000 images comprising the Statue
of Liberty (Li et al., 2008) chosen randomly from FlickR. Once again, we extract local image
features from each photo and estimate a nearest-neighbor graph using the approximate
keypoint distance. Figure 13 illustrates that the estimated geodesics between starting and
ending images are again semantically meaningful. For example, the images in the top row
of Fig. 13 can be interpreted as zooming in and panning around the face of the monument.

Of course, our manifold-based method does not produce a full 3D reconstruction of the
scene and thus cannot be considered as an alternative to the full 3D modeling technique
employed in Photo Tourism (Snavely et al., 2006). Nevertheless, it can be viewed as a new
and efficient way to discover intuitive relationships among photographs. These relationships
can potentially be used to improve the performance of algorithms for applications like
camera localization and multi-view 3D reconstruction.

6. Discussion

Image manifolds have largely been studied from a theoretical standpoint, and their impact
on practical applications has unfortunately not been commensurate to their promise. In
this paper, we have taken some initial steps to bridge this chasm between theory and appli-
cations. We have advocated the need for novel distance measures that provide meaningful
distances between image pairs and novel image representations that are robust to nuisance
variations. To this end, we have proposed an EMD-based metric on local image features
that yields a smooth and isometric mapping from the articulation parameter space to the
image feature space.

A first key aspect of our approach is its simplicity. In contrast with the current state-of-
the-art methods in SfM, calculating distances in our framework does not involve complicated
physics-based modeling of relationships between images, such as epipolar geometry or multi-
view stereo. Instead, we merely exploit the low-dimensional manifold geometry inherent in
large image ensembles.

A second key aspect of our approach is its computational efficiency. By avoiding ex-
plicit correspondence computations between keypoints and image registration, we save sig-
nificantly on computational complexity. This is reflected in a number of our experiments.
The SfM bundler approach (Snavely et al., 2006) greedily establishes correspondences and
extracts considerable 3D geometric information from the input images. Yet, it takes several
hours, or even days, to produce meaningful results. In contrast, our KAM-based method
runs in the order of minutes for data sets of about 150 images and few hours for a larger
dataset of 700+ images.

The ideas we have developed here can be immediately extended to more general settings.
For example, the pyramid match kernel (Grauman and Darrell, 2005) is an efficient, robust
similarity measure between image pairs that is tailored to object detection. Such a kernel
can conceivably be used to induce interesting geometrical structures on IAMs in the same
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manner as our EMD-based approach. We have largely focused on affine articulations in the
object or camera, hence motivating our choice of SIFT (Lowe, 2004) as the feature extraction
algorithm A. A problem involving the manifold of all possible illuminations of an object
would likely involve a pose-invariant descriptor. The KAM approach can be extended to
such problems in a principled manner, including proving analytical results along the lines
of Propositions 1–3.

We have demonstrated via extensive numerical experiments that the KAM framework of-
fers practical robustness to nuisance phenomena such as background clutter and foreground
occlusions. However, modeling such phenomena in a theoretically principled fashion is a
difficult task. Particularly challenging scenarios arise in the adversarial setting, where the
nuisance clutter and occlusions are deliberately chosen to be perceptually similar to the
actual scene of interest. In such a scenario, large, unpredictable errors in the distance com-
putation (14) are possible. We defer the precise characterization of the performance of the
KAM approach in such challenging circumstances to future work.

The primary computational bottleneck in our framework is the calculation of pairwise
keypoint distances between images, which scales as O

�
M2

�
, where M is the number of

images. To enable M to scale to tens, or hundreds, of thousands of images or more, we plan
to explore the Nyström method (Williams and Seeger, 2001; Fowlkes et al., 2004), which
approximates the unknown pairwise distance matrix as low rank and attempts to recover it
from a small set of rows and columns of the matrix. Under the same low-rank assumption,
a host of techniques from the matrix completion literature (Candès and Recht, 2009) can
also potentially be applied to recover the pairwise distance matrix from randomly sampled
entries. Recently, adaptive selection schemes have been proposed (Eriksson et al., 2011)
that show improved performance over random selection strategies. All of these schemes can
potentially be deployed in conjunction with our proposed framework.
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(a) KAM nearest neighbors

(b) Local Features nearest neighbors

Figure 11: Automatic photo organization using (a) our proposed KAM embedding approach and

(b) an approached based on Local Features (Torki and Elgammal, 2010). The leftmost

image in each row (marked in red) indicates the query image, and we retrieve the seven

geodesic nearest neighbor images for each query image. In contrast to the Local Features

approach, the KAM approach provides more semantically meaningful nearest neighbors.
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Figure 12: Geodesic paths between images in the Notre Dame dataset. Shown are images along

the estimated geodesic for four different choices of start images (marked in blue) and

end images (marked in orange).

Figure 13: Geodesic paths between images in the Statue of Liberty dataset. Shown are images

along the estimated geodesics for four different choices of start images (marked in blue)

and end images (marked in orange).
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