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Abstract

We propose a novel method forlinear dimensionality reduction of manifold mod-
eled data. First, we show that with a small numberM of random projectionsof
sample points inRN belonging to an unknownK-dimensional Euclidean mani-
fold, the intrinsic dimension (ID) of the sample set can be estimated to high accu-
racy. Second, we rigorously prove that using only this set ofrandom projections,
we can estimate the structure of the underlying manifold. Inboth cases, the num-
ber of random projections required is linear inK and logarithmic inN , meaning
thatK < M ≪ N . To handle practical situations, we develop a greedy algorithm
to estimate the smallest size of the projection space required to perform manifold
learning. Our method is particularly relevant in distributed sensing systems and
leads to significant potential savings in data acquisition,storage and transmission
costs.

1 Introduction

Recently, we have witnessed a tremendous increase in the sizes of data sets generated and processed
by acquisition and computing systems. As the volume of the data increases, memory and processing
requirements need to correspondingly increase at the same rapid pace, and this is often prohibitively
expensive. Consequently, there has been considerable interest in the task of effective modeling of
high-dimensional observed data and information; such models must capture the structure of the
information content in a concise manner.

A powerful data model for many applications is the geometricnotion of a low-dimensionalman-
ifold. Data that possesses merelyK “intrinsic” degrees of freedom can be assumed to lie on a
K-dimensional manifold in the high-dimensional ambient space. Once the manifold model is iden-
tified, any point on it can be represented using essentiallyK pieces of information. Thus, algorithms
in this vein of dimensionality reduction attempt tolearn the structure of the manifold given high-
dimensional training data.

While most conventional manifold learning algorithms are adaptive (i.e., data dependent) and non-
linear (i.e., involve construction of a nonlinear mapping), a linear, nonadaptivemanifold dimen-
sionality reduction technique has recently been introduced that employsrandom projections[1].
Consider aK-dimensional manifoldM in the ambient spaceRN and its projection onto a random
subspace of dimensionM = CK log(N); note thatK < M ≪ N . The result of [1] is that the
pairwise metric structure of sample points fromM is preserved with high accuracy under projection
from R

N to R
M .



(a) (b) (c) (d)

Figure 1:Manifold learning using random projections. (a) Input dataconsisting of 1000 images of a shifted
disk, each of sizeN = 64×64 = 4096. (b) Trueθ1 andθ2 values of the sampled data. (c,d) Isomap embedding
learned from (c) original data inRN , and (d) a randomly projected version of the data intoR

M with M = 15.

This result has far reaching implications. Prototypical devices that directly and inexpensively ac-
quire random projections of certain types of data (signals,images, etc.) have been developed [2,3];
these devices are hardware realizations of the mathematical tools developed in the emerging area of
Compressed Sensing (CS) [4,5]. The theory of [1] suggests that a wide variety of signal processing
tasks can be performeddirectly on the random projectionsacquired by these devices, thus saving
valuable sensing, storage and processing costs.

The advantages of random projections extend even to cases where the original data is available in
the ambient spaceRN . For example, consider a wireless network of cameras observing a scene. To
perform joint image analysis, the following steps might be executed:

1. Collate: Each camera node transmits its respective captured image (of sizeN ) to a central
processing unit.

2. Preprocess: The central processor estimates theintrinsic dimensionK of the underlying
image manifold.

3. Learn: The central processor performs a nonlinear embedding of the data points – for
instance, using Isomap [6] – into aK-dimensional Euclidean space, using the estimate of
K from the previous step.

In situations whereN is large and communication bandwidth is limited, the dominating costs will be
in the first transmission/collation step. On the one hand, toreduce the communication needs one may
perform nonlinear image compression (such as JPEG) at each node before transmitting to the central
processing. But this requires a good deal of processing power at each sensor, and the compression
would have to be undone during the learning step, thus addingto overall computational costs. On the
other hand, every camera could encode its image by computing(either directly or indirectly) a small
number of random projections to communicate to the central processor. These random projections
are obtained by linear operations on the data, and thus are cheaply computed. Clearly, in many
situations it will be less expensive to store, transmit, andprocess such randomly projected versions
of the sensed images. The question now becomes: how much information about the manifold is
conveyed by these random projections, and is any advantage in analyzing such measurements from
a manifold learning perspective?

In this paper, we provide theoretical and experimental evidence that reliable learning of aK-
dimensional manifold can be performed not just in the high-dimensional ambient spaceRN but also
in an intermediate, much lower-dimensional random projection spaceRM , whereM = CK log(N).
See, for example, the toy example of Figure 1. Our contributions are as follows. First, we present a
theoretical bound on the minimum number of measurements persample point required to estimate
the intrinsic dimension (ID) of the underlying manifold, upto an accuracy level comparable to that
of the Grassberger-Procaccia algorithm [7,8], a widely used geometric approach for dimensionality
estimation. Second, we present a similar bound on the numberof measurementsM required for
Isomap [6] – a popular manifold learning algorithm – to be “reliably” used to discover the nonlinear
structure of the manifold. In both cases,M is shown to be linear inK and logarithmic inN . Third,
we formulate a procedure to determine, in practical settings, this minimum value ofM with no a
priori information about the data points. This paves the way for a weakly adaptive, linear algorithm
(ML-RP ) for dimensionality reduction and manifold learning.

The rest of the paper is organized as follows. Section 2 recaps the manifold learning approaches we
utilize. In Section 3 presents our main theoretical contributions, namely, the bounds onM required
to perform reliable dimensionality estimation and manifold learning from random projections. Sec-



tion 4 describes a new adaptive algorithm that estimates theminimum value ofM required to provide
a faithful representation of the data so that manifold learning can be performed. Experimental re-
sults on a variety of real and simulated data are provided in Section 5. Section 6 concludes with
discussion of potential applications and future work.

2 Background

An important input parameter for all manifold learning algorithms is theintrinsic dimension(ID) of
a point cloud. We aim to embed the data points in as low-dimensional a space as possible in order to
avoid the curse of dimensionality. However, if the embedding dimension is too small, then distinct
data points might be collapsed onto the same embedded point.Hence a natural question to ask is:
given a point cloud inN -dimensional Euclidean space, what is the dimension of the manifold that
best captures the structure of this data set? This problem has received considerable attention in the
literature and remains an active area of research [7,9,10].

For the purposes of this paper, we focus our attention on the Grassberger-Procaccia (GP) [7] algo-
rithm for ID estimation. This is a widely used geometric technique that takes as input the set of
pairwise distances between sample points. It then computesthescale-dependent correlation dimen-
sionof the data, defined as follows.

Definition 2.1 SupposeX = (x1, x2, ..., xn) is a finite dataset of underlying dimensionK. Define

Cn(r) =
1

n(n− 1)

∑

i6=j

I‖xi−xj‖<r,

whereI is the indicator function. The scale-dependent correlation dimension ofX is defined as

D̂corr(r1, r2) =
log Cn(r1)− log Cn(r2)

log r1 − log r2

.

The best possible approximation toK (call this K̂) is obtained by fixingr1 andr2 to the biggest
range over which the plot is linear and the calculatingDcorr in that range. There are a number of
practical issues involved with this approach; indeed, it has been shown that geometric ID estimation
algorithms based on finite sampling yield biased estimates of intrinsic dimension [10, 11]. In our
theoretical derivations, we do not attempt to take into account this bias; instead, we prove that
the effect of running the GP algorithm on a sufficient number of random projections produces a
dimension estimate that well-approximates the GP estimateobtained from analyzing the original
point cloud.

The estimatêK of the ID of the point cloud is used by nonlinear manifold learning algorithms (e.g.,
Isomap [6], Locally Linear Embedding (LLE) [12], and Hessian Eigenmaps [13], among many
others) to generate âK-dimensional coordinate representation of the input data points. Our main
analysis will be centered around Isomap. Isomap attempts topreserve themetric structureof the
manifold, i.e., the set of pairwise geodesic distances of any given point cloud sampled from the
manifold. In essence, Isomap approximates the geodesic distances using a suitably defined graph
and performs classical multidimensional scaling (MDS) to obtain a reducedK-dimensional repre-
sentation of the data [6]. A key parameter in the Isomap algorithm is theresidual variance, which is
equivalent to the stress function encountered in classicalMDS. The residual variance is a measure
of how well the given dataset can be embedded into a Euclideanspace of dimensionK. In the next
section, we prescribe a specific number of measurements per data point so that performing Isomap
on the randomly projected data yields a residual variance that is arbitrarily close to the variance
produced by Isomap on the original dataset.

We conclude this section by revisiting the results derived in [1], which form the basis for our de-
velopment. Consider the effect of projecting a smoothK-dimensional manifold residing inRN

onto a randomM -dimensional subspace (isomorphic toR
M ). If M is sufficiently large, a stable

near-isometric embedding of the manifold in the lower-dimensional subspace is ensured. The key
advantage is thatM needs only to belinear in the intrinsic dimension of the manifoldK. In addition,
M depends only logarithmically on other properties of the manifold, such as its volume, curvature,
etc. The result can be summarized in the following theorem.



Theorem 2.2 [1] LetM be a compactK-dimensional manifold inRN having volumeV and
condition number1/τ . Fix 0 < ǫ < 1 and0 < ρ < 1. LetΦ be a random orthoprojector1 fromR

N

to R
M and

M ≥ O

(
K log(NV τ−1) log(ρ−1)

ǫ2

)
. (1)

SupposeM < N . Then, with probability exceeding1− ρ, the following statement holds: For every
pair of pointsx, y ∈ M, andi ∈ {1, 2},

(1 − ǫ)

√
M

N
≤

di(Φx, Φy)

di(x, y)
≤ (1 + ǫ)

√
M

N
. (2)

whered1(x, y) (respectively,d2(x, y)) stands for the geodesic (respectively,ℓ2) distance between
pointsx andy.

The condition numberτ controls the local, as well as global, curvature of the manifold – the smaller
theτ , the less well-conditioned the manifold with higher “twistedness” [1]. Theorem 2.2 has been
proved by first specifying a finite high-resolution samplingon the manifold, the nature of which
depends on its intrinsic properties; for instance, a planarmanifold can be sampled coarsely. Then the
Johnson-Lindenstrauss Lemma [14] is applied to these points to guarantee the so-called “isometry
constant”ǫ, which is nothing but (2).

3 Bounds on the performance of ID estimation and manifold learning
algorithms under random projection

We saw above that random projections essentially ensure that the metric structure of a high-
dimensional input point cloud (i.e., the set of all pairwisedistances between points belonging to the
dataset) is preserved up to a distortion that depends onǫ. This immediately suggests that geometry-
based ID estimation and manifold learning algorithms couldbe applied to the lower-dimensional,
randomly projected version of the dataset.

The first of our main results establishes a sufficient dimension of random projectionM required to
maintain the fidelity of the estimated correlation dimension using the GP algorithm. The proof of
the following is detailed in [15].

Theorem 3.1 LetM be a compactK-dimensional manifold inRN having volumeV and condi-
tion number1/τ . Let X = {x1, x2, ...} be a sequence of samples drawn from auniform density
supported onM. Let K̂ be the dimension estimate of the GP algorithm onX over the range
(rmin, rmax). Let β = ln(rmax/rmin) . Fix 0 < δ < 1 and0 < ρ < 1. Suppose the following
condition holds:

rmax < τ/2 (3)

LetΦ be a random orthoprojector fromRN to R
M with M < N and

M ≥ O

(
K log(NV τ−1) log(ρ−1)

β2δ2

)
. (4)

Let K̂Φ be the estimated correlation dimension onΦX in the projected spaceover the range
(rmin

√
M/N, rmax

√
M/N). Then,K̂Φ is bounded by:

(1− δ)K̂ ≤ K̂Φ ≤ (1 + δ)K̂ (5)

with probability exceeding1− ρ.

Theorem 3.1 is a worst-case bound and serves as a sufficient condition for stable ID estimation using
random projections. Thus, if we choose a sufficiently small value forδ andρ, we are guaranteed
estimation accuracy levels as close as desired to those obtained with ID estimation in the original
signal space. Note that the bound onK̂Φ is multiplicative. This implies that in the worst case, the

1Such a matrix is formed by orthogonalizingM vectors of lengthN having, for example, i.i.d. Gaussian or
Bernoulli distributed entries.



number of projections required to estimateK̂Φ very close toK̂ (say, within integer roundoff error)
becomes higher with increasing manifold dimensionK.

The second of our main results prescribes the minimum dimension of random projections required
to maintain the residual variance produced by Isomap in the projected domain within an arbitrary
additiveconstant of that produced by Isomap with the full data in the ambient space. This proof of
this theorem [15] relies on the proof technique used in [16].

Theorem 3.2 LetM be a compactK-dimensional manifold inRN having volumeV and condition
number1/τ . Let X = {x1, x2, ..., xn} be a finite set of samples drawn from a sufficiently fine
density supported onM. Let Φ be a random orthoprojector fromRN to R

M with M < N . Fix
0 < ǫ < 1 and0 < ρ < 1. Suppose

M ≥ O

(
K log(NV τ−1) log(ρ−1)

ǫ2

)
.

Define thediameterΓ of the dataset as follows:

Γ = max
1≤i,j≤n

diso(xi, xj)

wherediso(x, y) stands for the Isomap estimate of the geodesic distance between pointsx andy.
DefineR andRΦ to be the residual variances obtained when Isomap generatesa K-dimensional
embedding of the original datasetX and projected datasetΦX respectively. Under suitable con-
structions of the Isomap connectivity graphs,RΦ is bounded by:

RΦ < R + CΓ2ǫ

with probability exceeding1− ρ. C is a function only on the number of sample pointsn.

Since the choice ofǫ is arbitrary, we can choose a large enoughM (which is still only logarithmic
in N ) such that the residual variance yielded by Isomap on the randomly projected version of the
dataset is arbitrarily close to the variance produced with the data in the ambient space. Again,
this result is derived from a worst-case analysis. Note thatΓ acts as a measure of the scale of the
dataset. In practice, we may enforce the condition that the data is normalized (i.e., every pairwise
distance calculated by Isomap is divided byΓ). This ensures that theK-dimensional embedded
representation is contained within a ball of unit norm centered at the origin.

Thus, we have proved that with only anM -dimensional projection of the data (withM ≪ N )
we can perform ID estimation and subsequently learn the structure of aK-dimensional manifold,
up to accuracy levels obtained by conventional methods. In Section 4, we utilize these sufficiency
results to motivate an algorithm for performing practical manifold structure estimation using random
projections.

4 How many random projections are enough?

In practice, it is hard to know or estimate the parametersV andτ of the underlying manifold. Also,
since we have noa priori information regarding the data, it is impossible to fixK̂ andR, the outputs
of GP and Isomap on the point cloud in the ambient space. Thus,often, we may not be able fix a
definitive value forM . To circumvent this problem we develop the following empirical procedure
that we dub itML-RP for manifold learning using random projections.

We initialize M to a small number, and computeM random projections of the data setX =
{x1, x2, ..., xn} (heren denotes the number of points in the point cloud). Using the set ΦX =

{Φx : x ∈ X}, we estimate the intrinsic dimension using the GP algorithm. This estimate, saŷK,
is used by the Isomap algorithm to produce an embedding intoK̂-dimensional space. The resid-
ual variance produced by this operation is recorded. We thenincrementM by 1 and repeat the
entire process. The algorithm terminates when the residualvariance obtained is smaller than some
tolerance parameterδ. A full length description is provided in Algorithm 1.

The essence of ML-RP is as follows. A sufficient numberM of random projections is determined by
a nonlinear procedure (i.e., sequential computation of Isomap residual variance) so that conventional



Algorithm 1 ML-RP
M ← 1
Φ← Random orthoprojector of sizeM ×N .
while residual variance≥ δ do

Run the GP algorithm onΦX .
Use ID estimate (̂K) to perform Isomap onΦX .
Calculate residual variance.
M ←M + 1
Add one row toΦ

end while
return M
return K̂

(a) (b)

Figure 2:Performance of ID estimation using GP as a function of randomprojections. Sample size n = 1000,
ambient dimension N = 150. (a) Estimated intrinsic dimension for underlying hyperspherical manifolds of
increasing dimension. The solid line indicates the value ofthe ID estimate obtained by GP performed on the
original data. (b) Minimum number of projections required for GP to work with 90% accuracy as compared to
GP on native data.

manifold learning does almost as well on the projected dataset as the original. On the other hand,
the random linear projections provide a faithful representation of the data in the geodesic sense.
In this manner, ML-RP helps determine the number of rows thatΦ requires in order to act as an
operator that preserves metric structure. Therefore, ML-RP can be viewed as an adaptive method
for linear reduction of data dimensionality. It is only weakly adaptive in the sense that only the
stopping criterion for ML-RP is determined by monitoring the nature of the projected data.

The results derived in Section 3 can be viewed as convergenceproofs for ML-RP. The existence of
a certain minimum number of measurements for any chosen error valueδ ensures that eventually,
M in the ML-RP algorithm is going to become high enough to ensure “good” Isomap performance.
Also, due to the built-in parsimonious nature of ML-RP, we are ensured to not “overmeasure” the
manifold, i.e., just the requisite numbers of projections of points are obtained.

5 Experimental results

This section details the results of simulations of ID estimation and subsequent manifold learning on
real and synthetic datasets. First, we examine the performance of the GP algorithm on random pro-
jections ofK-dimensional dimensional hyperspheres embedded in an ambient space of dimension
N = 150. Figure 2(a) shows the variation of the dimension estimate produced by GP as a function
of the number of projectionsM . The sampled dataset in each of the cases is obtained from drawing
n = 1000 samples from a uniform distribution supported on a hypersphere of corresponding dimen-
sion. Figure 2(b) displays the minimum number of projections per sample point required to estimate
the scale-dependent correlation dimension directly from the random projections, up to 10% error,
when compared to GP estimation on the original data.

We observe that the ID estimate stabilizes quickly with increasing number of projections, and indeed
converges to the estimate obtained by running the GP algorithm on the original data. Figure 2(b)
illustrates the variation of the minimum required projection dimensionM vs.K, the intrinsic dimen-



Figure 3:Standard databases. Ambient dimension for the face database N = 4096; ambient dimension for the
hand rotation databases N = 3840.

Figure 4:Performance of ML-RP on the above databases. (left) ML-RP onthe face database (N = 4096).
Good approximates are obtained forM > 50. (right) ML-RP on the hand rotation database (N = 3840). For
M > 60, the Isomap variance is indistinguishable from the variance obtained in the ambient space.

sion of the underlying manifold. We plot the intrinsic dimension of the dataset against the minimum
number of projections required such thatK̂Φ is within 10% of the conventional GP estimatêK (this
is equivalent to choosingδ = 0.1 in Theorem 3.1). We observe the predicted linearity (Theorem 3.1)
in the variation ofM vsK.

Finally, we turn our attention to two common datasets (Figure 3) found in the literature on dimension
estimation – the face database2 [6], and the hand rotation database [17].3 The face database is a
collection of 698 artificial snapshots of a face (N = 64 × 64 = 4096) varying under 3 degrees of
freedom: 2 angles for pose and 1 for lighting dimension. The signals are therefore believed to reside
on a 3D manifold in an ambient space of dimension 4096. The hand rotation database is a set of
90 images (N = 64 × 60 = 3840) of rotations of a hand holding an object. Although the image
appearance manifold is ostensibly one-dimensional, estimators in the literature always overestimate
its ID [11].

Random projections of each sample in the databases were obtained by computing the inner product
of the image samples with an increasing number of rows of the random orthoprojectorΦ. We
note that in the case of the face database, forM > 60, the Isomap variance on the randomly
projected points closely approximates the variance obtained with full image data. This behavior of
convergence of the variance to the best possible value is even more sharply observed in the hand
rotation database, in which the two variance curves are indistinguishable forM > 60. These results
are particularly encouraging and demonstrate the validityof the claims made in Section 3.

6 Discussion

Our main theoretical contributions in this paper are the explicit values for the lower bounds on the
minimum number of random projections required to perform IDestimation and subsequent manifold
learning using Isomap, with high guaranteed accuracy levels. We also developed an empirical greedy
algorithm (ML-RP) for practical situations. Experiments on simple cases, such as uniformly gener-
ated hyperspheres of varying dimension, and more complex situations, such as the image databases
displayed in Figure 3, provide sufficient evidence of the nature of the bounds described above.

2http://isomap.stanford.edu
3http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html. Note that we use a subsampled version of the

database used in the literature, both in terms of resolutionof the image and sampling of the manifold.



The method of random projections is thus a powerful tool for ensuring the stable embedding of low-
dimensional manifolds into an intermediate space of reasonable size. The motivation for developing
results and algorithms that involve random measurements ofhigh-dimensional data is significant,
particularly due to the increasing attention that Compressive Sensing (CS) has received recently. It
is now possible to think of settings involving a huge number of low-power devices that inexpen-
sively capture, store, and transmit a very small number of measurements of high-dimensional data.
ML-RP is applicable in all such situations. In situations where the bottleneck lies in the transmission
of the data to the central processing node, ML-RP provides a simple solution to the manifold learn-
ing problem and ensures that with minimum transmitted amount of information, effective manifold
learning can be performed. The metric structure of the projected dataset upon termination of ML-
RP closely resembles that of the original dataset with high probability; thus, ML-RP can be viewed
as a novel adaptive algorithm for finding an efficient, reduced representation of data of very large
dimension.
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