

Geometric Signal Models for Compressive Sensing

Chinmay Hegde

May 31, 2011

Joint work with: Richard Baraniuk, Volkan Cevher, Marco Duarte and Aswin Sankaranarayanan

• Random subgaussian matrix Φ has the **RIP** w.h.p. if

$$M = O(K + \log \binom{N}{K}) = O(K \log(N/K))$$

- *ℓ*₁-optimization

 [C, R, T]; [D]; [F,W,N]; [H,Y,Z]
- Greedy algorithms
 - OMP [G, T]
 - iterated thresholding [N, F]; [D, D, DeM]; [B, D]
 - CoSaMP [N,T]; Subspace Pursuit [D,M]

Sparsity

• Sparsity captures **primary structure**

5% sparse "image"

Structure

Most real-world signals exhibit additional structure

5% sparse image

How to exploit structure / prior?

Key idea: Use Geometry

- Linear models
- Bilinear models
- Manifold models

Geometry: model

• **Sparse** signal:

- only K out of N coefficients nonzero

Geometry: model

• Sparse signal:

- only K out of N coordinates nonzero

• **Geometry**: *union* of $\binom{K}{K}$ *K*-dimensional subspaces aligned w/ coordinate axes

Geometry: model

• Sparse signal:

only K out of N coordinates nonzero

• **Geometry**: *union* of $\binom{N}{K}$ *K*-dimensional subspaces aligned w/ coordinate axes

Geometry : Sampling

- Preserve the structure of sparse signals
- Restricted Isometry Property (RIP)

Geometry : Recovery

• Efficient, stable algorithms that **recover** signal

Iterated (hard) thresholding

• goal: given $y = \Phi x$, recover $x \in \Sigma_K$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \operatorname{thresh}(\widehat{x}_i + \Phi^T(y - \Phi x_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Linear Models

Sparse signals

• Defn: *K*-sparse signals comprise *all K*-dimensional canonical subspaces

Model-sparse signals

• Def: A *K*-sparse union-of-subspaces model comprises a particular (*reduced*) set of L_K *K*-dim canonical subspaces

Sampling bounds

• Model-RIP: stable embedding [B, D]; [B,D,DeV,W]

Iterated thresholding

• goal: given $y = \Phi x$, recover $x \in \Sigma_K$

initialize $i = 0, x_0 = 0$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \operatorname{thresh}(\widehat{x}_i + \Phi^T(y - \Phi x_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Iterated model thresholding

• goal: given $y = \Phi x$, recover $x \in \mathcal{M}_K$

initialize $i = 0, x_0 = 0$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

E.g. Wavelet trees

Result - Wavelet trees

Daubechies/CoSaMP - K = 6000 M = 30000

SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000

SNR = 17.8263dB

Union of subspaces models

• Markov Random Fields

Recipe for Compressive Sensing

- Geometric model
 - Sampling bound M measurements
 - signal recovery algorithm from M measurements

Bilinear Models

When things aren't exactly sparse..

response

Bilinear model

"Pulse stream"

z = x * h

where:

 $x \in \mathcal{M}_S$

Signal model: geometry

• **RIP for pulse streams**

Sampling bound

• Theorem

$$M = O(S + F + \log(L_S L_F))$$

• In the worst case:

$$M = O(S + F + S \log(N/S) + F \log(N/F))$$

 $\ll O(SF \log N) = O(K \log N)$

Recovery

• Problem: recover *z*

$$y = \Phi z = \Phi(x * h) = \Phi H x = \Phi X h$$

• Problem: recover
$$z$$

 $y = \Phi z = \Phi(x * h) = \Phi H x = \Phi X h$
• Compare to:
 $z = x * h$

• Blind Deconvolution

Iterated Model Thresholding

• goal: given $y = \Phi x$, recover $x \in \mathcal{M}_K$

initialize $i = 0, x_0 = 0$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Iterated Support Estimation

• goal: given $y = \Phi z = \Phi H x = \Phi X h$, recover $z \in \mathcal{M}(S, F, \Delta)$

initialize
$$\widehat{h} = (\mathbf{1}_F^T, 0, \dots, 0) / \sqrt{F}$$

 $i = 0, \ x_0 = 0$

iterate:

•
$$\widehat{x} \leftarrow \mathcal{M}_S^{\Delta}(\widehat{x} + (\Phi \widehat{H})^T (y - (\Phi \widehat{H} \widehat{x})))$$

• $\widehat{h} \leftarrow (\Phi \widehat{X})^{\dagger} y$

return $\widehat{z} \leftarrow \widehat{x} * \widehat{h}$

Astronomical images

Astronomical images

Astronomical images

Original image

CoSaMP (M = 330)

RM#2 (M = 330)

Reconstruction

Reconstruction

Nonlinear (manifold) Models

Manifold Models

• *K*-dimensional *parameter vector* captures degrees of freedom in signal $x \in \mathbb{R}^N$

$$x = x(\mathbf{z}), z \in \mathbb{R}^{K}$$

• "Image Articulation Manifold" (IAM)

Compressive IAM embedding

Sampling and recovery

- Sampling Theorem
 - (for these special manifolds)

M = O(K)

- Recovery
 - solve a system of multivariate polynomial equations
 - no stable polynomial time algorithm, revert to heuristics

E.g. Shift estimation

• M = 25, N = 1024, K = 1

Summary

Ingredients of CS: a) sampling rate for signal class
 b) algorithm for recovery

- Beyond sparsity
 - UoS/Bilinear/Manifold models
 - If you have prior info, use it! (but how?)
 - Geometric modeling