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CS : Sampling

• Random subgaussian matrix      has the RIP w.h.p. if
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CS : Recovery

•    -optimization  
[C, R, T]; [D]; [F,W,N]; [H,Y,Z]

• Greedy algorithms
– OMP [G, T] 

– iterated thresholding [N, F]; [D, D, DeM]; [B, D] 

– CoSaMP [N,T]; Subspace Pursuit [D,M]
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Sparsity 

• Sparsity captures primary structure

5% sparse “image”



Structure

• Most real-world signals exhibit additional structure

5% sparse image



How to exploit structure / prior?

Key idea: Use Geometry

- Linear models
-  Bilinear models
-  Manifold models



Geometry: model

• Sparse signal:   

– only K out of N coefficients nonzero



• Sparse signal:   

– only K out of N coordinates nonzero

• Geometry:  union of         K-dimensional 
subspaces aligned w/ coordinate axes

• N = 3, K = 1

Geometry: model



Geometry: model

• Sparse signal:   

– only K out of N coordinates nonzero

• Geometry:  union of         K-dimensional 
subspaces aligned w/ coordinate axes

• N = 3, K = 2



Geometry : Sampling

• Preserve the structure of sparse signals
• Restricted Isometry Property (RIP)

K-planes



Geometry : Recovery

• Efficient, stable algorithms that recover signal



• goal: given             , recover 

iterate:

•        

return 

Iterated (hard) thresholding



Linear Models



Sparse signals

• Defn:  K-sparse signals comprise all
             K-dimensional canonical subspaces



• Def:  A K-sparse union-of-subspaces model 
comprises a particular (reduced) set of        K-dim 
canonical subspaces        

Model-sparse signals



Sampling bounds

• RIP:  stable embedding 

K-planes



Sampling bounds

• Model-RIP:  stable embedding 
[B, D]; [B,D,DeV,W]

K-planes



• goal: given             , recover 

initialize 

iterate:

•        

return 

Iterated thresholding



Iterated model thresholding

• goal: given             , recover 

initialize 

iterate:

•        

return 



E.g. Wavelet trees



Result - Wavelet trees



Union of subspaces models

• Block-sparsity

•      - separated spikes
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Union of subspaces models

• Markov Random Fields



Recipe for Compressive Sensing

• Geometric model
–  Sampling bound - M measurements
–  signal recovery algorithm from M measurements



Bilinear Models



When things aren’t exactly sparse..

• 6-sparse signal convolved with an 11-sparse impulse 
response



Bilinear model
•  “Pulse stream”                                                                                       

where:

              “spike stream”     “impulse response” (IR)

• Example
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Signal model: geometry

• RIP for pulse streams

Infinite union 
of subspaces



• Theorem

• In the worst case:

Sampling bound



Recovery

• Problem: recover z



• Problem: recover z

• Compare to:

• Blind Deconvolution

 Recovery



• goal: given             , recover 

initialize 

iterate:

•        

return 

Iterated Model Thresholding



• goal: given                               , recover 

initialize 

iterate:

•       
•   

return 

Iterated Support Estimation



Numerical example

S = 9, F = 11, K = 99, M = 150



Astronomical images



Astronomical images



Astronomical images

Original image CoSaMP (M = 330) RM#2 (M = 330)



Reconstruction



Reconstruction



Nonlinear (manifold) Models



Manifold Models

•  K-dimensional parameter vector captures degrees of 
freedom in signal

• “Image Articulation Manifold” (IAM)  



Compressive IAM embedding



Compressive IAM embedding

 [Baraniuk, Wakin 2006]



Manifold-based CS recovery?



Lie Operators



Lie Operators



• Sampling Theorem 
– (for these special manifolds)

• Recovery
– solve a system of multivariate polynomial equations

– no stable polynomial time algorithm, revert to heuristics

Sampling and recovery



E.g. Shift estimation

• M = 25, N = 1024, K = 1
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Polynomial root finding
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Summary

• Ingredients of CS: a) sampling rate for signal class
        b) algorithm for recovery

• Beyond sparsity

- UoS/Bilinear/Manifold models  

- If you have prior info, use it! (but how?) 

- Geometric modeling


