

Geometric Models for Signal Acquisition and Processing

Chinmay Hegde

May 11, 2012

Joint work with: **Richard Baraniuk**, Volkan Cevher, Marco Duarte, Kevin Kelly, Aswin Sankaranarayanan

The Data Deluge

>250 billion gigabytes generated in 2007

Current status: digital bits > stars in the universe > Avogadro's number (6.02×10^{23}) in 10 years

Handling Big Data

• Approach #1: Throw more resources at it

Handling Big Data

• Approach #1: Throw more resources at it

Handling Big Data (Contd.)

• Approach #2: Model the data in a smart manner

- Exploit the intrinsic **physics** of the setting
- Leverage the model to guide system design

Models are Key

Models are Key

Focus of this talk: Geometry of Signal Models

Geometric intuition enables novel methods for:

- Signal **acquisition**
- Signal recovery
- Signal analysis

Model-Based Compressive Sensing

Signal Processing Pipeline

- Established paradigm for digital data acquisition
 - sample
 - compress
 - transmit
 - reconstruct

Compressive Sensing

- **New** paradigm for digital data acquisition
 - sample and compress
 - transmit
 - reconstruct

Compressive Sensing (CS)

Compressive Sensing (CS)

• Sampling bound

$$M = O(K + \log \binom{N}{K}) = O(K \log(N/K))$$

- Recovery Methods
 - ℓ_1 -optimization, greedy algorithms

Signal Structure

- Sparsity: simplistic, *first-order* assumption
- Many classes of real-world data exhibit rich, secondary structure

wavelets: natural images Gabor atoms: chirps/tones pixels: background subtracted images • **Sparse** signal:

- only K out of N coefficients nonzero

Geometric Intuition

• **Sparse** signal:

- only K out of N coordinates nonzero
- **Geometry**: *union* of $\binom{N}{K}$ *K*-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 1

Geometric Intuition

• Sparse signal:

- only K out of N coordinates nonzero
- **Geometry**: *union* of $\binom{N}{K}$ *K*-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 2

Sparse Signals

• Defn: *K*-sparse signals comprise *all K*-dimensional canonical subspaces

Model-Sparse Signals

• Def: A *K*-sparse union-of-subspaces model comprises a particular (*reduced*) set of L_K *K*-dim canonical subspaces

Sampling Bounds

• **RIP:** stable embedding

[CRT06, D06, BDDW08]

Sampling Bounds

Model-RIP: stable embedding

[BD09, BCDH10]

Iterated Thresholding

[BD08]

• goal: given $y = \Phi x$, recover $x \in \Sigma_K$

initialize $i = 0, x_0 = 0$

iterate:

• $\widehat{x}_{i+1} \leftarrow \operatorname{thresh}(\widehat{x}_i + \Phi^T(y - \Phi x_i))$

return $\widehat{x} \leftarrow \widehat{x}_i$

Iterated Model Thresholding

• goal: given $y = \Phi x$, recover $x \in \mathcal{M}_K$

initialize $i = 0, x_0 = 0$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Recovery Guarantee

Suppose we observe

$$y = \Phi x^* + e, \ x^* \in \mathcal{M}$$

Then, the estimates of Iterated Model Thresholding satisfy:

$$\|\widehat{x}_i - x^*\|_2 \le 2^{-i} \|x^*\|_2 + 15\|e\|_2$$

Wavelet Sparsity

 Typical of wavelet transforms of natural signals and images (piecewise smooth)

Tree-Sparsity

 Model: K-sparse coefficients
 + significant coefficients lie on a rooted subtree

 Typical of wavelet transforms of natural signals and images (piecewise smooth)

Tree-Sparsity

- Model: K-sparse coefficients
 + significant coefficients lie on a rooted subtree
- $w_{1,0}$ $w_{1,1}$ $w_{2,0}$ $w_{2,1}$ $w_{2,2}$ $w_{2,3}$

Tree-sparse approx:

find best rooted subtree of coefficients

- CSSA [B]
- dynamic programming [Donoho]

 $O(N \log N)$ O(N)

Tree-Sparsity

Daubechies/CoSaMP - K = 6000 M = 30000

 Model: K-sparse coefficients
 + significant coefficients lie on a rooted subtree

SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000

SNR = 17.8263dB

Other Structured Sparsity Models

• Block-sparsity

• Δ -separated spikes

• Markov Random Fields

[BCDH10, HDC09, CDHB08, CIHB09, HB11]

Manifold Models

• *K*-dimensional *parameter vector* captures degrees of freedom in signal $x \in \mathbb{R}^N$

$$x = x(\mathbf{z}), z \in \mathbb{R}^K$$

Sampling Bounds

$$M = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right)$$

[BW06]

٠

Recovery

 $\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$

[SC11]

Manifold-Based Recovery

• Real-data experiments with the Single-Pixel Camera

Signal Separation and Denoising

• Cocktail party problem

- Cocktail party problem
- Audio click removal

- Cocktail party problem
- Audio click removal
- Morphological components analysis (MCA)

- Cocktail party problem
- Audio click removal
- Morphological components analysis (MCA)

- Numerous settings have been explored
 - spike and sines
 - incoherent bases
 - "robust" recovery in compressive sensing
 - low-rank + sparse matrix decomposition

Model

• Signal of interest:

• Noisy linear observations:

$$y = \Phi x + e = \Phi(a^* + b^*) + e$$

Geometry

• Key concept: *incoherence* (b/w manifold secants)

Successive Projections onto Incoherent Manifolds (SPIN)

• goal: given $y = \Phi(a^* + b^*) + e$, recover (a^*, b^*)

initialize $i = 0, x_0 = 0$

iterate:

•
$$a_{k+1} \leftarrow \mathcal{P}_{\mathcal{A}}(a_k + \eta \Phi^T(y - \Phi(a_k + b_k)))$$

•
$$b_{k+1} \leftarrow \mathcal{P}_{\mathcal{B}}(b_k + \eta \Phi^T(y - \Phi(a_k + b_k)))$$

until convergence

Multi-Manifold Recovery

• $N = 64 \times 64 = 4096, M = 50$

- Near-perfect recovery with M/N = 1.2% meas.!

Matrix Decomposition

Matrix Decomposition

• Low-rank + Sparse model

Matrix Decomposition

• Low-rank + Sparse model

- Efficient projection operators exist for both manifolds
- Violates global incoherence assumption

Numerical Results - SPIN

Linear Dimensionality Reduction

Dimensionality Reduction

"Manifold Learning" - Isomap, LLE, MVU, ...

- Obtain a low-dimensional representation of the data
- Preserve geometric information

Dimensionality Reduction

- Despite their great promise, nonlinear methods suffer from drawbacks:
 - (often) do not generalize to out-of-sample points
 - (often) unstable

• Alternative: **linear** dim. reduction methods

 $X \mapsto AX$

- Principal components analysis (PCA), and variants
- Random projections

Linear Dim. Reduction Methods

- Principal Components Analysis (PCA)
 - Easy to compute

$$X = USV^T$$

- But **distorts** pairwise distances
- Random Projections
 - Guarantees pairwise distance preservation (JL)

$$1 - \delta \leq \frac{\|\Phi(x_1 - x_2)\|^2}{\|x_1 - x_2\|^2} \leq 1 + \delta$$

- But constants are **poor**
- Oblivious to structure of data

"Good" Linear Maps

"Good" Linear Maps

- Goal: preserve norms of all pairwise secants of X
- If X is a dense enough sampling, then Φ is an isometric mapping of \mathcal{M}

Designing a "Good" Linear Map

Want: a short, fat matrix Φ , such that

$$egin{aligned} 1-\delta &\leq \|\Phi v_i\|^2 \leq 1+\delta \ i=1,2,\ldots,Q \ & \& \end{aligned}$$

minimize rank(Φ), subject to $\left| \|\Phi v_i\|_2^2 - 1 \right| \le \delta$ $i = 1, 2, \dots, Q$

The Lifting Trick

- Convert quadratic constraints in Φ into *linear* constraints in $P = \Phi^T \Phi$
- Use a nuclear-norm relaxation of the rank
- Simplified problem:

minimize $||P||_*$ subject to $||\mathcal{A}(P) - \mathbf{1}||_{\infty} \leq \delta$ $P \succ 0, \ P = P^T$

[HSB12]

A Fast Algorithm

- Alternating Direction Method of Multipliers (ADMM)
 - Introduce auxiliary variables

minimize $||P||_*$

$$P = L, \ \mathcal{A}(L) = q, \ \|q - \mathbf{1}\|_{\infty} \le \delta$$

- Every iteration decouples into three optimizations, each evaluated in closed-form
- Geometric intuition: successive projection onto suitably defined convex sets

MNIST Dataset

Linear Dim. Reduction of MNIST

M=20 linear measurements enough to ensure isometry constant of 0.01 !

Classification: Circles & Squares

[HSB12]

Summary

- Models are the key
- One (nice) way to study models: **Geometry**
- Geometric intuition enables potential novel methods for signal
 - acquisition (linear dim. reduction)
 - reconstruction (model-CS)
 - analysis (source separation)
- Advantages of the geometric approach:
 - Embrace nonlinearity, non-convexity
 - Concise framework for characterizing limits of systems
 - Unifies, generalizes

What's Next?

- Re-imagining the sig. proc. pipeline: Adaptivity
 - Design measurements according to signal
 - Closed loop sensing + reconstruction
- Pushing the limits
 - Do things work when almost all the data is bad
 - What kind of questions to ask?
- Beyond signals and images
 - rankings, "likes", questionnaires, networks, etc.

References

[BCDH10] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, "Modelbased Compressive Sensing", 2010.

[HCD09] C. Hegde, M. Duarte, and V. Cevher, "Compressive Sensing of Spike Trains", 2009.

[CDHB08] V. Cevher, M. Duarte, C. Hegde, and R. Baraniuk, "Sparse Signal Recovery using Markov Random Fields", 2008.

[HB11] C. Hegde and R. Baraniuk, "Sampling and Recovery of Pulse Streams", 2011.

[CIHB09] V. Cevher, P. Indyk, C. Hegde, and R. Baraniuk, "Recovery of Clustered-Sparse Signals from Compressive Measurements", 2009.

[HB12] C. Hegde and R. Baraniuk, "Signal Recovery on Incoherent Manifolds", 2012.

[HSB12] C. Hegde, A. Sankaranarayanan, and R. Baraniuk, "Near-Isometric Linear Embeddings of Manifolds", 2012.