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The Data Deluge

• >250 billion gigabytes generated in 2007

 Current status: digital bits > stars in the universe
 > Avogadro’s number (6.02x1023) in 10 years



Handling Big Data

• Approach #1: Throw more resources at it
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Handling Big Data (Contd.)

• Approach #2: Model the data in a smart manner

– Exploit the intrinsic physics of the setting

– Leverage the model to guide system design
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Focus of this talk:
Geometry of Signal Models

Geometric intuition enables novel methods for:

– Signal acquisition

– Signal recovery

– Signal analysis



 Model-Based 
Compressive Sensing



Signal Processing Pipeline

• Established paradigm for digital data acquisition
- sample         
- compress        
- transmit              
- reconstruct           
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Compressive Sensing

• New paradigm for digital data acquisition
- sample and compress   
- transmit              
- reconstruct           

CS transmit/store 

receive reconstruct 



Compressive Sensing (CS)
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Compressive Sensing (CS)

• Sampling bound

random 
measurements

sparse
signal

nonzero
entries

• Recovery Methods
•    -optimization, greedy algorithms



Signal Structure

• Sparsity: simplistic, first-order assumption
• Many classes of real-world data exhibit rich, 

secondary structure

wavelets: 
natural images 

Gabor atoms: 
chirps/tones 

pixels: 
background subtracted 

images 



• Sparse signal:   

– only K out of N coefficients nonzero
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Sparse Signals

• Defn:  K-sparse signals comprise all
             K-dimensional canonical subspaces



• Def:  A K-sparse union-of-subspaces model 
comprises a particular (reduced) set of        K-dim 
canonical subspaces        

Model-Sparse Signals



Sampling Bounds

• RIP:  stable embedding 

K-planes

[CRT06, D06, BDDW08]



Sampling Bounds

• Model-RIP:  stable embedding 

K-planes

[BD09, BCDH10]



• goal: given             , recover 

initialize 

iterate:

•       

return 

Iterated Thresholding

[BD08] K-planes



Iterated Model Thresholding

• goal: given             , recover 

initialize 

iterate:

•        

return 

[BCDH10]



Recovery Guarantee

Suppose we observe

Then, the estimates of Iterated Model Thresholding 
satisfy:



Wavelet Sparsity

• Typical of wavelet 
transforms
of natural signals 
and images 
(piecewise smooth)



Tree-Sparsity

• Model:  K-sparse coefficients 
+ significant coefficients 
 lie on a rooted subtree
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Tree-Sparsity

• Model:  K-sparse coefficients 
+ significant coefficients 
 lie on a rooted subtree

• Tree-sparse approx:   find best rooted subtree 
        of coefficients 
– CSSA [B]

– dynamic programming [Donoho]



Tree-Sparsity

• Model:  K-sparse coefficients 
+ significant coefficients 
 lie on a rooted subtree



Other Structured Sparsity Models

• Block-sparsity

•     -separated spikes

• Markov Random Fields
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Manifold Models

•  K-dimensional parameter vector captures degrees of 
freedom in signal



Sampling Bounds

 [BW06]



Recovery

                         [SC11]



Manifold-Based Recovery

Joint work with Kelly Lab

• Real-data experiments with the Single-Pixel Camera



Signal Separation and Denoising



Signal Separation

• Cocktail party problem



Signal Separation

• Cocktail party problem
• Audio click removal



Signal Separation
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Signal Separation

• Cocktail party problem
• Audio click removal
• Morphological components analysis (MCA)
• ...

• Numerous settings have been explored
– spike and sines
– incoherent bases
– “robust” recovery in compressive sensing
– low-rank + sparse matrix decomposition



Model

• Signal of interest: 

• Noisy linear observations:



• Key concept:  incoherence (b/w manifold secants)

Geometry



Successive Projections onto 
Incoherent Manifolds (SPIN)

• goal: given                           , recover 

initialize 

iterate:

•  
•       

until convergence

[HB12]



Multi-Manifold Recovery

• N = 64 x 64 = 4096, M = 50

- Near-perfect recovery with M/N = 1.2% meas.! 



Matrix Decomposition



Matrix Decomposition

• Low-rank + Sparse model

X S+= L

R



Matrix Decomposition

• Low-rank + Sparse model

– Efficient projection operators exist for both manifolds

– Violates global incoherence assumption

X S+= L

R



Numerical Results - SPIN
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Linear Dimensionality Reduction



“Manifold Learning” - Isomap, LLE, MVU, ...
- Obtain a low-dimensional representation of the data
- Preserve geometric information

Dimensionality Reduction



Dimensionality Reduction

• Despite their great promise, nonlinear methods 
suffer from drawbacks:
– (often) do not generalize to out-of-sample points
– (often) unstable

• Alternative: linear dim. reduction methods

– Principal components analysis (PCA), and variants
– Random projections



Linear Dim. Reduction Methods

• Principal Components Analysis (PCA)
– Easy to compute

– But distorts pairwise distances

• Random Projections
– Guarantees pairwise distance preservation (JL)

– But constants are poor
– Oblivious to structure of data



“Good” Linear Maps



“Good” Linear Maps

• Goal: preserve norms of all pairwise secants of X 
• If X is a dense enough sampling, then    is an 

isometric mapping of   



Designing a “Good” Linear Map

Want: a short, fat matrix       , such that 



The Lifting Trick

• Convert quadratic constraints in     into linear 
constraints in 

• Use a nuclear-norm relaxation of the rank

• Simplified problem:

[HSB12]



• Alternating Direction Method of Multipliers (ADMM)

– Introduce auxiliary variables

– Every iteration decouples into three optimizations, each 
evaluated in closed-form 

– Geometric intuition: successive projection onto suitably 
defined convex sets

A Fast Algorithm



MNIST Dataset



M=20 linear measurements enough to ensure 
isometry constant of 0.01 !

0 0.2 0.4 0.6 0.8 10

50

100

150

200

Isometry Constant

R
an

k

 

 

Rank minimization
PCA

Linear Dim. Reduction of MNIST



Classification: Circles & Squares
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Summary

• Models are the key 

• One (nice) way to study models: Geometry 

• Geometric intuition enables potential novel methods 
for signal
– acquisition (linear dim. reduction)
– reconstruction (model-CS)
– analysis (source separation)

• Advantages of the geometric approach:
– Embrace nonlinearity, non-convexity
– Concise framework for characterizing limits of systems
– Unifies, generalizes



What’s Next?

• Re-imagining the sig. proc. pipeline: Adaptivity
– Design measurements according to signal
– Closed loop sensing + reconstruction

• Pushing the limits
– Do things work when almost all the data is bad  
– What kind of questions to ask?

• Beyond signals and images
– rankings, “likes”, questionnaires, networks, etc.
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