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Concise Signal Model: Sparsity

• Sparse signal:

– only K out of N coordinates nonzero



Concise Signal Model: Sparsity

• Sparse signal:

– only K out of N coordinates nonzero

• Geometry:  union of K-dimensional subspaces
aligned w/ coordinate axes



Compressive Sensing

• Sampling via dimensionality reduction
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Restricted Isometry Property (RIP)

• Preserve the structure of sparse signals

K-planes



Compressive Sensing

• Random subgaussian matrix      has the RIP whp if
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Stable Recovery

• Efficient, stable algorithms that give back signal



Compressive Sensing

•    -optimization
[C, R, T]; [D]; [F,W,N]; [H,Y,Z]

• Greedy algorithms
– OMP [G, T]

– iterated thresholding [N, F]; [D, D, DeM]; [B, D]

– CoSaMP [N,T]; Subspace Pursuit [D,M]
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Beyond Sparse Models



Beyond Sparse Models

• Sparsity captures simplistic primary structure

5% sparse image



Beyond Sparse Models

• Most real-world apps exhibit additional structure

5% sparse image



Model-based CS

•  K-sparse structured sparsity model comprises a
reduced set of K-dim canonical subspaces

• Model-RIP:  stable embedding
[B, D]; [B,D,DeV,W]

• Recovery: simple modification of iterative support
selection algorithms



Model-based CS

•  K-sparse structured sparsity model comprises a
reduced set of K-dim canonical subspaces

• Model-RIP:  stable embedding
[B, D]; [B,D,DeV,W]

• Recovery: simple modification of iterative support
selection algorithms

• Models are good!!



When things aren’t exactly sparse..



When things aren’t exactly sparse..

• S-sparse signal convolved with an F-sparse impulse
response



When things aren’t exactly sparse..



• Neuronal spike trains

• UWB signals
• Astronomical imaging
• Etc.

Streams of pulses



• Overall sparsity:

• Model-based CS:

• BUT #{degrees of freedom} =

Streams of pulses



• Overall sparsity:

• Model-based CS:

• BUT #{degrees of freedom} =

• Can we do better?

Streams of pulses



Geometry of signal set

• Infinite union of subspaces

K-planes



• Infinite union of subspaces

• Very small subset of the set of all SF-sparse signals

Geometry of signal set

K-planes



Sampling Bound

• RIP for pulse streams

Infinite union 
of subspaces



 Recovery
• Similar in spirit to blind deconvolution

• Slightly different goal: recover the pulse stream

• Iterate between estimating spikes and filter
coefficients



 Recovery algorithm



 Numerical example

Stream of pulses: N = 1024, S = 8, F = 11



Numerical example

CS recovery using M = 90 measurements



Numerical example

CS recovery using M = 90 measurements



 Monte Carlo Simulation



 Real-data experiment



 Real-data experiment

CS recovery using the pulse-stream model



Real data experiment



Extension to 2D

Original image

(N = 4096, K = 175)

CoSaMP (M = 290)

MSE = 16.95

Pulse-field (M = 290)

MSE = 0.07



Summary

• Why CS works:    stable embedding for signals
   with concise geometric structure

• Contribution: a CS framework for pulse streams

Advantages:     provably fewer measurements
                               simple, flexible algorithm

                    www.dsp.rice.edu/cs
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