

Compressive Sensing of Streams of Pulses

Chinmay Hegde and Richard Baraniuk

Rice University

Concise Signal Model: Sparsity

• **Sparse** signal:

only K out of N coordinates nonzero

Concise Signal Model: Sparsity

• **Sparse** signal:

- only K out of N coordinates nonzero
- Geometry: *union* of *K*-dimensional subspaces aligned w/ coordinate axes

Compressive Sensing

• **Sampling** via dimensionality reduction

Restricted Isometry Property (RIP)

• Preserve the structure of sparse signals

• Random subgaussian matrix Φ has the **RIP** whp if

$$M = O(K + \log \binom{N}{K})$$

Stable Recovery

• Efficient, stable algorithms that give back signal

Compressive Sensing

- Greedy algorithms
 - OMP [G, T]
 - iterated thresholding [N, F]; [D, D, DeM]; [B, D]
 - CoSaMP [N,T]; Subspace Pursuit [D,M]

Beyond Sparse Models

Beyond Sparse Models

• Sparsity captures **simplistic primary structure**

5% sparse image

Beyond Sparse Models

• Most real-world apps exhibit additional structure

5% sparse image

Model-based CS

- **K-sparse** *structured sparsity model* comprises a *reduced* set of *K*-dim canonical subspaces
- Model-RIP: stable embedding [B, D]; [B,D,DeV,W]

$$M = O(K + \log(m_K))$$

Recovery: simple modification of iterative support selection algorithms

Model-based CS

- **K-sparse** *structured sparsity model* comprises a *reduced* set of *K*-dim canonical subspaces
- Model-RIP: stable embedding [B, D]; [B,D,DeV,W]

$$M = O(K + \log(m_K))$$

- Recovery: simple modification of iterative support selection algorithms
- Models are good!!

When things aren't exactly sparse..

When things aren't exactly sparse..

• S-sparse signal convolved with an F-sparse impulse response

When things aren't exactly sparse..

Streams of pulses

• Neuronal spike trains

- UWB signals
- Astronomical imaging
- Etc.

Streams of pulses

• Overall sparsity: K = SF

• Model-based CS: $M = O(K + \log(m_K))$

• BUT #{degrees of freedom} = O(S + F)

Streams of pulses

• Overall sparsity: K = SF

• Model-based CS: $M = O(K + \log(m_K))$

• BUT #{degrees of freedom} = O(S + F)

• Can we do better?

Geometry of signal set

• *Infinite* union of subspaces

Geometry of signal set

• *Infinite* union of subspaces

• Very small subset of the set of all SF-sparse signals

Sampling Bound

• **RIP for pulse streams**

Recovery

- Similar in spirit to **blind deconvolution**
- Slightly different goal: recover the *pulse stream*
- Iterate between estimating spikes and filter coefficients

Recovery algorithm

Algorithm 1

Inputs: Projection matrix Φ , measurements y, model parameters Δ , S, F. Output: $\mathcal{M}_{S,F}^{\Delta}$ -sparse approximation \hat{z} to true signal z $\hat{x} = 0$, $\hat{h} = (\mathbf{1}_{F}^{\top}, 0, \dots, 0); i = 0$ {initialize} while halting criterion false do 1. $i \leftarrow i+1$ 2. $\widehat{z} \leftarrow \widehat{x} * \widehat{h}$ {current signal estimate } 3. $\widehat{H} = \mathbb{C}(\widehat{h}), \Phi_h = \Phi \widehat{H}$ {form dictionary for spike domain} 4. $e \leftarrow \Phi_h^T(y - \Phi_h \hat{z})$ {residual} 5. $\Omega \leftarrow \operatorname{supp}(\mathbb{D}_2(e))$ {prune residual according to $(2S, 2\Delta)$ model} 6. $T \leftarrow \Omega \cup \operatorname{supp}(\widehat{x}_{i-1})$ {merge supports} 7. $b|_T \leftarrow (\Phi_h)_T^{\dagger} y, b|_{T^C} = 0$ {update spike estimate} {prune spike estimate according to (S, Δ) model} 8. $\widehat{x} \leftarrow \mathbb{D}(b)$ 9. $\widehat{X} = \mathbb{C}(\widehat{x}), \Phi_x = \Phi \widehat{X}$ {form dictionary for filter domain } 10. $\hat{h} \leftarrow \Phi_x^{\dagger} u$ {update filter estimate } end while return $\widehat{z} \leftarrow \widehat{x} * \widehat{h}$

Numerical example

Stream of pulses: N = 1024, S = 8, F = 11

Numerical example

CS recovery using M = 90 measurements

Numerical example

CS recovery using M = 90 measurements

Monte Carlo Simulation

Real-data experiment

Real-data experiment

CS recovery using the pulse-stream model

Real data experiment

Extension to 2D

(N = 4096, K = 175)

CoSaMP (M = 290) MSE = 16.95 Pulse-field (M = 290) MSE = 0.07

Summary

• Why CS works: stable embedding for signals with concise geometric structure

• Contribution: a CS framework for pulse streams

Advantages: provably fewer measurements simple, flexible algorithm

www.dsp.rice.edu/cs

• Blank slide

• Another blank slide

• Yet another blank slide