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Sensor Data Deluge
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Concise Models

e QOur interest in this talk:
Ensembles of articulating images

— translations of an object
0: x-offset and y-offset

— wedgelets @
0: orientation and offset

— rotations of a 3D object
0: pitch, roll, yaw

e Image articulation manifold
M = {[9 . 0 € @}




Image Articulation Manifold

e N-pixel images: I € RY

e K-dimensional
articulation space

o ThenM:{Ig : 96@}
is @ K-dimensional

“image articulation manifold”
(IAM)

e Submanifold of the ambient
space

G
7]
¥

4

E

?

| -

W
W
)




Image Articulation Manifold

e N-pixel images: I € RY

e Local isometry:
image distance
parameter space distance

| ®
e Linear tangent spaces “
are close approximation  adle g
locally 2
° 0®
o

articulation parameter space ®



Image Articulation Manifold

e N-pixel images: I € RY

e Local isometry:
image distance X
parameter space distance

e Linear tangent spaces

are close approximation
locally

articulation parameter space ®



Theory/Practice Disconnect

e Practical image
manifolds are
not smooth

e If images have
sharp edges,
then manifold Y
is everywhere ® e
non-differentiable °

[Donoho, Grimes,2003] articulation parameter space ©



Theory/Practice Disconnect - 1

Lack of isometry

Local image distance on
manifold should be

proportional to articulation &
distance in parameter space s
But true only in ="
toy examples L

.&b.
Result: poor performance o

in classification, estimation, .
tracking, learning, ... articulation parameter space ©




Theory/Practice Disconnect — 2

Lack of local linearity

Local image neighborhoods assumed to form a
linear tangent subspace on manifold

But true only for extremely small neighborhoods

Result: cross-fading when synthesizing images
that should lie on manifold

Geodesic ) ~ | Linear path



A New Model for Image Manifolds

Key Idea: model the IAM in terms of
Transport operators

Ly = fo]@,,ef

For example:

1,(x) =1, (f(x))



Optical Flow

e Given two images I, and I,, we seek a displacement
vector field
f(x, y) = [u(x, y), v(x, y)] such that

]2()6,)/) = ]1(x+u(x,y),y+v(x,y))
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e Linearized brightness constancy

L(x,y)=1(x, ) +(V  [Du(x, y) + (VI )v(x, y)



Optical Flow Manifold (OFM)

e Consider a reference image Iy,
and a K-dimensional articulation
P/
e Collect optical flows from Iy -
to all images reachable by a
K-dimensional articulation. Call
this the optical flow manifold

(OFM)

e Provides a transport operator to 29
propagate along manifold N ©

Articulations

S



OFM: Example

Reference Image
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OFM: Properties

e Theorem: Collection of OFs (OFM)
is a smooth K-dimensional

submanifold of R2V
[S,H,N,B,2011]

e Theorem: OFM is isometric to

Euclidean space rX for a large ; y
class of IAMs 0,
[S,H,N,B,2011]

Articulations

S



OFM = 'Nonlinear’ Tangent Space

Tangent space at 190

~ /
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App 1: Image Synthesis

Training Images

— pp—

4127 3103  -2155
Value in Euclidean reference

Synthesized Images



ifold Learning

Man

App 2

2D rotations

Embedding of OFM
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App 2: Manifold Learning

Data v e >
196 images of two j2 o N

bears moving linearly . P

and independently : b s ' R

Task R - 4
Find low-dimensional v N
embedding \

IAM OFM

™



App 3: Karcher Mean Estimation

Point on the manifold such that the sum of squared
geodesic distances to every other point is minimized

Important concept in nonlinear data modeling,
compression, shape analysis [Srivastava et al]

10 images
from an IAM

ground truth KM linear KM



Summary

e Manifolds: concise model for many image
processing problems involving image collections
and multiple sensors/viewpoints

e But practical image manifolds are non-differentiable

— manifold-based algorithms have not lived up to their
promise

e Optical flow manifolds (OFMs)
— smooth even when IAM is not
- OFM ~ nonlinear tangent space
— support accurate image synthesis, learning, charting, ...
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Open Questions

e Our treatment is specific to
image manifolds under

brightness constancy

e What are the natural transport operators for
other data manifolds?



Optical Flow
L(x,y)=L(x+u(x,y),y +v(x,y))

L,(x, ) =1,(x, )+ (V[ u(x, y) + (VyI)v(x, y)

two-image 2"d ijmage predicted
sequence optical flow from 1st via OF

. N ~ ~ N - - -~ - -~ - - - - ES -~

A 5 P S A A A S S NLY TR M
(Figures from Ce Liu’ s optical flow page and ASIFT results page)



Limitations

e Brightness constancy
— Optical flow is no longer meaningful

e QOcclusion

- Undefined pixel flow in theory, arbitrary flow estimates in
practice

— Heuristics to deal with it

e Changing backgrounds etc.
— Transport operator assumption too strict
— Sparse correspondences ?



Pairwise distances and embedding
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Occlusion

e Detect occlusion using forward-backward flow
reasoning

) .

v Occluded

e Remove occluded pixel computations

e Heuristic --- formal occlusion handling is hard



History of Optical Flow

Dark ages (<1985)

— special cases solved
— LBC an under-determined set of linear equations

Horn and Schunk (1985)

— Regularization term: smoothness prior on the flow

Brox et al (2005)

— shows that linearization of brightness constancy (BC) is
a bad assumption
— develops optimization framework to handle BC directly

Brox et al (2010), Black et al (2010), Liu et al (2010)

— practical systems with reliable code



