Go With The Flow

Optical Flow-based Transport for Image Manifolds

Chinmay Hegde
Rice University

Richard G. Baraniuk
Aswin Sankaranarayanan
Sriram Nagaraj
Sensor Data Deluge
Concise Models

- Our interest in this talk: Ensembles of articulating images
 - translations of an object
 \(\theta \): x-offset and y-offset
 - wedgelets
 \(\theta \): orientation and offset
 - rotations of a 3D object
 \(\theta \): pitch, roll, yaw

- Image articulation manifold

\[\mathcal{M} = \{ I_\theta : \theta \in \Theta \} \]
Image Articulation Manifold

- N-pixel images: $I \in \mathbb{R}^N$

- K-dimensional articulation space

- Then $\mathcal{M} = \{I_\theta : \theta \in \Theta\}$ is a K-dimensional “image articulation manifold” (IAM)

- Submanifold of the ambient space
Image Articulation Manifold

- N-pixel images: $I \in \mathbb{R}^N$

- **Local isometry:**
 image distance \propto parameter space distance

- **Linear tangent spaces**
 are close approximation locally

articulation parameter space \(\Theta \)
Image Articulation Manifold

- N-pixel images: $I \in \mathbb{R}^N$

- Local isometry:
 image distance \propto
 parameter space distance

- **Linear tangent spaces**
 are close approximation locally
Theory/Practice Disconnect

• Practical image manifolds are **not smooth**

• If images have sharp edges, then manifold is everywhere **non-differentiable**

[Donoho, Grimes, 2003]
Theory/Practice Disconnect – 1

• Lack of isometry

• Local image distance on manifold should be proportional to articulation distance in parameter space

• But true only in toy examples

• Result: poor performance in classification, estimation, tracking, learning, ...
Theory/Practice Disconnect – 2

- **Lack of local linearity**
 - Local image neighborhoods assumed to form a **linear tangent subspace** on manifold
 - But true only for extremely small neighborhoods
 - Result: **cross-fading** when synthesizing images that should lie on manifold
A New Model for Image Manifolds

Key Idea: model the IAM in terms of
Transport operators

\[I_\theta = f \circ I_{\theta_{\text{ref}}} \]

For example:

\[I_\theta(x) = I_{\theta_{\text{ref}}} (f(x)) \]
Optical Flow

- Given two images I_1 and I_2, we seek a displacement vector field $f(x, y) = [u(x, y), v(x, y)]$ such that

$$I_2(x, y) = I_1(x + u(x, y), y + v(x, y))$$

- **Linearized brightness constancy**

$$I_2(x, y) = I_1(x, y) + (\nabla_x I_1)u(x, y) + (\nabla_y I_1)v(x, y)$$
Optical Flow Manifold (OFM)

- Consider a reference image I_{θ_0} and a K-dimensional articulation.
- Collect optical flows from I_{θ_0} to all images reachable by a K-dimensional articulation. Call this the optical flow manifold (OFM).
- Provides a transport operator to propagate along manifold.
OFM: Example

Reference Image
OFM: Properties

- **Theorem:** Collection of OFs (OFM) is a **smooth** K-dimensional submanifold of \mathbb{R}^{2N} [S,H,N,B,2011]

- **Theorem:** OFM is **isometric** to Euclidean space \mathbb{R}^K for a large class of IAMs [S,H,N,B,2011]
OFM = ‘Nonlinear’ Tangent Space
App 1: Image Synthesis

Training Images

Value in Euclidean reference

Synthesized Images

Value in Euclidean reference
App 2: Manifold Learning

2D rotations

Reference image

Embedding of OFM
App 2: Manifold Learning

Data
196 images of two bears moving linearly and independently

Task
Find low-dimensional embedding

IAM

OFM
App 3: Karcher Mean Estimation

- Point on the manifold such that the sum of squared geodesic distances to every other point is minimized
- Important concept in nonlinear data modeling, compression, shape analysis

[Srivastava et al]
Summary

• Manifolds: **concise model** for many image processing problems involving **image collections** and multiple sensors/viewpoints

• But practical image manifolds are non-differentiable
 – manifold-based algorithms have not lived up to their promise

• **Optical flow manifolds** (OFMs)
 – smooth even when IAM is not
 – OFM ~ nonlinear tangent space
 – support accurate image synthesis, learning, charting, ...
Open Questions

• Our treatment is specific to **image manifolds** under brightness constancy

• What are the natural transport operators for **other data manifolds**?
Optical Flow

\[I_2(x, y) = I_1(x + u(x, y), y + v(x, y)) \]

\[I_2(x, y) = I_1(x, y) + (\nabla_x I_1)u(x, y) + (\nabla_y I_1)v(x, y) \]
Limitations

• Brightness constancy
 – Optical flow is no longer meaningful

• Occlusion
 – Undefined pixel flow in theory, arbitrary flow estimates in practice
 – Heuristics to deal with it

• Changing backgrounds etc.
 – Transport operator assumption too strict
 – Sparse correspondences?
Pairwise distances and embedding
Occlusion

- Detect occlusion using forward-backward flow reasoning

- Remove occluded pixel computations

- **Heuristic** --- formal occlusion handling is hard
History of Optical Flow

• Dark ages (<1985)
 – special cases solved
 – LBC an under-determined set of linear equations

• Horn and Schunk (1985)
 – Regularization term: smoothness prior on the flow

• Brox et al (2005)
 – shows that linearization of brightness constancy (BC) is a bad assumption
 – develops optimization framework to handle BC directly

 – practical systems with reliable code