Go With The Flow

Optical Flow-based Transport for Image Manifolds

Chinmay Hegde Rice University

Richard G. Baraniuk

Aswin Sankaranarayanan

Sriram Nagaraj

Sensor Data Deluge

Concise Models

• Our interest in this talk:

Ensembles of **articulating** images

- translations of an object
 θ: x-offset and y-offset
- wedgeletsθ: orientation and offset
- rotations of a 3D object
 θ: pitch, roll, yaw

• Image articulation manifold

$$\mathcal{M} = \{I_{\theta} : \theta \in \Theta\}$$

Image Articulation Manifold

• *N*-pixel images: $I \in \mathbf{R}^N$

- *K*-dimensional articulation space
- Then $\mathcal{M} = \{I_{\theta} : \theta \in \Theta\}$ is a *K*-dimensional "image articulation manifold" (IAM)

• Submanifold of the ambient space

Image Articulation Manifold

• *N*-pixel images: $I \in \mathbf{R}^N$

• Local isometry:

image distance \propto parameter space distance

 Linear tangent spaces are close approximation locally

articulation parameter space Θ

Image Articulation Manifold

• *N*-pixel images: $I \in \mathbf{R}^N$

- Local isometry: image distance ∝ parameter space distance
- Linear tangent spaces are close approximation locally

articulation parameter space Θ

Theory/Practice Disconnect

- Practical image manifolds are not smooth
- If images have sharp edges, then manifold is everywhere non-differentiable

[Donoho, Grimes, 2003]

articulation parameter space Θ

Theory/Practice Disconnect – 1

- Lack of isometry
- Local image distance on manifold should be proportional to articulation distance in parameter space
- But true only in toy examples
- Result: poor performance in classification, estimation, tracking, learning, ...

articulation parameter space Θ

Theory/Practice Disconnect – 2

• Lack of local linearity

- Local image neighborhoods assumed to form a linear tangent subspace on manifold
- But true only for extremely small neighborhoods
- Result: cross-fading when synthesizing images that should lie on manifold

A New Model for Image Manifolds

Key Idea: model the IAM in terms of Transport operators

$$I_{\theta} = f \circ I_{\theta_{ref}}$$

For example:

$$I_{\theta}(x) = I_{\theta_{ref}}(f(x))$$

Optical Flow

Given two images I₁ and I₂, we seek a displacement vector field

f(x, y) = [u(x, y), v(x, y)] such that

$$I_{2}(x, y) = I_{1}(x + u(x, y), y + v(x, y))$$

Linearized brightness constancy

$$I_{2}(x, y) = I_{1}(x, y) + (\nabla_{X}I_{1})u(x, y) + (\nabla_{Y}I_{1})v(x, y)$$

Optical Flow Manifold (OFM)

- Consider a reference image I_{θ_0} and a K-dimensional articulation
- Collect optical flows from I_{θ0} to all images reachable by a *K*-dimensional articulation. Call this the *optical flow manifold* (OFM)
- Provides a transport operator to propagate along manifold

OFM: Example

OFM: Properties

• Theorem: Collection of OFs (OFM) is a smooth K-dimensional submanifold of R^{2N} [S,H,N,B,2011]

• Theorem: OFM is isometric to Euclidean space R^K for a large class of IAMs [S,H,N,B,2011]

OFM = 'Nonlinear' Tangent Space

App 1: Image Synthesis

Value in Euclidean reference

Value in Euclidean reference

App 2: Manifold Learning

2D rotations

Embedding of **OFM**

App 2: Manifold Learning

Data

196 images of two bears moving linearly and independently

Task Find low-dimensional embedding

IAM

App 3: Karcher Mean Estimation

- Point on the manifold such that the sum of squared geodesic distances to every other point is minimized
- Important concept in nonlinear data modeling, compression, shape analysis [Srivastava et al]

ground truth KM

OFM KM

linear KM

Summary

- Manifolds: concise model for many image processing problems involving image collections and multiple sensors/viewpoints
- But practical image manifolds are non-differentiable
 - manifold-based algorithms have not lived up to their promise
- **Optical flow manifolds** (OFMs)
 - smooth even when IAM is not
 - OFM ~ nonlinear tangent space
 - support accurate image synthesis, learning, charting, ...

Blank Slide

Open Questions

 Our treatment is specific to image manifolds under brightness constancy

 What are the natural transport operators for other data manifolds?

Optical Flow

$$I_{2}(x, y) = I_{1}(x + u(x, y), y + v(x, y))$$

$$I_{2}(x, y) = I_{1}(x, y) + (\nabla_{X}I_{1})u(x, y) + (\nabla_{Y}I_{1})v(x, y)$$

(Figures from Ce Liu's optical flow page and ASIFT results page)

Limitations

- Brightness constancy
 - Optical flow is no longer meaningful
- Occlusion
 - Undefined pixel flow in theory, arbitrary flow estimates in practice
 - Heuristics to deal with it
- Changing backgrounds etc.
 - Transport operator assumption too strict
 - Sparse correspondences ?

Pairwise distances and embedding

Occlusion

• Detect occlusion using forward-backward flow reasoning

- Remove occluded pixel computations
- **Heuristic** --- formal occlusion handling is hard

History of Optical Flow

- Dark ages (<1985)
 - special cases solved
 - LBC an under-determined set of linear equations
- Horn and Schunk (1985)
 - Regularization term: smoothness prior on the flow
- Brox et al (2005)
 - shows that linearization of brightness constancy (BC) is a bad assumption
 - develops optimization framework to handle BC directly
- Brox et al (2010), Black et al (2010), Liu et al (2010)
 - practical systems with reliable code