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The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT




The Data Deluge
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Manifold Models

e K-dimensional parameter vector captures degrees of
freedom in signal z € RN
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Multi-Manifold Models

e K-dimensional parameter vector captures degrees of
freedom in signal z € RN
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Multi-sensor Fusion

e Example: Network of J cameras jointly observing
an articulating object

e Aggregate dimensionality of data = J N
e Each camera’s images lie on K-dim manifold in RY



Multi-sensor Fusion

e Example: Network of J cameras jointly observing
an articulating object

e How to efficiently fuse imagery from J cameras
to perform inference?



Multi-sensor Fusion

e Idea: stack corresponding image vectors
taken at the same time

e Stacked images still lie on K-dim manifold in R/%
“joint manifold”



Joint Manifolds

e Given manifolds Mi, Mo, ..., M;CRY

- K-dimensional
— homeomorphic (we can continuously map between any pair)

e Define joint manifold as concatenation of
M17M27° .. 7MJ



Joint Manifolds

e Given manifolds Mi, Mo, ..., M;CRY

- K-dimensional
— homeomorphic (we can continuously map between any pair)

e Define joint manifold as concatenation of
M17M27° .. 7MJ

* Example: M = {£;(0),0 € R"}
M* = {f*(0),0 € REY = {[f1(0); f(0); ...; £7(0)],0 € R¥}
M* C RJN
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Joint Manifolds: Theory

e Joint manifold inherits desirable properties from
component manifolds
— compactness
— smoothness

J

— volume:

maxV; <V <) Y,
J =

— condition number (1/7):
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Joint Manifolds: Theory

e Translate into much better performance of inference
algorithms in practice

— Classification
- Manifold learning



Joint Manifold Learning

e Theorem (noise robustness):
Suppose p,q € M*

Observe r=p+mn where var(n)=o’

S=qg+n

Then, estimated distance ||?‘ — 8|| converges to true distance
|p — g|| with failure probability exponential in J?



Joint Manifold Learning

e Goal: Learn embedding
of 2D image manifold
N=45x45=2025 pixels
J=20 views




Joint Manifold Learning

e Goal: Learn embedding
of 2D image manifold
N=45x45=2025 pixels
J=20 views

e Embeddings ' : | |
learned t
separately ' |
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Joint Manifold Learning

e J=3 CS cameras, each N=240x320 resolution

e 2D joint manifold
parameters: 2D location
of the truck on the highway

e Goal: Learn embedding
of 2D image manifold




Joint Manifold Learning

e Goal: Learn embedding
of 2D image manifold
(with noise)

N=240x320=76800 pixels
J=3 views

| \ / ..
e Embeddings \ -
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e Embedding learned jointly




Multi-sensor Fusion

Blessing of dimensionality
[Lawrence]

M; = {f;(6),0 € R"}



Multi-sensor Fusion

Blessing? of dimensionality

dim(z) = J x N

M; = {f;(6),0 € R"}



Compressive Sensing (CS)

N x 1
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Compressive Sensing (CS)




Stable manifold embedding via CS
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[Baraniuk, Wakin 2006]



Multi-sensor Fusion via CS

e Can acquire random CS measurements of
stacked images and make inferences

o

— Y

dim(y) =
<K
dim(y) =

<
— — dim(z)

O(K log(JN))

O(JK log(N))

w/ unfused CS

= O(JN)

w/ unfused and no CS



Multi-sensor Fusion via CS

e Can fuse measurements efficiently in network
— ex: as we transmit to collection/processing point




Joint Manifold Learning w/CS

e Goal: Learn embedding
via random compressive
measurements

N=45x45=2025 pixels
J=20 views

e Embeddings
learned
separately | -
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e Embedding learned jointly

M=100 measurements per view



Joint Manifold Learning

o N =240x320,J =4
 Embeddings learned separately
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Joint Manifold Learning w/CS

o N =240x320,J =4, M = 2400
e Embeddings learned separately

e Embedding learned




Application: Target Tracking
o N =240x320,J =4
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Application: Target Tracking

e N =240x320,J =4

e Trajectory learned .

Trajectory ('R’

) learned s
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Application: Target Tracking w/CS
o N =240x320,J =4, M = 4800
e Trajectory (‘R’) learned separately
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Directions

e Better ways to fuse
— Hierarchical fusion [Rabin]
— Manifold alignment [Zhi]
— Optimal feature selection

e Newer problems
— Clustering [Hunter]
- homology inference [Wang]
— anomaly detection
— regression



Directions




Conclusions

e Joint manifold
- new tool for data fusion
— attractive geometric properties
— provable improved guarantees for several inference tasks

e Multisensor Fusion with Compressive Sensing (CS)

o Applications: classification, manifold learning, target tracking

“Joint Manifolds for Data Fusion”
Davenport, H, Duarte, Baraniuk, Trans IP, Oct 2010

dsp.rice.edu/cs



Blank Side

35



Joint Manifolds: Practice

J=3 CS cameras, each N=320x240 resolution
M=200 random measurements per camera

Two classes
- truck w/ cargo
- truck w/ no cargo

Smashed filtering
- independent

— majority vote

— joint manifold

Probability of classification error

—-—Camera 1
—+Camera 2
e Camera 3
-= Majority Voting

-*-Joint Manifold

10 20 30 40



