

High-Dimensional Data Fusion via Joint Manifold Learning

Chinmay Hegde

November 13, 2010

High-Dimensional Data Fusion via Joint Manifold Learning

Chinmay Hegde

November 13, 2010

Mark Davenport Stanford U.

Marco Duarte Duke U.

Rich Baraniuk Rice U.

The Economist

Obama the warrior Misgoverning Argentina The economic shift from West to East Genetically modified crops blossom The right to eat cats and dogs

The data deluge AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

The Data Deluge

Manifold Models

• *K*-dimensional *parameter vector* captures degrees of freedom in signal $x \in \mathbb{R}^N$

SO(3)

Multi-Manifold Models

• *K*-dimensional *parameter vector* captures degrees of freedom in signal $x \in \mathbb{R}^N$

• Example: Network of J cameras jointly observing an articulating object

- Aggregate dimensionality of data = J N
- Each camera's images lie on K-dim manifold in \mathbf{R}^N

• Example: Network of J cameras jointly observing an articulating object

 How to efficiently fuse imagery from J cameras to perform inference?

• Idea: stack corresponding image vectors taken at the same time

Stacked images still lie on K-dim manifold in R^{JN}
 "joint manifold"

Joint Manifolds

- Given manifolds $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_J \subset \mathbf{R}^N$
 - K-dimensional
 - homeomorphic (we can continuously map between any pair)
- Define joint manifold as concatenation of $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_J$

Joint Manifolds

- Given manifolds $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_J \subset \mathbf{R}^N$
 - *K*-dimensional
 - homeomorphic (we can continuously map between any pair)
- Define joint manifold as concatenation of $\mathcal{M}_1, \mathcal{M}_2, \dots, \mathcal{M}_J$
- Example: $\mathcal{M}_j = \{f_j(\theta), \theta \in \mathbf{R}^K\}$ $\mathcal{M}^* = \{f^*(\theta), \theta \in \mathbf{R}^K\} = \{[f_1(\theta); f_2(\theta); \dots; f_J(\theta)], \theta \in \mathbf{R}^K\}$ $\mathcal{M}^* \subset \mathbf{R}^{JN}$

Joint Manifolds: Theory

- Joint manifold inherits desirable properties from component manifolds
 - compactness
 - smoothness
 - volume:

$$\max_{j} V_{j} \le V^{*} \le \sum_{j=1}^{J} V_{j}$$

– condition number (1/ au):

$$\frac{1}{\tau^*} \leq \max_j \frac{1}{\tau_j}$$

Joint Manifolds: Theory

- Translate into much better performance of inference algorithms in practice
 - Classification
 - Manifold learning

• Theorem (noise robustness):

Suppose $p,q\in\mathcal{M}^*$

Observe r = p + n where $var(n) = \sigma^2$ s = q + n

Then, estimated distance $\|r-s\|$ converges to true distance $\|p-q\|$ with failure probability **exponential** in J^2

 Goal: Learn embedding of 2D image manifold
 N=45x45=2025 pixels
 J=20 views

 Goal: Learn embedding of 2D image manifold
 N=45x45=2025 pixels
 J=20 views

 Embeddings learned
 separately

• Embedding learned jointly

- J=3 CS cameras, each N=240x320 resolution
- 2D joint manifold parameters: 2D location of the truck on the highway

• **Goal:** Learn embedding of 2D image manifold

- Goal: Learn embedding of 2D image manifold (with noise) N=240x320=76800 pixels
 - J=3 views

 Embeddings learned
 separately

• Embedding learned jointly

Blessing of dimensionality [Lawrence]

 $\mathcal{M}_j = \{f_j(\theta), \theta \in \mathbf{R}^K\}$

Blessing? of dimensionality

$$\dim(x) = J \times N$$

$$\mathcal{M}_j = \{f_j(\theta), \theta \in \mathbf{R}^K\}$$

Compressive Sensing (CS)

Compressive Sensing (CS)

Stable manifold embedding via CS

[Baraniuk, Wakin 2006]

Multi-sensor Fusion via CS

• Can acquire random CS measurements of stacked images and make inferences

Multi-sensor Fusion via CS

- Can fuse measurements *efficiently in network*
 - ex: as we transmit to collection/processing point

- Goal: Learn embedding via random compressive measurements N=45x45=2025 pixels J=20 views
- Embeddings learned
 separately

Embedding learned jointly

M=100 measurements per view

- $N = 240 \times 320$, J = 4
- Embeddings learned separately

• Embedding learned

- $N = 240 \times 320$, J = 4, M = 2400
- Embeddings learned **separately**

• Embedding learned

Application: Target Tracking N = 240x320, J = 4

Application: Target Tracking

- $N = 240 \times 320$, J = 4
- Trajectory ('R') learned separately

 Trajectory learned jointly

Application: Target Tracking w/CS

- $N = 240 \times 320$, J = 4, M = 4800
- Trajectory ('R') learned **separately**

• Trajectory learned

Directions

- Better ways to fuse
 - Hierarchical fusion [Rabin]
 - Manifold alignment [Zhi]
 - Optimal feature selection
- Newer problems
 - Clustering [Hunter]
 - homology inference [Wang]
 - anomaly detection
 - regression

Directions

Conclusions

• Joint manifold

- new tool for data fusion
- attractive geometric properties
- provable improved guarantees for several inference tasks
- **Multisensor Fusion** with Compressive Sensing (CS)

• **Applications:** classification, manifold learning, target tracking

"Joint Manifolds for Data Fusion" Davenport, H, Duarte, Baraniuk, Trans IP, Oct 2010

dsp.rice.edu/cs

Blank Side

Joint Manifolds: Practice

- J=3 CS cameras, each N=320x240 resolution
- *M*=200 random measurements per camera

- Two classes
 - truck w/ cargo
 - truck w/ no cargo

- Smashed filtering
 - independent
 - majority vote
 - joint manifold

