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Compressive Sensing b

e Natural/manmade signals often have sparse/compressible structure

Compression and Sparsity
Traditional signal acquisition:
e Sample data at Nyquist rate (2x bandwidth)

e Compress data (signal dependent, nonlinear)
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Compressive Sensing (CS)

e Acquire compressive measurements
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[ M = O(Klog(N/K)) < N ]

Signal Recovery

e Recovery algorithm exploits sparsity
- {{-minimization (slow, uniform guarantees)
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— orthogonal matching pursuit (faster, weak guarantees)
— CoSaMP / IHT (faster, uniform guarantees)

8 Structure-driven Sparse Recovery b

e Sparsity assumption does not capture dependencies among coefficients

Structured Sparse Representations

Example: background-subtracted images

e C/lustered nonzeroes

e Modeled by Markov Random Field (Ising model)
e Model approximation: Graph Cuts

e Graph-cut cost functions derived from signal
log-likelihoods

Algorithm : Lattice Matching Pursuit

Given: measurements ¥, matrix ¢, target sparsity K
Repeat until convergence:

e Form signal proxy: z « ®!(y — oz)

e Estimate signal support S via graph cuts

e Compute least-squares estimate of signal using
basis elements indexed by §: =« ®Ly

e Form best K - term approximation of x

Extensions

e Rigorous theoretical framework derived for
union-of-subspaces models

e Models studied: connected wavelet trees,
jointly-sparse signal ensembles

www.dsp.rice.edu/cs
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Experimental Results

e Requires far fewer measurements than state-of-the art CS methods

MRF-Driven Sparse Recovery

Synthetic test image: Shepp-Logan Phantom

N = 10000, K = 1740, M = 2K,SNR = 10 dB
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e LaMP works well in the case of compressible
signals, noise in samples

e Significant savings in terms of number of
measurements

Real-world application - background subtraction
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