

Volkan Cevher, Marco F. Duarte, Chinmay Hegde, Richard G. Baraniuk

Compressive Sensing

- Natural/manmade signals often have **sparse/compressible** structure
- Traditional signal acquisition: sample first, then compress
- Compressive acquisition: compress and sample simultaneously

Compression and Sparsity

- Traditional signal acquisition:
- Sample data at Nyquist rate (2x bandwidth)
- Compress data (signal dependent, nonlinear)

N pixel image

wavelet coefficients

Compressive Sensing (CS)

• Acquire *compressive measurements*

Signal Recovery

• Recovery algorithm *exploits sparsity* – ℓ_1 -minimization (slow, uniform guarantees)

$\widehat{x} = \arg\min x _1 + \lambda y - \Phi x _2^2$	$ \widehat{x} - x_0 _2 \le C$
 – orthogonal matching pursu – CoSaMP / IHT (faster, unif 	uit (faster, weak gu form guarantees)

Sparse Signal Recovery Using Markov Random Fields

Rice University

Structure-driven Sparse Recovery

- Sparsity assumption does not capture **dependencies** among coefficients
- Model restricts search space; enables faster, more robust recovery
- LaMP : a new algorithm that solves for signals modeled by MRFs

Structured Sparse Representations

Example: background-subtracted images

- Clustered nonzeroes
- Modeled by *Markov Random Field* (Ising model)
- Model approximation: Graph Cuts
- Graph-cut cost functions derived from signal log-likelihoods

Algorithm : Lattice Matching Pursuit

Given: measurements y, matrix Φ , target sparsity KRepeat until convergence:

- Form signal proxy: $x \leftarrow \Phi^T(y \Phi x)$
- Estimate signal support S via graph cuts
- Compute least-squares estimate of signal using basis elements indexed by $S: x \leftarrow \Phi_S^{\dagger} y$
- Form best K- term approximation of x

Extensions

- Rigorous theoretical framework derived for *union-of-subspaces* models
- Models studied: connected wavelet trees, jointly-sparse signal ensembles

www.dsp.rice.edu/cs

 $N \times 1$ signal

K nonzero coefficients

 $||x^* - x_0||_2$

uarantees)

Experimental Results

- LaMP is fast, robust under measurement noise
- Testing performed on simulated and real data

MRF-Driven Sparse Recovery

Synthetic test image: Shepp-Logan Phantom N = 10000, K = 1740, M = 2K, SNR = 10 dB

- signals, noise in samples
- measurements

RICE UNIVERSITY

• Requires far fewer measurements than state-of-the art CS methods

• LaMP works well in the case of compressible

• Significant savings in terms of number of

