Approximation-Tolerant Model-Based Compressive Sensing

Chinmay Hegde

CSAIL, MIT

Joint work with: Ludwig Schmidt and Piotr Indyk *To appear in SODA 2014*

1

Approximation-Tolerant

Model-Based

Compressive Sensing

Compressive Sensing

Sampling and recovery of **sparse** signals ...

Sampling and recovery of **sparse** signals ...

 \ldots under certain conditions on the matrix A and the signal \boldsymbol{x}

CS : Sampling

• *Random* sub-Gaussian matrix *A* has **RIP** w.h.p. if

$$M = O(K + \log \binom{N}{K}) = O(K \log(N/K))$$

[CRT06], [BDDW07]

- *ℓ*₁-optimization
 [CRT04]; [D04]
 [D04]
- Greedy algorithms
 - Iterative hard thresholding [DDDeM04]; [BD07]
 - CoSaMP [NT09]; Subspace Pursuit [DM09]

CS: Applications

MRI

"Single-pixel" camera

Radar

Network monitoring

and many, many more ...

Sparsity

• Sparsity doesn't tell the entire story ...

5% sparse image

Structure

• ... since several signals exhibit additional structure

5% sparse image

Also, a 5% sparse image! But the support is highly structured...

Examples of Structure

• Tree-sparsity model (in the wavelet domain) for natural images, piecewise polynomial signals..

(More) Examples of Structure

 Block-sparsity model for wireless transmissions / sensor networks/ speech recordings/ gene expression data, ...

 Δ-separated spikes for neuronal recordings, electrophysiological signals, ...

Model-Based

Compressive Sensing

Sparse signals

 K-sparse signals comprise signals with all possible supports of size K

Model-sparse signals

• **Def**: A *K*-sparse structured-sparsity *model* comprises a particular (*reduced*) set of *L_K* supports

For our purposes, $L_K = \Theta(2^{O(K)})$

Sampling

• RIP: stable embedding for *K*-sparse signals

Model-Based Sampling

 Model-RIP: embedding for model-sparse signals [B, D]; [B,D,DeV,W]

 $M = O(K + \log(L_K))$

Sparse Recovery

• (IHT) given y = Ax, recover x

iterate:

$$x_{i+1} \leftarrow \text{thresh}(x_i + A^T(y - Ax_i))$$

where:

 $\operatorname{thresh}(x_0, K) \leftarrow K \text{-largest elements of } x_0$

Model-Based Recovery

• (M-IHT) given y = Ax , recover x

iterate:

$$x_{i+1} \leftarrow \mathbb{M}(x_i + A^T(y - Ax_i))$$

where:

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

 $\mathbb{M}(\cdot)$: Model-projection oracle

Model-Based CS

Theorem [BCDH10]: For any *arbitrary* structured sparsity model, M-IHT rapidly converges to the correct answer, i.e., $||x - x_{i+1}||_2 \le \frac{1}{2} ||x - x_i||_2$

Daubechies/CoSaMP - K = 6000 M = 30000

SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000

- For tree-sparsity, M = O(K)
- Since M = K measurements are *necessary*, this scaling is info-theoretic optimal
- Similar gains for other models, (such as separated spikes)

Beyond Structured Sparsity

- Along identical lines, this idea can be applied to virtually any signal model:
 - Low-rank matrices [LB09], [JMD09]
 - Low-rank + Sparse matrices [WSB11]
 - Arbitrary unions-of-subspaces [Blu10]
 - Low-dimensional manifolds [SC10]
 - Mixtures of manifolds [HB11]
 - <insert your favorite model>

• Very general principle for solving all kinds of inverse problems

Recipe for Model-CS

1.An RIP-matrix for that model

$$y = Ax$$

2. An exact model-projection oracle

Recipe for Model-CS

1. An RIP-matrix for that model

$$y = Ax$$

2.An exact model-projection oracle

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

Challenge

- Model-projection, in general, can be computationally very challenging
 - Sometimes even NP-hard 😔

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

Challenge

- Model-projection, in general, can be computationally very challenging
 - Sometimes even NP-hard 😔

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg\min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

 Idea: Instead of an *exact* optimization, can we use an *approximation algorithm* instead?

This idea makes sense..

- For a number of known NP-hard optimization problems, approximation algorithms exist
 - Extensive body of research in Theory of Computing, Computational Geometry, et al.

This idea makes sense..

 For a number of known NP-hard optimization problems, approximation algorithms exist

• Even if the exact optimization problem was polytime, it can be impractical for real-world problems – e.g. a run-time of $O(N^3)$

Approximation-Tolerant

Model-Based

Compressive Sensing

A Version of M-IHT

 A natural notion of approximation would be the (imperfect) oracle T(x) :

$$\|x - T(x)\|_{2} \le C \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_{2}$$

In words: the oracle returns T(x) with an error
 that is C-close to the minimum possible tail error

A Version of M-IHT

 A natural notion of approximation would be the (imperfect) oracle T(x) :

$$\|x - T(x)\|_{2} \le C \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_{2}$$

• Let us plug this into M-IHT:

$$x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i))$$

A Version of M-IHT

 A natural notion of approximation would be the (imperfect) oracle T(x) :

$$\|x - T(x)\|_2 \le C \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2$$

• Let us plug this into M-IHT:

$$x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i))$$

Unfortunately, this doesn't work <a>i

A Negative Result

• **Theorem [HIS14]**: For any **constant** value of *C*, there is an instance of M-IHT that **never** converges

$$x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i))$$

Proof intuition: Start with the zero signal; if the first signal estimate A^Ty has a really large tail, then M-IHT can potentially **return zero**; therefore, stuck!

A Subtle Property

• For any model, consider the **exact** projection oracle:

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg\min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

- i.e., the estimate **minimizes** the norm of the "tail"

A Subtle Property

• For any model, consider the **exact** projection oracle:

$$\mathbb{M}(x) = x_{\Omega}$$
, where $\Omega = \arg\min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$

- i.e., the estimate **minimizes** the norm of the "tail"

• Equivalent to the condition:

$$\mathbb{M}(x) = x_{\Omega}, \text{ where } \Omega = \arg \max_{\Omega \in \mathcal{M}} \|x_{\Omega}\|_{2}$$

- i.e., the estimate *maximizes* the norm of the "head"

Tails vs. Heads

 Therefore, an exact projection oracle
 simultaneously optimizes for both head- and tailproblems

Tails vs. Heads

 Therefore, an exact projection oracle simultaneously optimizes for both head- and tailproblems

 However, an approximation oracle defined in terms of the tail says nothing about the head

$$\|x - T(x)\|_{2} \le C \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_{2}$$

- $||T(x)||_2$ can be arbitrarily small (even zero)

A New Recipe

1. (As before) assume an **RIPmatrix** for the model

A New Recipe

1. (As before) assume an **RIPmatrix** for the model

2. Assume an imperfect tail oracle:

$$\|x - T(x)\|_{2} \le C_{t} \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_{2}$$

A New Recipe

1. (As before) assume an **RIPmatrix** for the model

2. Assume an imperfect **tail oracle:**

$$\|x - T(x)\|_{2} \le C_{t} \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_{2}$$

3. Assume a **second**, also imperfect **head oracle:**

$$\|H(x)\|_2 \ge C_h \max_{\Omega \in \mathcal{M}} \|x_\Omega\|_2$$

Approximation-Tolerant M-IHT

• (AM-IHT) given y = Ax, recover x

iterate:

$$x_{i+1} \leftarrow T(x_i + H(A^T(y - Ax_i)))$$

Approximation-Tolerant M-IHT

• (AM-IHT) given y = Ax, recover x

iterate:
$$x_{i+1} \leftarrow T(x_i + H(A^T(y - Ax_i)))$$

• **Theorem [HIS14]**: If A satisfies the model-RIP with constant δ , then the iterates of AM-IHT satisfy

$$\|x - x_{i+1}\|_{2} \le (1 + c_{T}) \left(\frac{\sqrt{1 - c_{H}^{2}}(1 + \delta) + \delta}{c_{H}} + 2\delta\right) \|x - x_{i}\|_{2}$$

* Extension to CoSaMP [NT08] easy; also works in presence of noise

Approximation-Tolerant Model-Based Compressive Sensing:

A Case Study

What's Common?

Seismic shot gathers

Bat-chirps (Time-frequency)

What's Common?

• Both images are **column-sparse**...

Seismic shot gathers

Bat-chirps (Time-frequency)

What's Common?

…and adjacent columns share similar supports.

Seismic shot gathers

Bat-chirps (Time-frequency)

A Measure of Support Similarity

- Earth Mover's Distance (EMD)
 - Classical tool, used extensively in statistics, computational geometry, computer vision, etc.
 - E.g. (Sparsity) k = 3, sEMD = 3

A Measure of Support Similarity

- Earth Mover's Distance (EMD)
 - Classical tool, used extensively in statistics, computational geometry, computer vision, etc.
 - E.g. (Sparsity) k = 3, sEMD = 5

Extension to multiple columns is inductively defined

A New Signal Model

- Def: The Constrained-EMD model is the set of 2D signals M_{k,B} of size N = h x w parameterized by:
 - Column sparsity (at most) k (i.e., total sparsity $K = k \ge w$)
 - Cumulative Support-EMD (at most)
 B ("EMD-budget")

 Intuition: Imagine k paths (possibly broken) traced in the 2D plane from left to right

Ingredient #1: RIP Matrix

• Boils down to counting the total number of admissible supports in the CEMD model, L_K

• **Theorem [HIS14]**: For not-too-large values of EMD budget *B*, the number of measurements required to satisfy RIP scales as $M = O(K + k \log(B/k))$

Ingredient #2: Tail Oracle

• We want to (approximately) solve the problem

minimize $||X - X_{\Omega}||$, s. t. col-sparsity $(\Omega) \le k$, sEMD $(\Omega) \le B$

• Intuition: consider the *Lagrange relaxation* minimize $||X - X_{\Omega}||_2^2 + \lambda \operatorname{sEMD}(\Omega)$, s. t. col-sparsity $(\Omega) \leq k$

indexed by the relaxation parameter λ

Ingredient #2: Tail Oracle

- Each Lagrange relaxation can be embedded into a min-cost flow problem on a specific graph
- Wrap everything up with a Pareto curve argument for choosing the `right' value of λ

• **Theorem [HIS14]**: There exists a poly-time algorithm that, for any arbitrary *X*, returns an estimate that satisfies:

$$||X - X_i||_2^2 \le 2 \min_{X' \in \mathcal{M}_{k,B}} ||X - X'||_2^2$$

Ingredient #3: Head Oracle

- Can be efficiently achieved by a *greedy* approximation algorithm
- Intuition: pick the single dominant path from left to right via dynamic programming (DP); rinse & repeat
- **Theorem [HIS14]** : There exists a poly-time algorithm that, for any arbitrary *X*, returns an estimate that satisfies:

$$||X_i||_2^2 \ge \frac{3}{4} \max_{\Omega \in \mathcal{M}_{k,B}} ||X_\Omega||_2^2$$

Putting the Dish Together

- RIP matrix + Tail-approximation + Headapproximation = New CS recovery algorithm for Constrained-EMD signals
- **Theorem [HIS14]** : If $M = O(K \log \log K)$, and EMD-budget (*B*) not-too-large, then AM-IHT can stably and rapidly recover any signal in the Constrained EMD model

Numerical Results

Some Other Models...

- Tree-sparse model
 - Fastest known **exact** projection oracle has runtime O(NK)
 - Can design head- and tail**approximation** oracles with runtime $O(N \log N)$
- Separated-spikes model
 - Fastest **exact** oracle has runtime $O(N^3)$
 - Can design **approximation** oracles with runtime O(N)

• **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

• **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

• Approximation Tolerant Model-CS: A new way to do Model-CS by leveraging approximation algorithms

• **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

• Approximation Tolerant Model-CS: A new way to do Model-CS by leveraging approximation algorithms

• **Constrained EMD-Model**: A new signal model for sparse signals with spatially-correlated supports

66

Take-Home Message

• If there is additional structure in your signal, then leverage it!

 Model-CS: one way to leverage structure in inverse problems

 Approximation-tolerant Model-CS: A new way to leverage "harder" types of structure

SNR = 13.1361dB

SNR = 17.8263dB

Daubechies/CoSaMP - K = 6000 M = 30000

References

- [BCDH10] Baraniuk, Cevher, Duarte, Hegde, "Model-Based Compressive Sensing", IEEE Trans. Inform. Theory, 2010.
- [HDC09] Hegde, Cevher, Duarte, "Compressive Sensing Recovery of Spike Trains", SPARS 2009.
- [SHI13] Schmidt, Hegde, Indyk, "The Constrained Earth Movers Distance Model", SampTA 2013.
- [HIS14] Hegde, Indyk, Schmidt, "Approximation-Tolerant Model-Based Compressive Sensing", SODA 2014.
- [SHI+13] Schmidt, Hegde, Indyk, Kane, Lu, Hohl, "Automatic Fault Localization Using the Generalized Earth Movers Distance", Preprint, 2013.

• **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

• Approximation Tolerant Model-CS: A new way to do Model-CS by leveraging approximation algorithms

• **Constrained EMD-Model**: A new signal model for sparse signals with spatially-correlated supports

