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Sampling and recovery of sparse signals ...

Compressive Sensing (CS)
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Sampling and recovery of sparse signals ...

... under certain conditions on the matrix    and the 
signal  
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CS : Sampling

• Random sub-Gaussian matrix      has RIP w.h.p. if

[CRT06],  [BDDW07]
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CS : Recovery

•    -optimization  
[CRT04]; [D04]

• Greedy algorithms 

– Iterative hard thresholding [DDDeM04]; [BD07] 

– CoSaMP [NT09]; Subspace Pursuit [DM09]
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CS: Applications

“Single-pixel”
camera

MRI

Network monitoring

Radar

and many, many more..
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Sparsity 

• Sparsity doesn’t tell the entire story ...

5% sparse image
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Structure

• ... since several signals exhibit additional structure

Also, a 5% sparse 
image! But the 

support is highly 
structured...

5% sparse image
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Examples of Structure

• Tree-sparsity model (in the wavelet domain) for 
natural images, piecewise polynomial signals..
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(More) Examples of Structure

• Block-sparsity model for 
wireless transmissions / 
sensor networks/ speech 
recordings/ gene 
expression data, ...

•     -separated spikes for 
neuronal recordings, 
electrophysiological 
signals, ...
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Sparse signals

•  K-sparse signals comprise signals with all 
possible supports of size K
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• Def:  A K-sparse structured-sparsity model 
comprises a particular (reduced) set of       supports

For our purposes,
LK = Θ(2O(K))

Model-sparse signals

LK
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Sampling

• RIP:  stable embedding for K-sparse signals 

K-planes
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Model-Based Sampling

• Model-RIP:  embedding for model-sparse signals 
[B, D]; [B,D,DeV,W]

K-planes

M = O(K + log(LK))

Ax1
Ax2
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• (IHT) given            , recover 

iterate:

where:

Sparse Recovery

y = Ax x

thresh(x0,K) ← K-largest elements of x0

xi+1 ← thresh(xi +AT (y −Axi))
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• (M-IHT) given            , recover 

iterate:

where:

         Model-projection oracle

Model-Based Recovery

y = Ax x

M(·) :

xi+1 ← M(xi +AT (y −Axi))

M(x) = xΩ, where Ω = arg min
Ω∈M

�x− xΩ�2
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Theorem [BCDH10]: For any 
arbitrary structured sparsity 
model, M-IHT rapidly converges 
to the correct answer, i.e., 

Model-Based CS

• For tree-sparsity, 
• Since            measurements 

are necessary, this scaling is 
info-theoretic optimal

• Similar gains for other models, 
(such as separated spikes)

M = K

�x− xi+1�2 ≤ 1

2
�x− xi�2

M = O(K)
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Beyond Structured Sparsity

• Along identical lines, this idea can be applied to 
virtually any signal model:
– Low-rank matrices [LB09], [JMD09]
– Low-rank + Sparse matrices [WSB11]
– Arbitrary unions-of-subspaces [Blu10]
– Low-dimensional manifolds [SC10]
– Mixtures of manifolds [HB11]

– <insert your favorite model>

• Very general principle for solving all kinds of 
inverse problems
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Recipe for Model-CS

1.An RIP-matrix for that model

2.An exact model-projection oracle

y = Ax
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Recipe for Model-CS

1.An RIP-matrix for that model

2.An exact model-projection oracle

M(x) = xΩ, where Ω = arg min
Ω∈M

�x− xΩ�2

y = Ax
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Challenge

• Model-projection, in general, can be computationally 
very challenging

- Sometimes even NP-hard ☹
M(x) = xΩ, where Ω = arg min

Ω∈M
�x− xΩ�2
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Challenge

• Model-projection, in general, can be computationally 
very challenging
- Sometimes even NP-hard ☹

• Idea: Instead of an exact optimization, can we use 
an approximation algorithm instead?

M(x) = xΩ, where Ω = arg min
Ω∈M

�x− xΩ�2
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This idea makes sense..

• For a number of known NP-hard optimization 
problems, approximation algorithms exist
– Extensive body of research in Theory of Computing, 

Computational Geometry, et al.

Compressive 
Sensing

Approx. Alg.
Design
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This idea makes sense..

• For a number of known NP-hard optimization 
problems, approximation algorithms exist

• Even if the exact optimization problem was poly-
time, it can be impractical for real-world problems
– e.g. a run-time of              O(N3)

Compressive 
Sensing

Approx. Alg.
Design
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A Version of M-IHT

• A natural notion of approximation would be the 
(imperfect) oracle T(x) :

– In words: the oracle returns T(x) with an error 
that is C-close to the minimum possible tail error

�x− T (x)�2 ≤ C min
Ω∈M

�x− xΩ�2
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A Version of M-IHT

• A natural notion of approximation would be the 
(imperfect) oracle T(x) :

• Let us plug this into M-IHT:

�x− T (x)�2 ≤ C min
Ω∈M

�x− xΩ�2

xi+1 ← T (xi +AT (y −Axi))
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A Version of M-IHT

• A natural notion of approximation would be the 
(imperfect) oracle T(x) :

• Let us plug this into M-IHT:

• Unfortunately, this doesn’t work ☹☹

�x− T (x)�2 ≤ C min
Ω∈M

�x− xΩ�2

xi+1 ← T (xi +AT (y −Axi))
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A Negative Result

• Theorem [HIS14]: For any constant value of C, 
there is an instance of M-IHT that never converges

• Proof intuition: Start with the zero signal; if the first 
signal estimate         has a really large tail, then M-
IHT can potentially return zero; therefore, stuck!

xi+1 ← T (xi +AT (y −Axi))

AT y

� �� �����
xΩ x− xΩ
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A Subtle Property

• For any model, consider the exact projection oracle:

– i.e., the estimate minimizes the norm of the “tail”

M(x) = xΩ, where Ω = arg min
Ω∈M

�x− xΩ�2
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A Subtle Property

• For any model, consider the exact projection oracle:

– i.e., the estimate minimizes the norm of the “tail”

• Equivalent to the condition:

– i.e., the estimate maximizes the norm of the “head”

M(x) = xΩ, where Ω = arg max
Ω∈M

�xΩ�2

M(x) = xΩ, where Ω = arg min
Ω∈M

�x− xΩ�2
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Tails vs. Heads

• Therefore, an exact projection oracle 
simultaneously optimizes for both head- and tail- 
problems
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Tails vs. Heads

• Therefore, an exact projection oracle 
simultaneously optimizes for both head- and tail- 
problems

• However, an approximation oracle defined in terms of 
the tail says nothing about the head

–              can be arbitrarily small (even zero)

�x− T (x)�2 ≤ C min
Ω∈M

�x− xΩ�2
�T (x)�2
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A New Recipe

1.(As before) assume an RIP-
matrix for the model
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A New Recipe

1.(As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle:

�x− T (x)�2 ≤ Ct min
Ω∈M

�x− xΩ�2
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A New Recipe

1.(As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle:

3.Assume a second, also imperfect 
head oracle:

�x− T (x)�2 ≤ Ct min
Ω∈M

�x− xΩ�2

�H(x)�2 ≥ Ch max
Ω∈M

�xΩ�2
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Approximation-Tolerant M-IHT

• (AM-IHT)  given            , recover 

iterate:

y = Ax x

xi+1 ← T (xi +H(AT (y −Axi)))
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Approximation-Tolerant M-IHT

• (AM-IHT)  given            , recover 

iterate:

• Theorem [HIS14]: If A satisfies the model-RIP with 
constant   , then the iterates of AM-IHT satisfy

* Extension to CoSaMP [NT08] easy; also works in presence of noise

y = Ax x

xi+1 ← T (xi +H(AT (y −Axi)))

�x− xi+1�2 ≤ (1 + cT )

��
1− c2

H
(1 + δ) + δ

cH
+ 2δ

�
�x− xi�2

δ
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Approximation-Tolerant
Model-Based

Compressive Sensing:

A Case Study
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What’s Common?

Seismic shot gathers Bat-chirps (Time-frequency)
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What’s Common?

• Both images are column-sparse..

Seismic shot gathers Bat-chirps (Time-frequency)
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What’s Common?

• ...and adjacent columns share similar supports.

Seismic shot gathers Bat-chirps (Time-frequency)
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A Measure of Support Similarity

• Earth Mover’s Distance (EMD)
–  Classical tool, used extensively in statistics, computational 

geometry, computer vision, etc.

E.g. (Sparsity) k = 3, sEMD = 3
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A Measure of Support Similarity

• Earth Mover’s Distance (EMD)
–  Classical tool, used extensively in statistics, computational 

geometry, computer vision, etc.

E.g. (Sparsity) k = 3, sEMD = 5

Extension to 
multiple columns is 
inductively defined
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A New Signal Model

• Def: The Constrained-EMD 
model is the set of 2D signals                        
of size N = h x w parameterized 
by:
– Column sparsity (at most) k   (i.e., 

total sparsity K = k x w)
– Cumulative Support-EMD (at most) 

B (“EMD-budget”)

• Intuition: Imagine k paths 
(possibly broken) traced in the 
2D plane from left to right

Mk,B
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Ingredient #1: RIP Matrix

• Boils down to counting the total number of 
admissible supports in the CEMD model,

• Theorem [HIS14]: For not-too-large values of EMD 
budget B, the number of measurements required to 
satisfy RIP scales as M = O(K + k log(B/k))
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Ingredient #2: Tail Oracle

• We want to (approximately) solve the problem

• Intuition: consider the Lagrange relaxation

indexed by the relaxation parameter λ

minimize �X −XΩ� , s. t.

col-sparsity(Ω) ≤ k, sEMD(Ω) ≤ B

minimize �X −XΩ�22 + λ sEMD(Ω), s. t.

col-sparsity(Ω) ≤ k
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Ingredient #2: Tail Oracle

• Each Lagrange relaxation can be embedded into a 
min-cost flow problem on a specific graph

• Wrap everything up with a Pareto curve argument for 
choosing the ‘right’ value of 

• Theorem [HIS14]: There exists a poly-time 
algorithm that, for any arbitrary X, returns an 
estimate that satisfies:

�X −Xi�22 ≤ 2 min
X�∈Mk,B

�X −X ��22

λ
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Ingredient #3: Head Oracle

• Can be efficiently achieved by a greedy 
approximation algorithm 

• Intuition: pick the single dominant path from left to 
right via dynamic programming (DP); rinse & repeat

• Theorem [HIS14] : There exists a poly-time 
algorithm that, for any arbitrary X, returns an 
estimate that satisfies:

�Xi�22 ≥ 3

4
max

Ω∈Mk,B

�XΩ�22

59



Putting the Dish Together

• RIP matrix + Tail-approximation + Head-
approximation = New CS recovery algorithm for 
Constrained-EMD signals

• Theorem [HIS14] : If                           , and 
EMD-budget (B) not-too-large, then AM-IHT can 
stably and rapidly recover any signal in the 
Constrained EMD model 

M = O(K log logK)
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Numerical Results
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Some Other Models...

• Tree-sparse model
– Fastest known exact 

projection oracle has 
runtime

– Can design head- and tail- 
approximation oracles 
with runtime 

• Separated-spikes model
– Fastest exact oracle has 

runtime 
– Can design approximation 

oracles with runtime 

O(NK)

O(N logN)

O(N)

O(N3)
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Summary

• Model-CS: A framework to 
incorporate structure into 
compressive sensing algorithms
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Model-CS by leveraging 
approximation algorithms
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Summary

• Model-CS: A framework to 
incorporate structure into 
compressive sensing algorithms

• Approximation Tolerant 
Model-CS: A new way to do 
Model-CS by leveraging 
approximation algorithms

• Constrained EMD-Model: A 
new signal model for sparse 
signals with spatially-correlated 
supports
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Take-Home Message

• If there is additional structure in 
your signal, then leverage it!

• Model-CS: one way to leverage 
structure in inverse problems

• Approximation-tolerant Model-CS: 
A new way to leverage “harder” 
types of structure  
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Summary

• Model-CS: A framework to 
incorporate structure into 
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