Approximation-Tolerant
Model-Based
Compressive Sensing

Chinmay Hegde
CSAIL, MIT
Joint work with:

Ludwig Schmidt and Piotr Indyk
To appear in SODA 2014



Approximation-Tolerant
Model-Based

Compressive Sensing



Compressive Sensing



Compressive Sensing (CS)

Sampling and recovery of sparse signals ...
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Compressive Sensing (CS)

Sampling and recovery of sparse signals ...
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... under certain conditions on the matrix A and the
signal z



CS : Sampling

N x 1

sparse
signal
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Samples
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e Random sub-Gaussian matrix A has RIP w.h.p. if

M = O(K + log (g)) = O(Klog(N/K))

[CRTO6], [BDDWO7]



CS : Recovery
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e /1-optimization
[CRT04]; [D04]

e Greedy algorithms

— Iterative hard thresholding [DDDeM04]; [BD07]
— CoSaMP [NT09]; Subspace Pursuit [DM09]



CS: Applications

“Single-pixel”
camera

Network monitoring

and many, many more..
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Sparsity

e Sparsity doesn’t tell the entire story ...

5% sparse image
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Structure

. since several signals exhibit additional structure

5% sparse image Also, a 5% sparse
image! But the

support is highly
structured...

12



Examples of Structure

e Tree-sparsity model (in the wavelet domain) for
natural images, piecewise polynomial signals..
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(More) Examples of Structure

e Block-sparsity model for
wireless transmissions /
sensor networks/ speech
recordings/ gene
expression data, ...

e /\ -separated spikes for
neuronal recordings,
electrophysiological
signals, ...
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Model-Based

Compressive Sensing
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Sparse signals

K-sparse signals comprise signals with all
possible supports of size K

RN
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Model-sparse signals

e Def: A K-sparse structured-sparsity model
comprises a particular (reduced) set of Lk supports

For our purposes,
Ly = ©(20F)
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Sampling

e RIP: stable embedding for K-sparse signals

RN
1
L2
K-planes

O(K log(N/K))

K—|—log K
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Model-Based Sampling

e Model-RIP: embedding for model-sparse signals
[B, D]; [B,D,DeV,W]

RN RM

L2

K-planes

M = O(K +log(Lk))
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Sparse Recovery

e (IHT) given y= Az, recover =
iterate:
Tit1 < thresh(a:i + AT(y — ALIZ‘Z))

where:
thresh(xzg, K) < K-largest elements of xg
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Model-Based Recovery

e (M-IHT) given y = Az , recover z

iterate:
i1 < M(z; + AT(y — Ax;))

where:

M(z) = xq, where 2 = arg érél/{l/l |z — zall,

M(-) : Model-projection oracle
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Model-Based

‘Theorem [BCDH107]: For any

arbitrary structured sparsity
model, M-IHT rapidly converges

to the correct answer, i.e.,
1
|z — Ziya]ly < 5 |z — x|,
(S )

e For tree-sparsity, M = O(K)
e Since M = K measurements

are necessary, this scaling is
info-theoretic optimal

e Similar gains for other models,
(such as separated spikes)

CS

Daubechies/CoSaMP - K = 30000

SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000
RS - o

: ¢ r—' e

SNR = 17.8263dB
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Beyond Structured Sparsity

e Along identical lines, this idea can be applied to
virtually any signal model.
— Low-rank matrices [LB09], [JMDO09]
— Low-rank + Sparse matrices [WSB11]
— Arbitrary unions-of-subspaces [Blu10]
- Low-dimensional manifolds [SC10]
— Mixtures of manifolds [HB11]

- <insert your favorite model>

e Very general principle for solving all kinds of
inverse problems
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Recipe for Model-CS

1.An RIP-matrix for that model
y = Ax

2.An exact model-projection oracle

24



Recipe for Model-CS

1.An RIP-matrix for that model
y = Ax

2.An exact model-projection oracle

() =z, where argéréljele a5
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Challenge

e Model-projection, in general, can be computationally
very challenging

- Sometimes even NP-hard ®

M — h Q p— 1 —
() = xq, where argggrélj{rl/l”x zall,
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Challenge

e Model-projection, in general, can be computationally
very challenging

- Sometimes even NP-hard

M — h Q p— 1 —
(¥) = zq, where Q= arg min ||z —zql,

e Idea: Instead of an exact optimization, can we use
an approximation algorithm instead?
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This idea makes sense..

e For a number of known NP-hard optimization
problems, approximation algorithms exist

- Extensive body of research in Theory of Computing,
Computational Geometry, et al.

Approx. Alg.
Design

Compressive
Sensing
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This idea makes sense..

e For a number of known NP-hard optimization
problems, approximation algorithms exist

Approx. Alg.
Design

Compressive
Sensing

e Fven if the exact optimization problem was poly-
time, it can be impractical for real-world problems
- e.g. a run-time of O(N®)
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Approximation-Tolerant
Model-Based

Compressive Sensing
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A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(2)]l, < C min |z~ wall

- In words: the oracle returns 7(x) with an error
that is C-close to the minimum possible tail error
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A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(@)ll, < C mip ||e - zall,

e Let us plug this into M-IHT:

Tir1 < T(sz -+ AT(y — A.CIJZ))
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A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(@)]l, < C min &~ wall,

e Let us plug this into M-IHT:

T N
iy & Tlae-AAy= AT

* Unfortunately, this doesn’t work ®®
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A Negative Result

C N
e Theorem [HIS14]: For any constant value of C,
there is an instance of M-IHT that never converges

= )

Titr1 < T(xz -+ AT(y — AZCZ))

e Proof intuition: Start with the zero signal; if the first
signal estimate A’y has a really large tail, then M-
IHT can potentially return zero; therefore, stuck!

\ / \ - -~ _J/
rQ L — XQ
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A Subtle Property
e For any model, consider the exact projection oracle:

M — h () = ] -
() = v, where © = arg min [z — 7l

- i.e., the estimate minimizes the norm of the “tail”
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A Subtle Property

e For any model, consider the exact projection oracle:

(¥) = zo, where ) = arg min ||z —zql|,

- i.e., the estimate minimizes the norm of the “tail”

e Equivalent to the condition:

() = g, where arggg%%\\wﬂf‘z

- i.e., the estimate maximizes the norm of the "head”
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Tails vs. Heads

e Therefore, an exact projection oracle
S|multaneously optlmlzes for both head- and tail-
problems ® S
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Tails vs. Heads

e Therefore, an exact projection oracle

S|multaneously optlmlzes for both head- and tail-
problems = TS,

e However, an approximation oracle defined in terms of
the tail says nothing about the head

_ < _
|z = T(@)ll, < C mip || ~ zall,

|T'(z)||5 can be arbitrarily small (even zero)
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A New Recipe

1. (As before) assume an RIP-
matrix for the model
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A New Recipe

1. (As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle:

_T < ; _
|2~ T(@)]l, < Ci in |1z — @l
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A New Recipe

1. (As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle:

_T < ; _
|2~ T(@)]l, < Ci in |1z — @l

3.Assume a second, also imperfect
head oracle:

H >
|H (@), = Ch max [loall,
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Approximation-Tolerant M-IHT
e (AM-IHT) given y= Az, recover z

iterate: Tin < Tz + H(AT (y — Ax;)))
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Approximation-Tolerant M-IHT
e (AM-IHT) given ¥y = Az, recover x

iterate:

Tip1 « T(z; + H(A" (y — Az;)))

* Extension to CoSaMP [NT08] easy, also works in presence of noise
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Approximation-Tolerant
Model-Based
Compressive Sensing:

A Case Study
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What's Common?

Bat-chirps (Time-frequency)

Seismic shot gathers
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What's Common?

e Both images are column-sparse..

Seismic shot gathers Bat-chirps (Time-frequency)
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What's Common?

lar supports.

imi

L VLA

\

..and adjacent columns share s

.....
.........
L

Bat-chirps (Time-frequency)

Seismic shot gathers
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A Measure of Support Similarity

e Earth Mover’s Distance (EMD)

— Classical tool, used extensively in statistics, computational
geometry, computer vision, etc.

E.g. (Sparsity) k = 3, sEMD = 3

N




A Measure of Support Similarity

e Earth Mover’s Distance (EMD)

— Classical tool, used extensively in statistics, computational

geometry, computer vision, etc.

E.g. (Sparsity) k = 3, sEMD = 5

0

—

>

Extension to
multiple columns is
inductively defined
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A New Signal Model

e Def: The Constrained-EMD R
model is the set of 2D signals My, g
of size N = h x w parameterized

/

by: Mo,

— Column sparsity (at most) k& (i.e,,
total sparsity K = k x w)

/

— Cumulative Support-EMD (at most)
B (“EMD-budget”) et

N,

e Intuition: Imagine k paths
(possibly broken) traced in the
2D plane from left to right

/

)
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Ingredient #1: RIP Matrix

Boils down to counting the total number of
admissible supports in the CEMD model, Lg

o—" /e )’ RY

4

N

o 1

1 y

-

(&

budget B, the number of measurements required to
satisfy RIP scales as M = O(K + klog(B/k))

\

e Theorem [HIS14]: For not-too-large values of EMD
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Ingredient #2: Tail Oracle

e We want to (approximately) solve the problem

minimize | X — Xql|, s.t.

col-sparsity(Q2) < k, sEMD(Q2) < B

e Intuition: consider the Lagrange relaxation
minimize | X — Xql|s + A sSEMD(Q),  s. t.

col-sparsity(€2) < k

indexed by the relaxation parameter A
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Ingredient #2: Tail Oracle

e Each Lagrange relaxation can be embedded into a
min-cost flow problem on a specific graph

e Wrap everything up with a Pareto curve argument for

choosing the ‘right’ value of X\

(e Theorem [HIS14]: There exists a poly-time
algorithm that, for any arbitrary X, returns an
estimate that satisfies:

2 . 2
5 =2l =2 mutn |2 — 205
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Ingredient #3: Head Oracle

e Can be efficiently achieved by a greedy
approximation algorithm

e Intuition: pick the single dominant path from left to
right via dynamic programming (DP); rinse & repeat

P
e Theorem [HIS14] : There exists a poly-time
algorithm that, for any arbitrary X, returns an
estimate that satisfies:
3

2 ’
X2 § max | Xl

oY
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Putting the Dish Together

e RIP matrix + Tail-approximation + Head-

approximation = New CS recovery algorithm for

Constrained-EMD signals

"« Theorem [HIS14] : If M = O(K loglog K), and
EMD-budget (B) not-too-large, then AM-IHT can
stably and rapidly recover any signal in the
Constrained EMD model

\
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Original

Numerical Results

CoSaMP

EMD-CoSaMP

o
o

o
o))

Probability of recovery

o
~

=-EMD-IHT
—-CoSaMP

<~ IHT

—+EMD-CoSaMP

100 120 140
Number of measurements
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Some Other Models...

o Tree-sparse model

- Fastest known exact ’ U
projection oracle has [ ]
runtime O(NK) | H
— Can design head- and tail- | T _
apprOXimation OraC|eS 0 260 460 50 100 150 200 250

with runtime O(N log N)

o Separated-spikes model
— Fastest exact oracle has JLW A
Latiaianiiy

- 3
runtime O (N ) WW]LLMMM hhm.‘xi o
RLL LK AL ] L AR R

— Can design approximation
oracles with runtime O(N)

0 200 400 600 800 1000
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Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms
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Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms

e Approximation Tolerant
Model-CS: A new way to do
Model-CS by leveraging
approximation algorithms
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Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms

e Approximation Tolerant
Model-CS: A new way to do
Model-CS by leveraging
approximation algorithms

e Constrained EMD-Model: A
new signal model for sparse
signals with spatially-correlated
supports
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Take-Home Message

i If there IS addltlonal StrUCture |n Daubechies/CoSaMP - K = 6000 M = 30000
your signal, then leverage it!

e Model-CS: one way to leverage

structure in inverse problems g

SNR =13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000

B e o e e e

e Approximation-tolerant Model-CS:
A new way to leverage “harder”
types of structure

SNR = 17.8263dB
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Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms

e Approximation Tolerant
Model-CS: A new way to do
Model-CS by leveraging
approximation algorithms

e Constrained EMD-Model: A
new signal model for sparse
signals with spatially-correlated
supports

68



