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Compressive Sensing (CS)

Sampling and recovery of sparse signals ...

Y A x
v [ DR v
S I T H sparse
e T R
M x N - K
H nonzero
n entries




Compressive Sensing (CS)




Compressive Sensing (CS)




CS : Sampling
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e Random sub-Gaussian matrix A has RIP w.h.p. if

M = O(K + log (g)) = O(Klog(N/K))

[CRT06], [BDDeVWO07]



CS : Recovery

Y A
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Samples ...ﬂj;ﬁ?
M x N

e /1-optimization
[CRT04]; [D04]

e Greedy algorithms
- 1terated thresholding [DDDeM04]; [BD07]
— CoSaMP [NT09]; Subspace Pursuit [DM09]

HEE EEEEE EEIEEEES

N x 1

sparse
signal

K

nonzero
entries



Sparsity

e Sparsity doesn’t tell the entire story ...

5% sparse image



Structure

. since several signals exhibit additional structure

5% sparse image Also, a 5% sparse
image! But the

support is highly
structured...



Examples of Structure

e Tree-sparsity model (in the wavelet domain) for
natural images, piecewise polynomial signals..
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(More) Examples of Structure

e Block-sparsity model for
wireless transmissions /
sensor networks/ speech
recordings/ gene
expression data, ...

e /\ -separated spikes for
neuronal recordings,
electrophysiological
signals, ...
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Sparse signals

e K-sparse signals comprise signals with all
possible supports of size K

RN




Model-sparse signals

e Def: A K-sparse structured-sparsity model
comprises a particular (reduced) set of Ly supports

S

For our purposes,

Ly = ©(2°00%)




Sampling

e RIP: stable embedding for K-sparse signals
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O(K log(N/K))

K—|—log K



Model-Based Sampling

e Model-RIP: embedding for model-sparse signals
[B, D]; [B,D,DeV,W]
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M = O(K +log(Lk))



Sparse Recovery

e (IHT) given y= Az, recover =
iterate:
Tit1 < thresh(a:i + AT(y — ALIZ‘Z))

where:
thresh(xzg, K) < K-largest elements of xg



Model-Based Recovery

e (M-IHT) given y = Az , recover z

iterate:
i1 < M(z; + AT(y — Ax;))

where:

M(z) = xq, where 2 = arg érél/{l/l |z — zall,

M(-) : Model-projection oracle



Model-Based CS

‘Theorem [BCDH107]: For any
arbitrary structured sparsity
model, M-IHT rapidly converges

to the correct answer, i.e.,

1
ez — myrally < 5 lew — a5

e For tree-sparsity, M = O(K)
e Since M = K measurements

are necessary, this scaling is
info-theoretic optimal

e Similar gains for other models
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Beyond Structured Sparsity

e Along identical lines, this principle can be applied to
virtually any signal model.

— Low-rank matrices [LB09],[JMDO09]

— Arbitrary unions-of-subspaces [Blu10]
- Low-dimensional manifolds [SC10]

— Mixtures of manifolds [HB11]

— <insert your favorite model>

e Very general principle for solving inverse problems



Recipe for Model-CS

1.An RIP-matrix for that model
y = Ax

2.An exact model-projection oracle



Recipe for Model-CS

1.An RIP-matrix for that model
y = Ax

2.An exact model-projection oracle

() =z, where argéréljele a5



Challenge

e Model-projection, in general, can be computationally
very challenging

- Sometimes even NP-hard

() = xq, where argggréljelﬂx zall,



Challenge

e Model-projection, in general, can be computationally
very challenging

- Sometimes even NP-hard

M(z) = here Q) = in ||z —
(¥) = zq, where Q= arg min ||z —zql,

e Idea: Instead of an exact optimization, can we use
an approximation algorithm instead?



This idea makes sense..

e For a number of known NP-hard optimization
problems, approximation algorithms exist

e Even if the exact optimization problem was poly-
time, it can be impractical for real-world problems

- e.g. a run-time of O(N3) is impractical for even a mega-
pixel size image



This idea makes sense..

e For a number of known NP-hard optimization
problems, approximation algorithms exist

e Even if the exact optimization problem was poly-
time, it can be impractical for real-world problems

e Extensive body of research in Theory of Computing,
Computational Geometry, et al.

Approx. Alg.
Design

Compressive
Sensing
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A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(2)]l, < C min |z~ wall

- In words: the oracle returns 7(x) with an error
close to the minimum possible tail error



A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(@)ll, < C mip ||e - zall,

e Let us plug this into M-IHT:

Tir1 < T(sz -+ AT(y — A.CIJZ))



A Version of M-IHT

e A natural notion of approximation would be the
(imperfect) oracle T(x) :

_T < ' _
|z = T(@)]l, < C min &~ wall,

e Let us plug this into M-IHT:
_ zig1 & TlaiAAy=A7;))

* Unfortunately, this doesn’t work @®®®




A Negative Result

C N
e Theorem [HIS14]: For any constant value of C,
there is an instance of M-IHT that never converges

= )

Titr1 < T(xz -+ AT(y — AZCZ))

e Proof intuition: Start with the zero signal; if the first
signal estimate A’y has a really large tail, then M-
IHT gets stuck at zero ...

rQ L — XTQ



A Subtle Property
e For any model, consider the exact projection oracle:

(¢) = 2o, where © = arg min [z — zoll,

- i.e., the estimate minimizes the norm of the “tail”



A Subtle Property

e For any model, consider an exact projection oracle:

(¥) = zo, where ) = arg min ||z —zql|,

- i.e., the estimate minimizes the norm of the “tail”

¢ Equivalent to the condition:

() = g, where arggg%%\\wﬂf‘z

- i.e., the estimate maximizes the norm of the "head”



Tails vs. Heads

e Therefore, an exact projection oracle
S|multaneously optlmlzes for both head- and tail-
problems %




Tails vs. Heads

e Therefore, an exact projection oracle

S|multaneously optlmlzes for both head- and tail-
problems = TS,

e However, an approximation oracle defined in terms of
the tail error says nothing about the head

_ < _
|z = T(@)ll, < C mip || ~ zall,

|T'(z)||5 can be arbitrarily small (even zero)



A New Recipe

1. (As before) assume an RIP-
matrix for the model



A New Recipe

1. (As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle:

_T < ; _
|2~ T(@)]l, < Ci in |1z — @l



A New Recipe

1. (As before) assume an RIP-
matrix for the model

2.Assume an imperfect tail oracle: (”
e

_ < : _ i

|2 = T(@)ll, < C; min ||z - zall, s

3.Assume a second, also imperfect
head oracle:

H >
|H (@), = Ch max [loall,



Approximation-Tolerant M-IHT
e (AM-IHT) given y= Az, recover z

iterate: Tin < Tz + H(AT (y — Ax;)))




Approximation-Tolerant M-IHT
e (AM-IHT) given ¥y = Az, recover x

iterate:

Tip1 « T(z; + H(A" (y — Az;)))

* Extension to CoSaMP [NTO8] easy, also works in noise



Putting our work in context

e Approximate oracles have been explored in the
literature before
— Blumensath [11] : Oracles with additive approx w.r.t. tail
= Weak notion of approximation

— Kyrillidis+Cevher [12]: Oracles with multiplicative approx
w.r.t. head only

= Convergence not guaranteed

— Giryes+Elad [13]: Oracles with multiplicative approx w.r.t.
tail only

* Needs an assumption much stronger than RIP

— Davenport+Needell+Wakin [13]: Oracles with multiplicative
approx w.r.t. head and tail

= Similar to ours (but somewhat more stringent)



Approximation-Tolerant
Model-Based
Compressive Sensing:

A Case Study
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What's Common?

e Both images are column-sparse..
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What's Common?
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A Measure of Support Similarity

e Earth Mover’s Distance (EMD)

— Classical tool, used extensively in statistics, computational
geometry, etc

E.g. (Sparsity) k = 3, sEMD = 3

i




A Measure of Support Similarity

e Earth Mover’s Distance (EMD)

— Classical tool, used extensively in statistics, computational

geometry, etc

E.g. (Sparsity) k = 3, sEMD = 5
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Extension to
multiple columns is
inductively defined



A New Signal Model

e Def: The Constrained-EMD
model is the set of 2D sighals My 5
of size N = h x w parameterized
by:

— Column sparsity (at most) k (i.e,,
total sparsity K = k x w)

— Cumulative Support-EMD (at most)
B ("EMD-budget”)

e Visualization: think of k paths in
the plane from left to right
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Ingredient #1: RIP Matrix

e Boils down to counting the total number of
admissible supports in the CEMD model, Lg

0 q4 RV
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e Theorem [HIS14]: For not-too-large values of EMD

budget B, the number of measurements required to

satisfy RIP scales as M = O(K + klog(B/k))
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Ingredient #2: Tail Oracle

e We want to (approximately) solve the problem

minimize | X — Xql|, s.t.

col-sparsity(Q2) < k, sEMD(Q2) < B

e Intuition:, consider the Lagrange relaxation
minimize | X — Xql|s + A sSEMD(Q),  s. t.

col-sparsity(€2) < k

indexed by the relaxation parameter A



Ingredient #2: Tail Oracle

Each Lagrange relaxation can be embedded into a
min-cost flow problem on a specific graph

Wrap everything up with a Pareto curve argument

Theorem [HIS14]: There exists a poly-time
algorithm that, for any arbitrary X, returns an
estimate that satisfies:

2 . 2
PE =2l =2 o o — 285




Ingredient #3: Head Oracle

e Can be efficiently achieved by a greedy

approximation algorithm

e Intuition: pick the single dominant path from left to

right, subtract, rinse & repeat

-

e Theorem [HIS14] : There exists a poly-time

algorithm that, for any arbitrary X, returns an

estimate that satisfies:

. 2
P2z 2 max xl:

~




Putting the Dish Together

e RIP matrix + Tail-approximation + Head-
approximation = New CS recovery algorithm for
Constrained-EMD signals

(e Theorem [HIS14] : If M — O(K loglog K), and
EMD-budget (B) not-too-large, then AM-IHT can
stably and rapidly recover any signal in the
Constrained EMD model




Numerical Results
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Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms
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Model-CS: A new way to do
Model-CS by leveraging
approximation algorithms




Summary

e Model-CS: A framework to
iIncorporate structure into
compressive sensing algorithms

e Approximation Tolerant
Model-CS: A new way to do
Model-CS by leveraging
approximation algorithms

e Constrained EMD-Model: A
new signal model for sparse
signals with spatially-correlated
supports
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