Approximation-Tolerant Model-Based Compressive Sensing

Chinmay Hegde

CSAIL, MIT

Joint work with:
Ludwig Schmidt and Piotr Indyk
Approximation-Tolerant
Model-Based
Compressive Sensing
Compressive Sensing
Compressive Sensing (CS)

Sampling and recovery of sparse signals ...

\[y = A x \]

- \(M \times 1 \) Samples
- \(N \times 1 \) sparse signal
- \(K \) nonzero entries
Compressive Sensing (CS)
Compressive Sensing (CS)
Random sub-Gaussian matrix A has RIP w.h.p. if

$$M = O(K + \log \left(\frac{N}{K} \right)) = O(K \log(N/K))$$

[CRT06], [BDDeVW07]
CS: Recovery

\[y = A x \]

- **\(\ell_1 \)-optimization**
 [CRT04]; [D04]

- **Greedy algorithms**
 - iterated thresholding
 [DDDeM04]; [BD07]
 - CoSaMP
 [NT09]; Subspace Pursuit [DM09]
Sparsity

- Sparsity doesn’t tell the entire story ...

5% sparse image
Structure

• ... since several signals exhibit additional structure

5% sparse image

Also, a 5% sparse image! But the support is highly structured...
Examples of Structure

• Tree-sparsity model (in the wavelet domain) for natural images, piecewise polynomial signals.
(More) Examples of Structure

- Block-sparsity model for wireless transmissions / sensor networks/ speech recordings/ gene expression data, ...

- \(\Delta \)-separated spikes for neuronal recordings, electrophysiological signals, ...
Model-Based Compressive Sensing
Sparse signals

- **K-sparse signals** comprise signals with *all possible supports* of size K
Model-sparse signals

- Def: A *K-sparse structured-sparsity model* comprises a particular (*reduced*) set of L_K supports

For our purposes,

$$L_K = \Theta(2^{O(K)})$$
Sampling

- RIP: stable embedding for K-sparse signals

$$M = O(K + \log \left(\frac{N}{K} \right)) = O(K \log(N/K))$$
Model-Based Sampling

- **Model-RIP**: embedding for *model*-sparse signals
 \[[B, D]; [B, D, DeV, W]\]

\[
M = O(K + \log(L_K))
\]
Sparse Recovery

- (IHT) given $y = Ax$, recover x

iterate:

$$x_{i+1} \leftarrow \text{thresh}(x_i + A^T(y - Ax_i))$$

where:

$$\text{thresh}(x_0, K) \leftarrow K\text{-largest elements of } x_0$$
Model-Based Recovery

- **(M-IHT)** given $y = Ax$, recover x

 iterate:

 $$x_{i+1} \leftarrow M(x_i + A^T(y - Ax_i))$$

 where:

 $$M(x) = x_\Omega, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2$$

 $M(\cdot)$: Model-projection oracle
Model-Based CS

Theorem [BCDH10]: For *any arbitrary* structured sparsity model, M-IHT rapidly converges to the correct answer, i.e.,

$$
\|x - x_{i+1}\|_2 \leq \frac{1}{2} \|x - x_i\|_2
$$

- For tree-sparsity, $M = O(K)$
- Since $M = K$ measurements are *necessary*, this scaling is info-theoretic optimal

- Similar gains for other models
Along identical lines, this principle can be applied to \textit{virtually any signal model}:
- Low-rank matrices [LB09],[JMD09]
- Arbitrary unions-of-subspaces [Blu10]
- Low-dimensional manifolds [SC10]
- Mixtures of manifolds [HB11]

- \textless insert your favorite model\textgreater

\textbf{Very general principle} for solving inverse problems
Recipe for Model-CS

1. An RIP-matrix for that model

\[y = Ax \]

2. An exact model-projection oracle
Recipe for Model-CS

1. An RIP-matrix for that model

\[y = Ax \]

2. An exact model-projection oracle

\[\mathcal{M}(x) = x_{\Omega}, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \| x - x_{\Omega} \|_2 \]
Challenge

- Model-projection, in general, can be computationally very challenging
 - Sometimes even NP-hard 😞

\[
\mathcal{M}(x) = x_\Omega, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \| x - x_\Omega \|_2
\]
• Model-projection, in general, can be computationally very challenging
 - Sometimes even NP-hard 😞

\[\mathbf{M}(x) = x_{\Omega}, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \| x - x_{\Omega} \|_2 \]

• Idea: Instead of an exact optimization, can we use an approximation algorithm instead?
This idea makes sense..

• For a number of known NP-hard optimization problems, **approximation algorithms exist**

• Even if the exact optimization problem was *poly-time*, it can be impractical for real-world problems
 – e.g. a run-time of $O(N^3)$ is impractical for even a mega-pixel size image
This idea makes sense..

- For a number of known NP-hard optimization problems, **approximation algorithms exist**

- Even if the exact optimization problem was *poly-time*, it can be impractical for real-world problems

- Extensive body of research in Theory of Computing, Computational Geometry, *et al.*
Approximation-Tolerant

Model-Based

Compressive Sensing
A Version of M-IHT

• A natural notion of approximation would be the (imperfect) oracle $T(x)$:

$$\|x - T(x)\|_2 \leq C \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2$$

- In words: the oracle returns $T(x)$ with an error
 close to the minimum possible tail error
A Version of M-IHT

- A natural notion of approximation would be the (imperfect) oracle $T(x)$:

$$\|x - T(x)\|_2 \leq C \min_{\Omega \in \mathcal{M}} \|x - x_{\Omega}\|_2$$

- Let us plug this into M-IHT:

$$x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i))$$
A Version of M-IHT

• A natural notion of approximation would be the (imperfect) oracle $T(x)$:

$$\|x - T(x)\|_2 \leq C \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2$$

• Let us plug this into M-IHT:

$$x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i))$$

• Unfortunately, this doesn’t work 😞😞😞
A Negative Result

• **Theorem [HIS14]:** For any **constant** value of C, there is an instance of M-IHT that **never** converges to an equilibrium.

\[x_{i+1} \leftarrow T(x_i + A^T(y - Ax_i)) \]

• Proof intuition: Start with the zero signal; if the first signal estimate A^Ty has a really large tail, then M-IHT gets stuck at zero ...

\[\Omega \]

\[x - x_\Omega \]
A Subtle Property

• For any model, consider the exact projection oracle:

\[M(x) = x_\Omega, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2 \]

- i.e., the estimate minimizes the norm of the “tail”
A Subtle Property

• For any model, consider an exact projection oracle:

\[M(x) = x_\Omega, \text{ where } \Omega = \arg \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2 \]

 - i.e., the estimate **minimizes** the norm of the “tail”

• Equivalent to the condition:

\[M(x) = x_\Omega, \text{ where } \Omega = \arg \max_{\Omega \in \mathcal{M}} \|x_\Omega\|_2 \]

 - i.e., the estimate **maximizes the norm of the “head”**
Tails vs. Heads

• Therefore, an exact projection oracle **simultaneously** optimizes for both head- and tail-problems
Tails vs. Heads

- Therefore, an exact projection oracle **simultaneously** optimizes for both head- and tail-problems

- However, an approximation oracle defined in terms of the tail error **says nothing** about the head

\[\|x - T(x)\|_2 \leq C \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2 \]

- \(\|T(x)\|_2 \) can be arbitrarily small (even zero)
A New Recipe

1. (As before) assume an **RIP-matrix** for the model
A New Recipe

1. (As before) assume an **RIP-matrix** for the model

2. Assume an imperfect **tail oracle**:

\[\|x - T(x)\|_2 \leq C_t \min_{\Omega \in \mathcal{M}} \|x - x_\Omega\|_2 \]
A New Recipe

1. (As before) assume an **RIP-matrix** for the model

2. Assume an imperfect **tail oracle**:

\[\| x - T(x) \|_2 \leq C_t \min_{\Omega \in \mathcal{M}} \| x - x_{\Omega} \|_2 \]

3. Assume a **second**, also imperfect **head oracle**:

\[\| H(x) \|_2 \geq C_h \max_{\Omega \in \mathcal{M}} \| x_{\Omega} \|_2 \]
Approximation-Tolerant M-IHT

• (AM-IHT) given \(y = Ax \), recover \(x \)

iterate:

\[
x_{i+1} \leftarrow T(x_i + H(A^T(y - Ax_i)))
\]
Approximation-Tolerant M-IHT

- (AM-IHT) given \(y = Ax \), recover \(x \)

iterate:
\[
x_{i+1} \leftarrow T(x_i + H(A^T(y - Ax_i)))
\]

- **Theorem [HIS14]**: If \(A \) satisfies the model-RIP with constant \(\delta \), then the iterates of AM-IHT satisfy

\[
\|x - x_{i+1}\|_2 \leq (1 + c_T) \left(\frac{\sqrt{1 - c_H^2(1 + \delta) + \delta}}{c_H} + 2\delta \right) \|x - x_i\|_2
\]

* Extension to CoSaMP [NT08] easy, also works in noise*
Putting our work in context

- Approximate oracles have been explored in the literature before
 - Blumensath [11]: Oracles with *additive* approx w.r.t. tail
 - **Weak** notion of approximation
 - Kyrillidis+Cevher [12]: Oracles with *multiplicative* approx w.r.t. head only
 - Convergence not guaranteed
 - Giryes+Elad [13]: Oracles with *multiplicative* approx w.r.t. tail only
 - Needs an assumption much stronger than RIP
 - Davenport+Needell+Wakin [13]: Oracles with *multiplicative* approx w.r.t. head and tail
 - Similar to ours (but somewhat more stringent)
Approximation-Tolerant Model-Based Compressive Sensing: A Case Study
What’s Common?

• Both images are column-sparse.

Seismic shot gathers

Bat-chirps (Time-frequency)
What’s Common?

• ...and adjacent columns **share similar supports.**

Seismic shot gathers

Bat-chirps (Time-frequency)
A Measure of Support Similarity

- **Earth Mover’s Distance (EMD)**
 - Classical tool, used extensively in statistics, computational geometry, etc

E.g. (Sparsity) $k = 3$, $sEMD = 3$
A Measure of Support Similarity

- **Earth Mover’s Distance (EMD)**
 - Classical tool, used extensively in statistics, computational geometry, etc

E.g. (Sparsity) $k = 3$, $sEMD = 5$

Extension to multiple columns is inductively defined
A New Signal Model

• **Def:** The **Constrained-EMD** model is the set of 2D signals $\mathcal{M}_{k,B}$ of size $N = h \times w$ parameterized by:
 - Column sparsity (at most) k (i.e., total sparsity $K = k \times w$)
 - Cumulative **Support-EMD** (at most) B (“**EMD-budget**”)

• Visualization: think of k paths in the plane from left to right
Ingredient #1: RIP Matrix

- Boils down to counting the total number of admissible supports in the CEMD model, L_K.

- Theorem [HIS14]: For not-too-large values of EMD budget B, the number of measurements required to satisfy RIP scales as $M = O(K + k \log(B/k))$.
Ingredient #2: Tail Oracle

• We want to (approximately) solve the problem

\[
\text{minimize } \|X - X_\Omega\|, \quad \text{s. t.}
\]
\[
\text{col-sparsity}(\Omega) \leq k, \quad \text{sEMD}(\Omega) \leq B
\]

• Intuition: consider the \textbf{Lagrange relaxation}

\[
\text{minimize } \|X - X_\Omega\|^2 + \lambda \text{sEMD}(\Omega), \quad \text{s. t.}
\]
\[
\text{col-sparsity}(\Omega) \leq k
\]

indexed by the relaxation parameter \(\lambda \)
Ingredient #2: Tail Oracle

- Each Lagrange relaxation can be embedded into a *min-cost flow* problem on a specific graph
- Wrap everything up with a Pareto curve argument

Theorem [HIS14]: There exists a poly-time algorithm that, for any arbitrary X, returns an estimate that satisfies:

$$\|X - X_i\|_2^2 \leq 2 \min_{X' \in \mathcal{M}_{k,B}} \|X - X'\|_2^2$$
Ingredient #3: Head Oracle

• Can be efficiently achieved by a greedy approximation algorithm

• Intuition: pick the single dominant path from left to right, subtract, rinse & repeat

• **Theorem [HIS14]**: There exists a poly-time algorithm that, for any arbitrary X, returns an estimate that satisfies:

\[\|X_i\|_2^2 \geq \frac{3}{4} \max_{\Omega \in \mathcal{M}_{k,B}} \|X_\Omega\|_2^2 \]
Putting the Dish Together

- RIP matrix + Tail-approximation + Head-approximation = **New CS recovery algorithm for Constrained-EMD signals**

- **Theorem [HIS14]**: If $M = O(K \log \log K)$, and EMD-budget (B) not-too-large, then AM-IHT can stably and rapidly recover any signal in the Constrained EMD model
Numerical Results

Number of measurements vs. Probability of recovery for different methods: Original, CoSaMP, EMD-CoSaMP, EMD-CoSaMP, and IHT. The graph shows the improvement in probability of recovery with an increasing number of measurements for each method.
Summary

- **Model-CS**: A framework to incorporate structure into compressive sensing algorithms
Summary

• **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

• **Approximation Tolerant Model-CS**: A new way to do Model-CS by leveraging *approximation* algorithms
Summary

- **Model-CS**: A framework to incorporate structure into compressive sensing algorithms

- **Approximation Tolerant Model-CS**: A new way to do Model-CS by leveraging approximation algorithms

- **Constrained EMD-Model**: A new signal model for sparse signals with spatially-correlated supports
References
