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•  Answer: Concise models for the data 
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–  translations of an object  
θ: x-offset and y-offset 

–  wedgelets 
θ: orientation and offset 

–  rotations of a 3D object    
θ:  pitch, roll, yaw 

•   Image manifold 



Dimensionality Reduction 

“Manifold Learning” - Isomap, LLE, MVU, ... 
- Obtain a low-dimensional representation of the data 
- Preserve geometric information 



Dimensionality Reduction 

•  Despite their great promise, nonlinear methods 
suffer from drawbacks: 

–  (often) do not generalize to out-of-sample points 

–  (often) unstable 

–  nonlinear methods not easy to implement as  
sensing schemes 



Linear Dim. Reduction 

•  Want: a linear map that preserves model geometry 
•  Q. Is it even possible? Does such a map exist? 



Whitney’s Theorem 

•  [W,1936] Let               be a compact, smooth,   - 
dimensional manifold. Then, there exists a smooth 
embedding of      into          . 

–  Key insight in proof: consider set of manifold secant 
directions. Each secant is a direction not to project. 



“Good” Linear Maps 



“Good” Linear Maps 

•  Goal: preserve norms of all pairwise secants of X  
•  If X is a dense enough sampling, then    is an “good” 

mapping for the entire manifold    



Linear Dim. Reduction Methods 

•  Principal Components Analysis (PCA) 
–  Easy to compute 

–  But distorts pairwise distances 

•  Random Projections 
–  Guarantees pairwise distance preservation (JL ‘84) 

–  But constants are poor 
–  Oblivious to structure of data 



Designing a “Good” Linear Map 

 Want: a short, fat matrix     , such that  



Designing a “Good” Linear Map 

•  Convert quadratic constraints in     into linear 
constraints in  

•  Use a nuclear-norm relaxation of the rank 

•  Simplified problem: 

[HSB12] 



Task Adaptivity 

   Can prune the secants according to task 

–  If goal is classification, preserve norms of only inter-class 
secants 

–  If goal is reconstruction / parameter estimation, preserve 
both inter- and intra-class secants 

–  Can preferentially weight secants according to importance 
(akin to boosting) 



•  Practical considerations: Q very large, N very large 

•  Alternating Direction Method of Multipliers (ADMM)    

    Iterate: 
   - solve for P using SVD + thresholding 
       -  solve for L using least-squares 

           - solve for q using a truncation step 

A Fast Algorithm 



Isometry constants 

•  Training data: Q = 900 test secants, 1000 test 
secants; measure worst case distortion in norms 



Circles and Squares 



Circles and Squares 



Circles and Squares 



MSTAR 

•  Training data: 230 radar images per class, test data: 
180 radar images per class 



CVDomes 

•  Training data: 2000 secants (inter-class, joint) 
•  Test data: 100 signatures from each class 
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MNIST Dataset 



Compression of MNIST 

•  Size of images: 28x28, Q >= 1000  
•  Excellent dim. reduction using merely M=20 linear 

projections  



Summary 

•  Goal: develop a manifold embedding representation 
that is linear, isometric 

•  Inspiration: Whitney’s Theorem (preserve secants) 

•  Can be posed as a rank-minimization problem 
–  Semi-definite program (SDP) achieves this efficiently 

•  Applications: manifold embedding, classification, 
compression  



Directions 

•  Incorporate block-Toeplitz / circulant structure 
–  How to cope with loss of #degrees of design freedom? 

•  Establish (rigorous) equivalence between rank and 
trace minimization problems 
–  What is the relation b/w isometry constant, rank 

•  Secant-based approach can be linked to existing 
theory of optimal transmit-receive radar (Guerci et 
al., 2001) 


