



# A Geometric Approach for Compressive Sensing

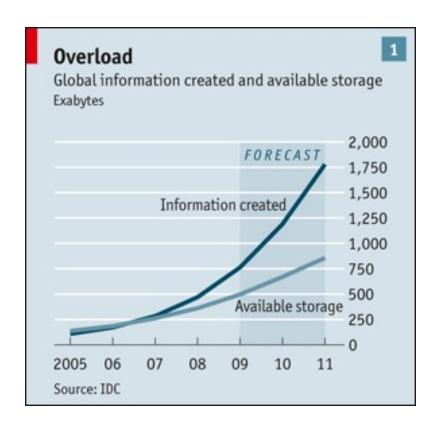
Chinmay Hegde

April 25, 2012

Joint work with: **Richard Baraniuk**, Volkan Cevher, Marco Duarte,
Kevin Kelly, Aswin Sankaranarayanan

## The Data Deluge



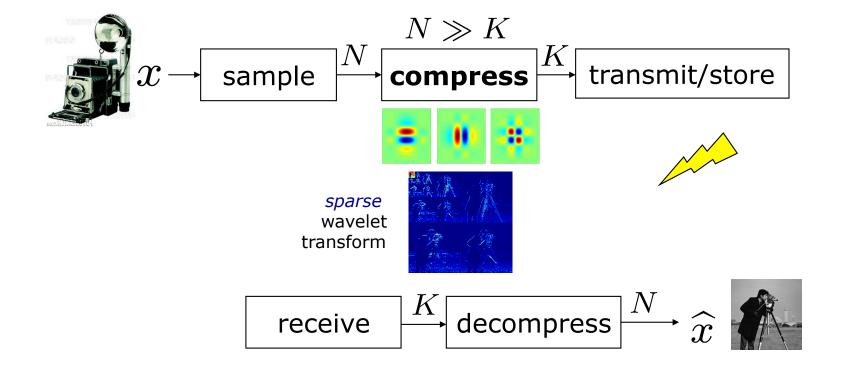


- >250 billion gigabytes generated in 2007
  - Current: digital bits > stars in the universe
  - > Avogadro's number (6.02x10<sup>23</sup>) in 15 years

## Signal Processing Pipeline

Established paradigm for digital data acquisition

sample
compress
transmit
reconstruct
(sensor)
(processor)
(network)
(processor)



#### Sparsity

 Many signals can be compressed in some representation/basis (Fourier, wavelets, ...)

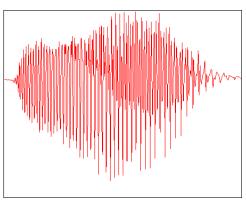
N pixels

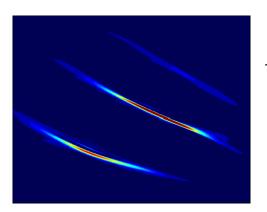




 $K \ll N$  large wavelet coefficients

N wideband signal samples





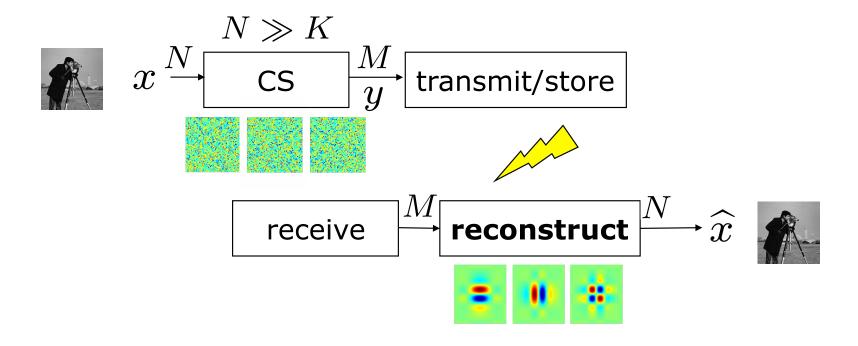
 $K \ll N$  large Gabor coefficients

# Compressive Signal Processing

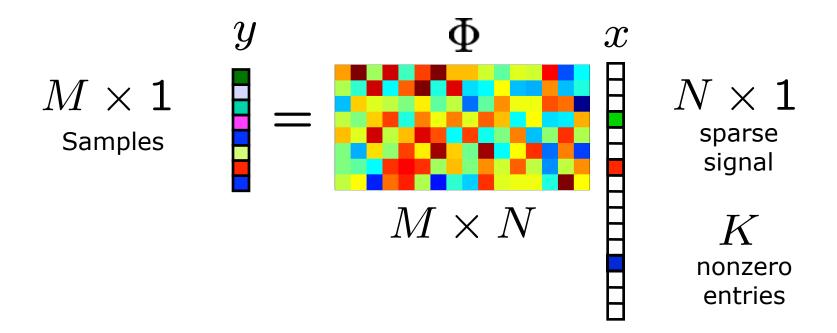
Established paradigm for digital data acquisition

```
sample and compress
```

*transmit* (network) *reconstruct* (processor)



# Compressive Sensing (CS)

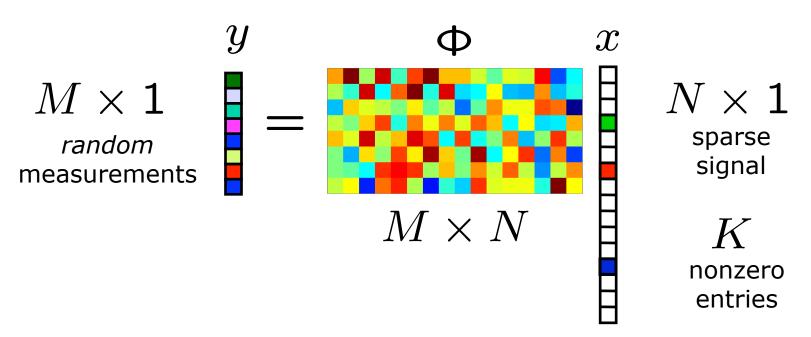


# Compressive Sensing (CS)





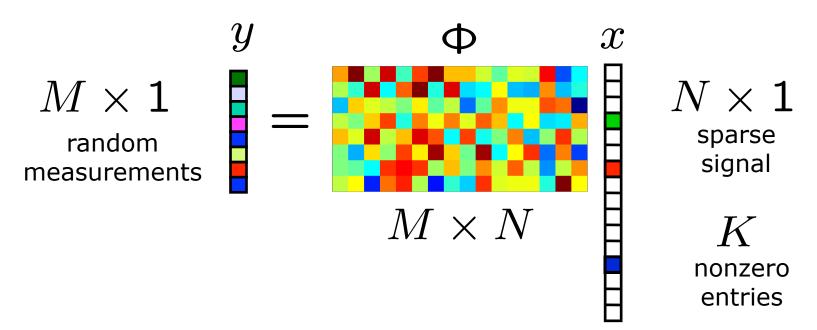
## CS: Sampling



 Random subgaussian matrix Φ has the RIP (restricted isometry property) w.h.p. if

$$M = O(K + \log \binom{N}{K}) = O(K \log(N/K))$$

#### CS: Recovery



- $\ell_1$ -optimization [C, R, T]; [D]; [F,W,N]; [H,Y,Z]
- Greedy algorithms
  - OMP [G, T]
  - iterated thresholding [N, F]; [D, D, DeM]; [B, D]
  - CoSaMP [N,T]; Subspace Pursuit [D,M]

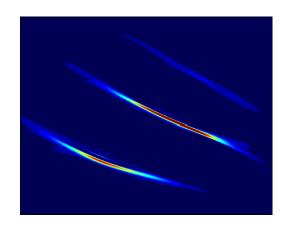
# **Beyond Sparsity**

## Signal Structure

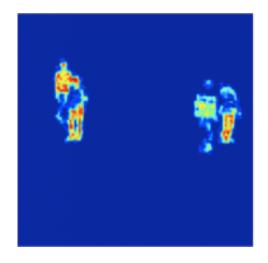
- Sparsity: simplistic, first-order assumption
- Many classes of real-world data exhibit rich, secondary structure



wavelets: natural images



Gabor atoms: chirps/tones



pixels: background subtracted images

# How to exploit structure / prior?

# Key idea: Use Geometry

- Linear models
- Bilinear models
- Manifold models

# Geometry: Model

• **Sparse** signal:

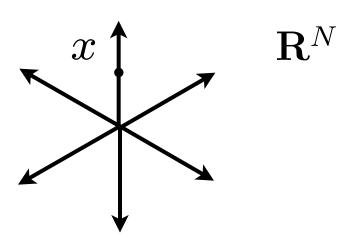
```
x
```

only K out of N coefficients nonzero

# Geometry: Model

• **Sparse** signal:

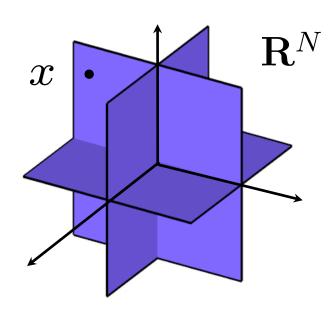
- only K out of N coordinates nonzero
- **Geometry**: union of  $\binom{N}{K}$  K-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 1



# Geometry: Model

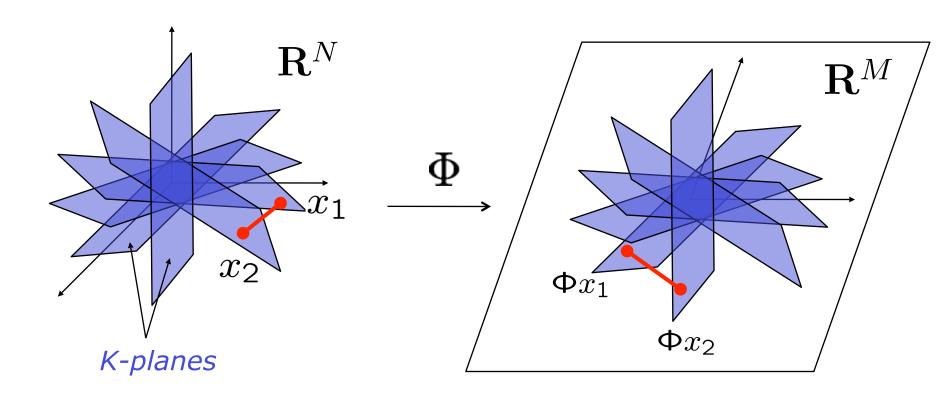
• **Sparse** signal:

- only K out of N coordinates nonzero
- **Geometry**: union of  $\binom{N}{K}$  K-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 2



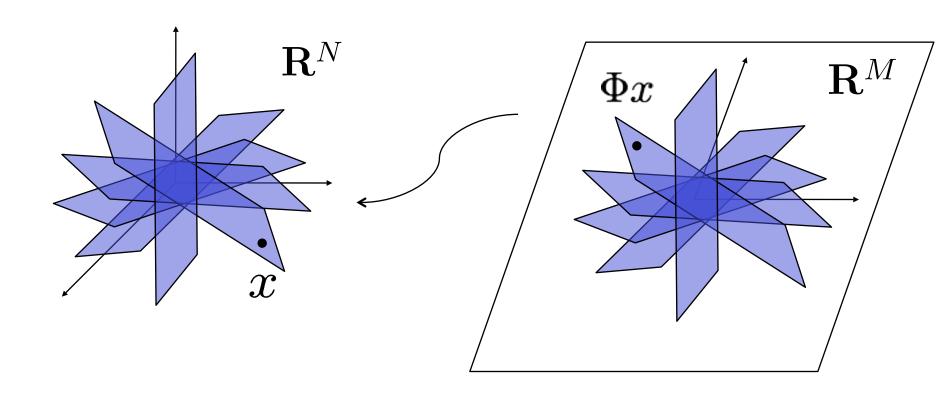
## Geometry: Sampling

- Preserve the structure of sparse signals
- Restricted Isometry Property (RIP)



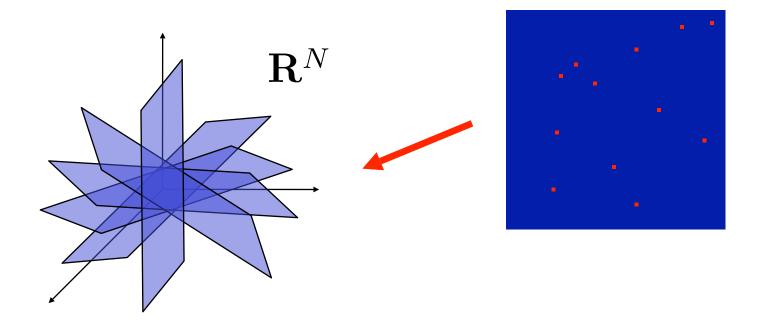
#### Geometry: Recovery

• Efficient, stable algorithms that recover signal



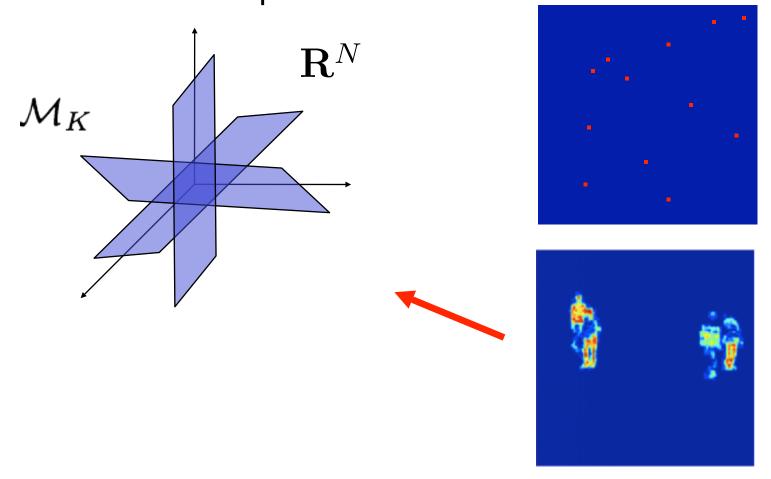
## Sparse Signals

• Defn: *K*-sparse signals comprise *all K*-dimensional canonical subspaces



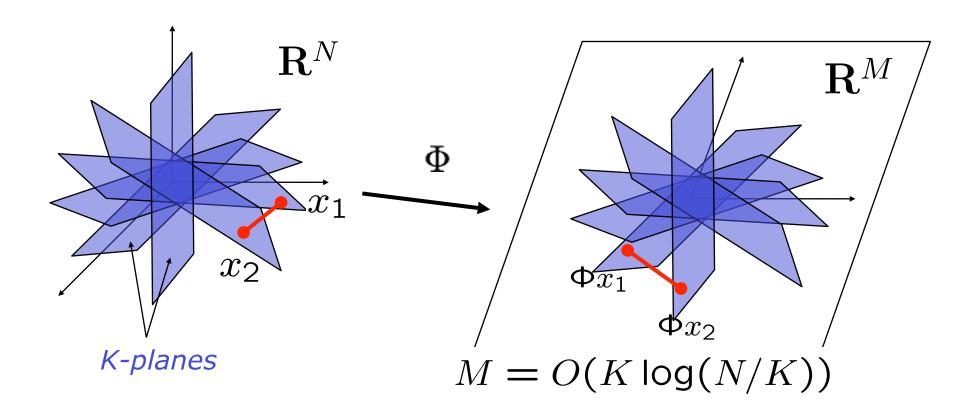
#### Model-Sparse Signals

• Def: A  $\it K$ -sparse union-of-subspaces  $\it model$  comprises a particular ( $\it reduced$ ) set of  $\it L_K$   $\it K$ -dim canonical subspaces



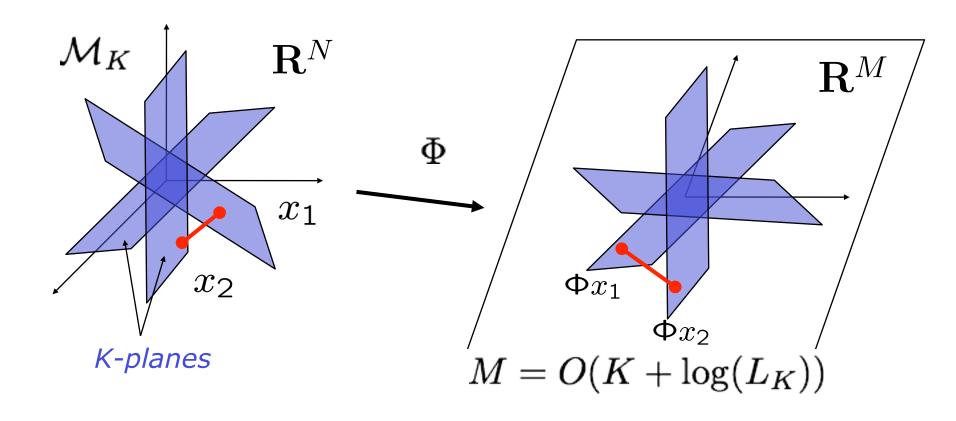
## Sampling Bounds

RIP: stable embedding



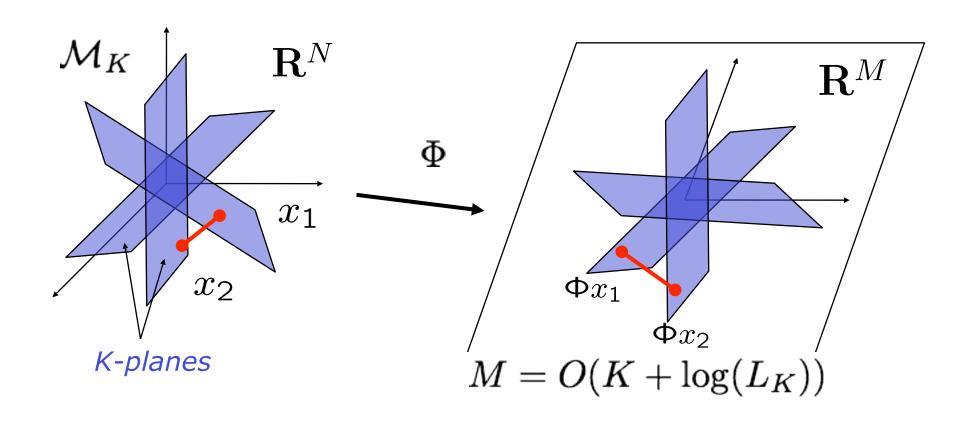
# Sampling Bounds

Model-RIP: stable embedding



# Sampling Bounds

Model-RIP: stable embedding (Ingredient 1)



# Iterated Thresholding

ullet goal: given  $y=\Phi x$  , recover  $x\in \Sigma_K$ 

initialize 
$$i = 0, x_0 = 0$$

iterate:

• 
$$\widehat{x}_{i+1} \leftarrow \operatorname{thresh}(\widehat{x}_i + \Phi^T(y - \Phi x_i))$$

return  $\widehat{x} \leftarrow \widehat{x}_i$ 

# Iterated Model Thresholding

ullet goal: given  $y=\Phi x$  , recover  $x\in \mathcal{M}_K$ 

initialize 
$$i = 0, x_0 = 0$$

iterate:

$$ullet \widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi \widehat{x}_i))$$

return  $\widehat{x} \leftarrow \widehat{x}_i$ 

# Iterated Model Thresholding

ullet goal: given  $y=\Phi x$  , recover  $x\in \mathcal{M}_K$ 

initialize 
$$i = 0, x_0 = 0$$

iterate:

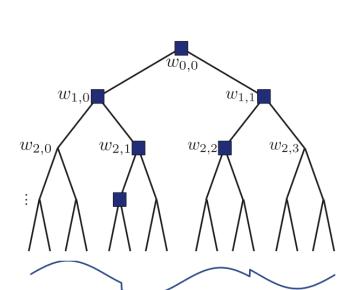
$$oldsymbol{\widehat{x}}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi \widehat{x}_i))$$

return  $\widehat{x} \leftarrow \widehat{x}_i$ 

#### (Ingredient 2)

# E.g. Wavelet trees

Daubechies/CoSaMP - K = 6000 M = 30000





SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000



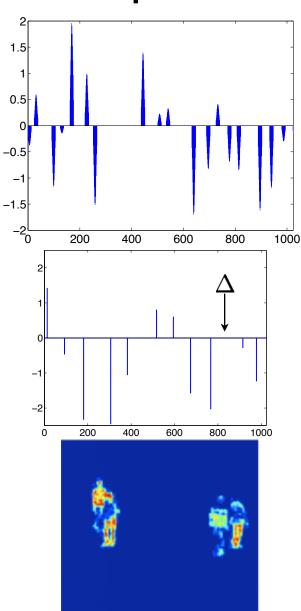
SNR = 17.8263dB

# Other Union-of-Subspaces models

Block-sparsity

•  $\Delta$ -separated spikes

Markov Random Fields



#### Bilinear Models

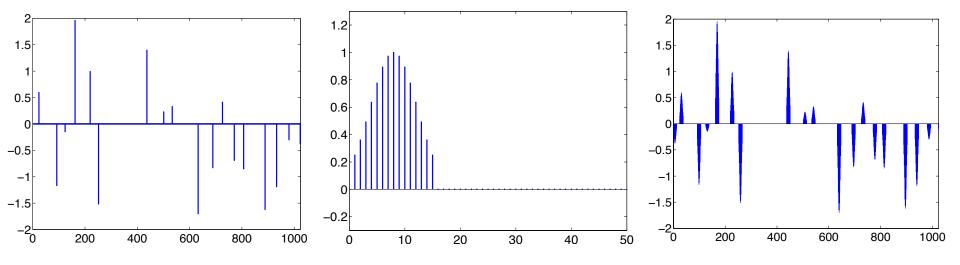
"Pulse stream"

$$z = x * h$$

where:

$$x\in \mathcal{M}_S$$
 "spike stream"

 $h \in \mathcal{M}_F$ "spike stream" "impulse response" (IR)



#### CS for Bilinear Models

Problem: recover z from compressive measurements

$$y = \Phi z = \Phi(x * h) = \Phi H x = \Phi X h$$

Compare to:

$$z = x * h$$

"Blind Deconvolution"

# Sampling Bound

Theorem

$$M = O(S + F + \log(L_S L_F))$$

In the worst case:

$$M = O(S + F + S \log(N/S) + F \log(N/F))$$
  
 $\ll O(SF \log N) = O(K \log N)$ 

- Proof Technique: Uses geometry
  - Johnson-Lindenstrauss lemma + covering argument

# **Iterated Support Estimation**

• goal: given  $y = \Phi z = \Phi H x = \Phi X h$ , recover  $z \in \mathcal{M}(S, F, \Delta)$ 

initialize 
$$\widehat{h} = (\mathbf{1}_F^T, 0, \dots, 0) / \sqrt{F}$$
  $i = 0, x_0 = 0$ 

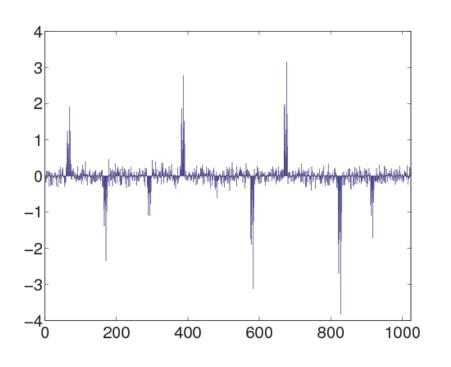
iterate:

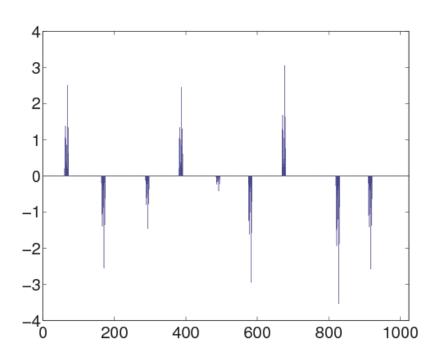
• 
$$\widehat{x} \leftarrow \mathcal{M}_S^{\Delta}(\widehat{x} + (\Phi \widehat{H})^T (y - (\Phi \widehat{H} \widehat{x}))$$

$$\widehat{h} \leftarrow (\Phi \widehat{X})^{\dagger} y$$

return 
$$\widehat{z} \leftarrow \widehat{x} * \widehat{h}$$

#### Bilinear Models: Example



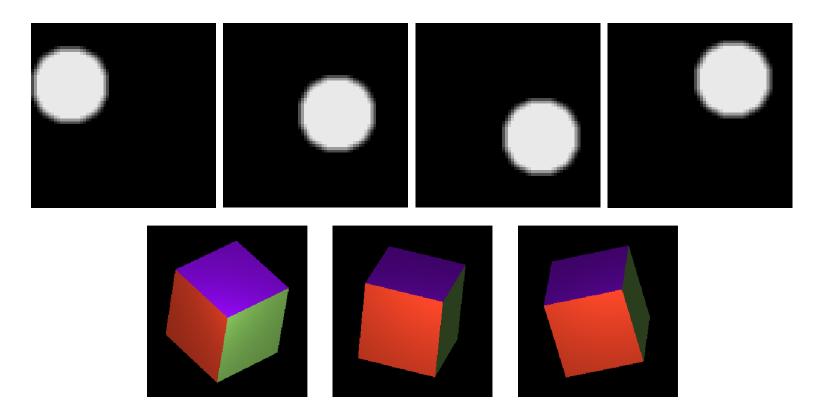


$$S = 9$$
,  $F = 11$ ,  $K = 99$ ,  $M = 150$ 

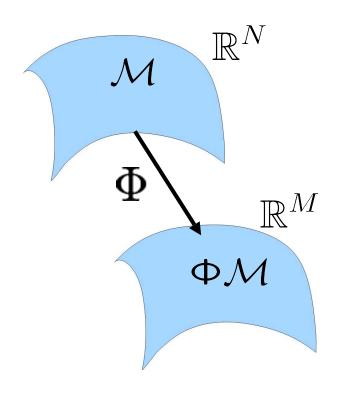
#### Manifold Models

• K-dimensional  $parameter\ vector$  captures degrees of freedom in signal  $x \in \mathbb{R}^N$ 

$$x = x(\mathbf{z}), z \in \mathbb{R}^K$$



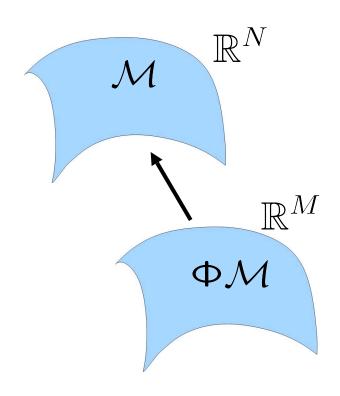
# CS for Manifolds: Sampling



$$M = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right).$$

[Baraniuk, Wakin 2006]

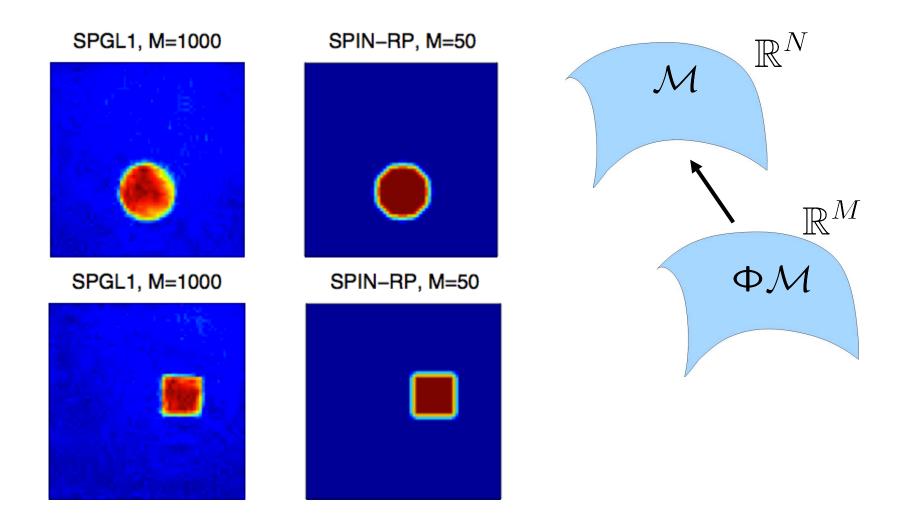
## CS for Manifolds: Recovery



$$\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$$

[Shah, Chandrasekaran, 2011]

# CS for Manifolds: Recovery



#### Summary

- Ingredients of CS: a) sampling bound for signal class
   b) algorithm for recovery
- Beyond sparsity
  - UoS/Bilinear/Manifold models
  - If you have prior info, use it! (but how?)
  - One (nice) method: Geometric approach
  - Advantages of the geometric approach:
    - concise framework for characterization of systems
    - ability to generalize to a large class of problems
- Applications: imaging, video sensing, radar, etc.

Review article: Duarte and Eldar [2011]

#### What's Next?

- Beyond sparse models: Matrix models
  - Affine rank minimization
  - Low-rank + sparse decompositions
  - Bounded degree/coherence matrices
- Beyond randomized sampling: Adaptivity
  - Design measurements according to signal/task prior
  - Closed loop sensing + reconstruction
- Beyond signal reconstruction: Inference
  - Estimate a function of the signal: anomaly detection, etc.
  - Data streaming methods