

A Geometric Approach for Compressive Sensing

Chinmay Hegde

April 25, 2012

Joint work with: **Richard Baraniuk**, Volkan Cevher, Marco Duarte,
Kevin Kelly, Aswin Sankaranarayanan

The Data Deluge

- >250 billion gigabytes generated in 2007
 - Current: digital bits > stars in the universe
 - > Avogadro's number (6.02x10²³) in 15 years

Signal Processing Pipeline

Established paradigm for digital data acquisition

sample
compress
transmit
reconstruct
(sensor)
(processor)
(network)
(processor)

Sparsity

 Many signals can be compressed in some representation/basis (Fourier, wavelets, ...)

N pixels

 $K \ll N$ large wavelet coefficients

N wideband signal samples

 $K \ll N$ large Gabor coefficients

Compressive Signal Processing

Established paradigm for digital data acquisition

```
sample and compress
```

transmit (network) *reconstruct* (processor)

Compressive Sensing (CS)

Compressive Sensing (CS)

CS: Sampling

 Random subgaussian matrix Φ has the RIP (restricted isometry property) w.h.p. if

$$M = O(K + \log \binom{N}{K}) = O(K \log(N/K))$$

CS: Recovery

- ℓ_1 -optimization [C, R, T]; [D]; [F,W,N]; [H,Y,Z]
- Greedy algorithms
 - OMP [G, T]
 - iterated thresholding [N, F]; [D, D, DeM]; [B, D]
 - CoSaMP [N,T]; Subspace Pursuit [D,M]

Beyond Sparsity

Signal Structure

- Sparsity: simplistic, first-order assumption
- Many classes of real-world data exhibit rich, secondary structure

wavelets: natural images

Gabor atoms: chirps/tones

pixels: background subtracted images

How to exploit structure / prior?

Key idea: Use Geometry

- Linear models
- Bilinear models
- Manifold models

Geometry: Model

• **Sparse** signal:

```
x
```

only K out of N coefficients nonzero

Geometry: Model

• **Sparse** signal:

- only K out of N coordinates nonzero
- **Geometry**: union of $\binom{N}{K}$ K-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 1

Geometry: Model

• **Sparse** signal:

- only K out of N coordinates nonzero
- **Geometry**: union of $\binom{N}{K}$ K-dimensional subspaces aligned w/ coordinate axes
- N = 3, K = 2

Geometry: Sampling

- Preserve the structure of sparse signals
- Restricted Isometry Property (RIP)

Geometry: Recovery

• Efficient, stable algorithms that recover signal

Sparse Signals

• Defn: *K*-sparse signals comprise *all K*-dimensional canonical subspaces

Model-Sparse Signals

• Def: A $\it K$ -sparse union-of-subspaces $\it model$ comprises a particular ($\it reduced$) set of $\it L_K$ $\it K$ -dim canonical subspaces

Sampling Bounds

RIP: stable embedding

Sampling Bounds

Model-RIP: stable embedding

Sampling Bounds

Model-RIP: stable embedding (Ingredient 1)

Iterated Thresholding

ullet goal: given $y=\Phi x$, recover $x\in \Sigma_K$

initialize
$$i = 0, x_0 = 0$$

iterate:

•
$$\widehat{x}_{i+1} \leftarrow \operatorname{thresh}(\widehat{x}_i + \Phi^T(y - \Phi x_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Iterated Model Thresholding

ullet goal: given $y=\Phi x$, recover $x\in \mathcal{M}_K$

initialize
$$i = 0, x_0 = 0$$

iterate:

$$ullet \widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi \widehat{x}_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

Iterated Model Thresholding

ullet goal: given $y=\Phi x$, recover $x\in \mathcal{M}_K$

initialize
$$i = 0, x_0 = 0$$

iterate:

$$oldsymbol{\widehat{x}}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi \widehat{x}_i))$$

return $\widehat{x} \leftarrow \widehat{x}_i$

(Ingredient 2)

E.g. Wavelet trees

Daubechies/CoSaMP - K = 6000 M = 30000

SNR = 13.1361dB

Daubechies/Tree CoSaMP - K = 6000 M = 30000

SNR = 17.8263dB

Other Union-of-Subspaces models

Block-sparsity

• Δ -separated spikes

Markov Random Fields

Bilinear Models

"Pulse stream"

$$z = x * h$$

where:

$$x\in \mathcal{M}_S$$
 "spike stream"

 $h \in \mathcal{M}_F$ "spike stream" "impulse response" (IR)

CS for Bilinear Models

Problem: recover z from compressive measurements

$$y = \Phi z = \Phi(x * h) = \Phi H x = \Phi X h$$

Compare to:

$$z = x * h$$

"Blind Deconvolution"

Sampling Bound

Theorem

$$M = O(S + F + \log(L_S L_F))$$

In the worst case:

$$M = O(S + F + S \log(N/S) + F \log(N/F))$$

 $\ll O(SF \log N) = O(K \log N)$

- Proof Technique: Uses geometry
 - Johnson-Lindenstrauss lemma + covering argument

Iterated Support Estimation

• goal: given $y = \Phi z = \Phi H x = \Phi X h$, recover $z \in \mathcal{M}(S, F, \Delta)$

initialize
$$\widehat{h} = (\mathbf{1}_F^T, 0, \dots, 0) / \sqrt{F}$$
 $i = 0, x_0 = 0$

iterate:

•
$$\widehat{x} \leftarrow \mathcal{M}_S^{\Delta}(\widehat{x} + (\Phi \widehat{H})^T (y - (\Phi \widehat{H} \widehat{x}))$$

$$\widehat{h} \leftarrow (\Phi \widehat{X})^{\dagger} y$$

return
$$\widehat{z} \leftarrow \widehat{x} * \widehat{h}$$

Bilinear Models: Example

$$S = 9$$
, $F = 11$, $K = 99$, $M = 150$

Manifold Models

• K-dimensional $parameter\ vector$ captures degrees of freedom in signal $x \in \mathbb{R}^N$

$$x = x(\mathbf{z}), z \in \mathbb{R}^K$$

CS for Manifolds: Sampling

$$M = O\left(\frac{K\log(NV\tau^{-1}\epsilon^{-1})\log(1/\rho)}{\epsilon^2}\right).$$

[Baraniuk, Wakin 2006]

CS for Manifolds: Recovery

$$\widehat{x}_{i+1} \leftarrow \mathcal{M}(\widehat{x}_i + \Phi^T(y - \Phi\widehat{x}_i))$$

[Shah, Chandrasekaran, 2011]

CS for Manifolds: Recovery

Summary

- Ingredients of CS: a) sampling bound for signal class
 b) algorithm for recovery
- Beyond sparsity
 - UoS/Bilinear/Manifold models
 - If you have prior info, use it! (but how?)
 - One (nice) method: Geometric approach
 - Advantages of the geometric approach:
 - concise framework for characterization of systems
 - ability to generalize to a large class of problems
- Applications: imaging, video sensing, radar, etc.

Review article: Duarte and Eldar [2011]

What's Next?

- Beyond sparse models: Matrix models
 - Affine rank minimization
 - Low-rank + sparse decompositions
 - Bounded degree/coherence matrices
- Beyond randomized sampling: Adaptivity
 - Design measurements according to signal/task prior
 - Closed loop sensing + reconstruction
- Beyond signal reconstruction: Inference
 - Estimate a function of the signal: anomaly detection, etc.
 - Data streaming methods