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The Data Deluge

• >250 billion gigabytes generated in 2007
 Current: digital bits > stars in the universe
 > Avogadro’s number (6.02x1023) in 15 years



Signal Processing Pipeline

• Established paradigm for digital data acquisition
sample         (sensor) 
compress        (processor)
transmit              (network)
reconstruct          (processor) 

compress transmit/store 

receive decompress 
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Sparsity

• Many signals can be compressed in some 
representation/basis (Fourier, wavelets, …)

pixels large 
wavelet 
coefficients 

wideband 
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samples 
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Compressive Signal Processing

• Established paradigm for digital data acquisition
sample and compress   
transmit               (network)
reconstruct          (processor) 

CS transmit/store 

receive reconstruct 



Compressive Sensing (CS)

Samples sparse
signal

nonzero
entries



Compressive Sensing (CS)



CS : Sampling

• Random subgaussian matrix      has the RIP 
(restricted isometry property) w.h.p. if
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entries



CS : Recovery

•    -optimization  
[C, R, T]; [D]; [F,W,N]; [H,Y,Z]

• Greedy algorithms
– OMP [G, T] 

– iterated thresholding [N, F]; [D, D, DeM]; [B, D] 

– CoSaMP [N,T]; Subspace Pursuit [D,M]
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Beyond Sparsity



Signal Structure

• Sparsity: simplistic, first-order assumption
• Many classes of real-world data exhibit rich, 

secondary structure

wavelets: 
natural images 

Gabor atoms: 
chirps/tones 

pixels: 
background subtracted 

images 



How to exploit structure / prior?

Key idea: Use Geometry

- Linear models
-  Bilinear models
-  Manifold models



Geometry: Model

• Sparse signal:   

– only K out of N coefficients nonzero



• Sparse signal:   

– only K out of N coordinates nonzero

• Geometry:  union of         K-dimensional 
subspaces aligned w/ coordinate axes

• N = 3, K = 1

Geometry: Model



Geometry: Model

• Sparse signal:   

– only K out of N coordinates nonzero

• Geometry:  union of         K-dimensional 
subspaces aligned w/ coordinate axes

• N = 3, K = 2



Geometry : Sampling

• Preserve the structure of sparse signals
• Restricted Isometry Property (RIP)

K-planes



Geometry : Recovery

• Efficient, stable algorithms that recover signal



Sparse Signals

• Defn:  K-sparse signals comprise all
             K-dimensional canonical subspaces



• Def:  A K-sparse union-of-subspaces model 
comprises a particular (reduced) set of        K-dim 
canonical subspaces        

Model-Sparse Signals



Sampling Bounds

• RIP:  stable embedding 

K-planes



Sampling Bounds

• Model-RIP:  stable embedding 

K-planes



Sampling Bounds

• Model-RIP:  stable embedding (Ingredient 1) 

K-planes



• goal: given             , recover 

initialize 

iterate:

•        

return 

Iterated Thresholding



Iterated Model Thresholding

• goal: given             , recover 

initialize 

iterate:

•        

return 



Iterated Model Thresholding

• goal: given             , recover 

initialize 

iterate:

•        

return 

(Ingredient 2)



E.g. Wavelet trees



Other Union-of-Subspaces models

• Block-sparsity

•     -separated spikes

• Markov Random Fields
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Bilinear Models
•  “Pulse stream”                                                                                       

where:

              “spike stream”     “impulse response” (IR)

• Example
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• Problem: recover z from compressive measurements

• Compare to:

“Blind Deconvolution”

 CS for Bilinear Models



• Theorem

• In the worst case:

• Proof Technique: Uses geometry
– Johnson-Lindenstrauss lemma + covering argument 

Sampling Bound



• goal: given                               , recover 

initialize 

iterate:

•       
•   

return 

Iterated Support Estimation



Bilinear Models: Example

S = 9, F = 11, K = 99, M = 150



Manifold Models

•  K-dimensional parameter vector captures degrees of 
freedom in signal



CS for Manifolds: Sampling

 [Baraniuk, Wakin 2006]



CS for Manifolds: Recovery

 [Shah, Chandrasekaran, 2011]



CS for Manifolds: Recovery

Joint work with Kelly Lab



Summary

• Ingredients of CS: a) sampling bound for signal class
        b) algorithm for recovery

• Beyond sparsity
– UoS/Bilinear/Manifold models
– If you have prior info, use it! (but how?)
– One (nice) method: Geometric approach
– Advantages of the geometric approach:

 concise framework for characterization of systems
 ability to generalize to a large class of problems

• Applications: imaging, video sensing, radar, etc.

Review article: Duarte and Eldar [2011]



What’s Next?

• Beyond sparse models: Matrix models
– Affine rank minimization
– Low-rank + sparse decompositions
– Bounded degree/coherence matrices

• Beyond randomized sampling: Adaptivity
– Design measurements according to signal/task prior
– Closed loop sensing + reconstruction

• Beyond signal reconstruction: Inference
– Estimate a function of the signal: anomaly detection, etc.
– Data streaming methods


