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Concise Signal Model: Sparsity

• Sparse signal:
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Concise Signal Model: Sparsity

• Sparse signal:

– only K out of N coordinates nonzero

• Geometry:  union of K-dimensional subspaces 
aligned w/ coordinate axes



Compressive Sensing

• Sampling via dimensionality reduction

Measurements sparse
signal

nonzero
entries



Restricted Isometry Property (RIP)

• Preserve the structure of sparse signals

K-planes



Compressive Sensing

• Random subgaussian matrix      has the RIP whp if

random
measurements

sparse
signal

nonzero
entries



Stable Recovery

• Efficient, stable algorithms that give back signal



Compressive Sensing

• -optimization  
[C, R, T]; [D]; [F,W,N]; [H,Y,Z]

• Greedy algorithms

– OMP [G, T] 

– iterated thresholding [N, F]; [D, D, DeM]; [B, D] 

– CoSaMP [N,T]; Subspace Pursuit [D,M]

random 
measurements

sparse
signal

nonzero
entries



Iterated Thresholding

update signal estimate

prune signal estimate
(best K-term approx)

update residual



Performance

• Sparse signals

– noise-free measurements: exact recovery 

– noisy measurements: stable recovery

• Compressible signals

– recovery as good as best K-sparse approximation

CS recovery
error

signal K-term
approx error

noisesignal K-term
approx error



From Sparsity 
to 

Structured Sparsity



Beyond Sparse Models 

• Sparsity captures simplistic primary structure

5% sparse image



Beyond Sparse Models 

• Most real-world apps exhibit additional structure

5% sparse image



Beyond Sparse Models 

wavelets:
natural images

Gabor atoms:
chirps/tones

pixels:
background subtracted 

images



Sparse Signals

• Defn:  K-sparse signals comprise all

K-dimensional canonical subspaces



Model-Sparse Signals

• Defn:  A K-sparse signal model comprises a 
particular (reduced) set of K-dim canonical 
subspaces [B, D], [L, D]



Model-Sparse Signals

• Defn:  A K-sparse signal model comprises a 
particular (reduced) set of K-dim canonical 
subspaces [B, D], [L, D]

x¤ÃM(x;K)



Model-based CS



Sampling Bounds

• RIP: stable embedding 

K-planes



Sampling Bounds

• Model-RIP: stable embedding 
[B, D]; [B,D,DeV,W]

K-planes



Iterated Thresholding

update signal estimate

prune signal estimate
(best K-term approx)

update residual



Iterated Model Thresholding

update signal estimate

prune signal estimate
(best K-term model approx)

update residual



Recipe for CS recovery algorithm

Ingredients

• Model

• Sampling bound M

• Signal approximation algorithmM(¢;K)



Application: 1D-signals

• Eg. Neuronal spike trains

[Lewicki, ’98]



Application: spike trains

• Absolute refractoriness



Application: spike trains

• Absolute refractoriness

¢



Ingredient 1: model

if                 

•

• no pair of consecutive nonzeros occur within                                                
locations of each other.

x 2M(K;¢)

¢

kxk0 =K



Ingredient 2: sampling bound

• # subspaces = # sparsity patterns

• Number of measurements

mK =
¡
N¡(K¡1)(¢¡1)

K

¢

M ¸ CK log(N=K ¡¢)



Ingredient 3: approximation

• Given arbitrary            , find closest

• Equivalent to finding optimal binary support pattern

• Portion of signal lying within a given support pattern:

• Problem

x 2 RN x¤ 2M(K;¢)

xjs := (s1x1; s2x2; : : : ; sNxN)

s= (s1; : : : ; sN) 2M(K;¢)

mins kx¡ xjsk2; s 2M



Ingredient 3: approximation

• Can be transformed into a integer program

• Can be relaxed into a linear program

s¤ = argmin c>s;

Ws · u:
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• W is totally unimodular, so polytope corners are 
integer, so solution is always integer
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Ws · u:



Ingredient 3: approximation

• Can be transformed into a integer program

• Can be relaxed into a linear program

• W is totally unimodular, so polytope corners are 
integer, so solution is always integer

s¤ = argmin c>s;

Ws · u:



Voila

Theorem

If                                      and     satisfies          -RIP,

then the algorithm converges to an estimate    , such

that

y =©x+ n;x 2M(K;¢) © (K;¢)

bx

kx¡ bxk2 · Cknk2



Results

N = 1024, K = 50,    = 10¢



Results

M = 150, Distortion = 1.76dB



Results

M = 150, Distortion = 25.53dB



Results



Related Work

• Ex:  wavelet-trees

[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

• Ex:  block sparsity / signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi],
[Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]

• Ex:  clustered signals
[C, D, H, B],  [C, Indyk, H, B]



Related Work

• Ex:  wavelet-trees

[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

• Ex:  block sparsity / signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi],
[Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]

• Ex:  clustered signals
[C, D, H, B],  [C, Indyk, H, B]

• Model-compressible signals
– Restricted Amplification Property (RAmP)

– Instance-optimal guarantees in some cases
[Baraniuk, Cevher, Duarte, H]



Summary

• Why CS works: stable embedding for signals 
with concise geometric structure

• Sparse signals >>      model-sparse signals

• Model-based recovery algorithms

Advantages: provably fewer measurements

flexible framework for algorithm design
stable recovery

www.dsp.rice.edu/cs



• Blank slide



• Another blank slide



Compressible Signals

• Real-world signals are compressible, not sparse

• Recall:  compressible <> approximable by sparse

– compressible signals lie close to a union of subspaces

– ie:  approximation error decays rapidly as

– nested in that 

• If      has RIP, then
both sparse and
compressible signals
are stably recoverable
via LP or greedy alg 

sorted index



Model-Compressible Signals

• Model-compressible <> approximable 
by model-sparse

– model-compressible signals lie close to a 
reduced union of subspaces

– ie:  model-approx error decays rapidly as

• Nested approximation property (NAP):
model-approximations nested in that
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Model-Compressible Signals

• Model-compressible <> approximable 
by model-sparse

– model-compressible signals lie close to a 
reduced union of subspaces

– ie:  model-approx error decays rapidly as

• New result: while model-RIP enables 
stable model-sparse recovery, 
model-RIP is not sufficient for 
stable model-compressible recovery!  

• Ex:  If      has the Tree-RIP, then tree-sparse signals 
can be stably recovered with

• However, tree-compressible signals cannot be 
stably recovered



Stable Recovery

• Result: Stable model-compressible signal recovery 
requires that      have both:

– RIP + Restricted Amplification Property

• RAmP: controls nonisometry of      in the 
approximation’s residual subspaces

optimal K-term
model recovery
(error controlled

by      RIP)

optimal 2K-term
model recovery
(error controlled

by      RIP)

residual subspace
(error not controlled

by      RIP)



Tree-RIP, Tree-RAmP

Theorem: An MxN iid subgaussian random matrix 
has the Tree(K)-RIP if 

Theorem: An MxN iid subgaussian random matrix 
has the Tree(K)-RAmP if 



Performance

• Using model-based IHT, CoSaMP with RIP and RAmP

• Model-sparse signals

– noise-free measurements: exact recovery 

– noisy measurements: stable recovery

• Model-compressible signals

– recovery as good as K-model-sparse approximation

CS recovery
error

signal model K-term
approx error

noisesignal model K-term
approx error



Tree-Sparse Signal Recovery

target signal CoSaMP, 

(MSE=1.12)

L1-minimization
(MSE=0.751)

Tree-sparse CoSaMP 
(MSE=0.037)

N=1024
M=80



Simulation

• Recovery performance (MSE) vs. number of 
measurements

• Piecewise cubic 
signals +
wavelets

• Models/algorithms:

– sparse (CoSaMP)

– tree-sparse
(tree-CoSaMP)



Simulation

• Number samples for correct recovery

• Piecewise cubic 
signals +
wavelets

• Models/algorithms:

– sparse (CoSaMP)

– tree-sparse
(tree-CoSaMP)



Block-Sparse Signal

N = 4096
K = 6 active blocks
J = block length = 64
M = 2.5JK = 960 msnts

target CoSaMP (MSE = 0.723)

block-sparse model recovery 
(MSE=0.015) 



Block-Compressible Signal

target CoSaMP (MSE=0.711)

block-sparse recovery 
(MSE=0.195)

best 5-block approximation 
(MSE=0.116 )



Clustered Signals

target Ising-model
recovery

CoSaMP
recovery

LP (FPC)
recovery

• Graphical model

• Model clustering of significant pixels
in space domain using Ising MRF

• Ising model approximation performed efficiently 
using graph cuts


