

Structured Sparsity Models for Compressive Sensing

Chinmay Hegde

Rice University

Volkan Cevher

Richard Baraniuk

Marco Duarte

Concise Signal Model: Sparsity

• **Sparse** signal:

only K out of N coordinates nonzero

Concise Signal Model: Sparsity

• **Sparse** signal:

- only K out of N coordinates nonzero
- Geometry: *union* of *K*-dimensional subspaces aligned w/ coordinate axes

Compressive Sensing

Sampling via dimensionality reduction

Restricted Isometry Property (RIP)

• Preserve the structure of sparse signals

• Random subgaussian matrix Φ has the **RIP** whp if

$$M = O(K \log(N/K))$$

Stable Recovery

• Efficient, stable algorithms that give back signal

- Greedy algorithms
 - OMP [G, T]
 - iterated thresholding [N, F]; [D, D, DeM]; [B, D]
 - CoSaMP [N,T]; Subspace Pursuit [D,M]

Iterated Thresholding

goal: given $y = \Phi x$, recover a sparse xinitialize: $\hat{x}_0 = 0$, r = y, i = 0iteration:

• $i \leftarrow i+1$

•
$$b \leftarrow \hat{x}_{i-1} + \Phi^T r$$

•
$$\widehat{x}_i \leftarrow \mathsf{thresh}(b, K)$$

•
$$r \leftarrow y - \Phi \widehat{x}_i$$

return: $\widehat{x} \leftarrow \widehat{x}_i$

update signal estimate

prune signal estimate (best K-term approx)

update residual

Performance

Sparse signals

- noise-free measurements:
- noisy measurements:

exact recovery stable recovery

• Compressible signals

- recovery as good as best *K*-sparse approximation

$$\|x - \hat{x}\|_{\ell_2} \le C_1 \|x - x_K\|_{\ell_2} + C_2 \frac{\|x - x_K\|_{\ell_1}}{K^{1/2}} + C_3 \epsilon$$

CS recovery error

signal *K*-term approx error

signal *K*-term noise approx error

From Sparsity to Structured Sparsity

Beyond Sparse Models

• Sparsity captures **simplistic primary structure**

5% sparse image

Beyond Sparse Models

• Most real-world apps exhibit **additional structure**

5% sparse image

Beyond Sparse Models

wavelets: natural images Gabor atoms: chirps/tones pixels: background subtracted images

Sparse Signals

• Defn: *K*-sparse signals comprise *all K*-dimensional canonical subspaces

Model-Sparse Signals

 Defn: A K-sparse signal model comprises a particular (reduced) set of K-dim canonical subspaces [B, D], [L, D]

Model-Sparse Signals

 Defn: A K-sparse signal model comprises a particular (reduced) set of K-dim canonical subspaces [B, D], [L, D]

Model-based CS

Sampling Bounds

RIP: stable embedding

Sampling Bounds

Model-RIP: stable embedding
 [B, D]; [B,D,DeV,W]

Iterated Thresholding

goal: given $y = \Phi x$, recover a sparse xinitialize: $\hat{x}_0 = 0$, r = y, i = 0iteration:

• $i \leftarrow i+1$

•
$$b \leftarrow \hat{x}_{i-1} + \Phi^T r$$

•
$$\widehat{x}_i \leftarrow \mathsf{thresh}(b, K)$$

•
$$r \leftarrow y - \Phi \widehat{x}_i$$

return: $\widehat{x} \leftarrow \widehat{x}_i$

update signal estimate

prune signal estimate (best K-term approx)

update residual

Iterated Model Thresholding

goal: given $y = \Phi x$, recover model-sparse xinitialize: $\hat{x}_0 = 0$, r = y, i = 0iteration:

• $i \leftarrow i+1$

•
$$b \leftarrow \hat{x}_{i-1} + \Phi^T r$$

•
$$\widehat{x}_i \leftarrow \mathcal{M}(b, K)$$

•
$$r \leftarrow y - \Phi \widehat{x}_i$$

return:
$$\widehat{x} \leftarrow \widehat{x}_i$$

update signal estimate

prune signal estimate

(best *K*-term model approx)

update residual

Recipe for CS recovery algorithm

Ingredients

- Model
- Sampling bound M
- Signal approximation algorithm $\mathcal{M}(\cdot, K)$

Application: 1D-signals

• Eg. Neuronal spike trains

[Lewicki, '98]

Application: spike trains

• Absolute refractoriness

Application: spike trains

• Absolute refractoriness

Ingredient 1: model

 $x\in \mathcal{M}(K,\Delta)$ if

- $\bullet \quad \|x\|_0 = K$
- no pair of consecutive nonzeros occur within Δ locations of each other.

Ingredient 2: sampling bound

subspaces = # sparsity patterns

$$m_K = \binom{N - (K - 1)(\Delta - 1)}{K}$$

• Number of measurements

$$M \ge CK \log(N/K - \Delta)$$

- Given arbitrary $x \in \mathbf{R}^N$, find closest $x^* \in \mathcal{M}(K, \Delta)$
- Equivalent to finding optimal *binary* support pattern

$$s = (s_1, \ldots, s_N) \in \mathcal{M}(K, \Delta)$$

- Portion of signal lying within a given support pattern: $x_{|s} := (s_1x_1, s_2x_2, \dots, s_Nx_N)$
- Problem

$$\min_{s} \|x - x_{|s}\|_2, s \in \mathcal{M}$$

• Can be transformed into a integer program

$$s^* = \arg\min c^{\top}s,$$

 $Ws \leq u.$

• Can be relaxed into a linear program

• Can be transformed into a integer program

$$s^* = \arg\min c^{\top}s,$$

 $Ws \leq u.$

- Can be relaxed into a linear program
- W is totally unimodular, so polytope corners are integer, so solution is always integer

• Can be transformed into a integer program

$$s^* = \operatorname{arg\,min} c^{\top} s,$$

 $Ws \leq u.$

- Can be relaxed into a linear program
- W is totally unimodular, so polytope corners are integer, so solution is always integer

Voila

Theorem

If $y = \Phi x + n, x \in \mathcal{M}(K, \Delta)$ and Φ satisfies (K, Δ) -RIP, then the algorithm converges to an estimate \hat{x} , such that

$$\|x - \widehat{x}\|_2 \le C \|n\|_2$$

Related Work

• Ex: wavelet-trees

[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

- Ex: block sparsity / signal ensembles [Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi], [Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]
- Ex: clustered signals [C, D, H, B], [C, Indyk, H, B]

Related Work

• Ex: wavelet-trees

[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

- Ex: block sparsity / signal ensembles [Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi], [Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]
- Ex: clustered signals [C, D, H, B], [C, Indyk, H, B]
- Model-compressible signals
 - Restricted Amplification Property (RAmP)
 - Instance-optimal guarantees in some cases
 [Baraniuk, Cevher, Duarte, H]

Summary

- Why CS works: stable embedding for signals with concise geometric structure
- Sparse signals
 > model-sparse signals
- Model-based recovery algorithms

Advantages:provably fewer measurementsflexible framework for algorithm designstable recovery

www.dsp.rice.edu/cs

• Blank slide

• Another blank slide

Compressible Signals

- Real-world signals are compressible, not sparse
- Recall: **compressible** <> approximable by sparse
 - compressible signals lie close to a union of subspaces
 - ie: approximation error decays rapidly as $K \to \infty$
 - nested in that $supp\{x_K\} \subset supp\{x'_K\}, K < K'$

 If Φ has RIP, then both sparse and compressible signals are stably recoverable via LP or greedy alg

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- Nested approximation property (NAP): model-approximations nested in that supp{x_K} ⊂ supp{x'_K}, K < K'

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- Nested approximation property (NAP): model-approximations nested in that supp{x_K} ⊂ supp{x'_K}, K < K'

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- Nested approximation property (NAP): model-approximations nested in that supp{x_K} ⊂ supp{x'_K}, K < K'

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- Nested approximation property (NAP): model-approximations nested in that supp{x_K} ⊂ supp{x'_K}, K < K'

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- Nested approximation property (NAP): model-approximations nested in that supp{x_K} ⊂ supp{x'_K}, K < K'
- New result: while model-RIP enables stable model-sparse recovery, model-RIP is *not sufficient* for stable model-compressible recovery!

- Model-compressible <> approximable by model-sparse
 - model-compressible signals lie close to a reduced union of subspaces
 - ie: model-approx error decays rapidly as $\ K \to \infty$
- New result: while model-RIP enables stable model-sparse recovery, model-RIP is not sufficient for stable model-compressible recovery!
- Ex: If Φ has the Tree-RIP, then tree-sparse signals can be stably recovered with M = O(K)
- However, tree-compressible signals cannot be stably recovered

Stable Recovery

- Result: Stable model-compressible signal recovery requires that Φ have both:
 - RIP + Restricted Amplification Property
- RAmP: controls nonisometry of Φ in the approximation's residual subspaces

optimal *K*-term model recovery (error controlled by Φ RIP)

residual subspace
 (error not controlled)

 $w_{2,2}$

 w_1

 w_2

 $w_{1,0}$

 w_2

 $w_{2,1}$

by Φ RIP)

Tree-RIP, Tree-RAmP

Theorem: An *M*x*N* iid subgaussian random matrix has the Tree(*K*)-RIP if

$$M \ge \begin{cases} \frac{2}{c\delta_{\mathcal{T}_K}^2} \left(K \ln \frac{48}{\delta_{\mathcal{T}_K}} + \ln \frac{512}{Ke^2} + t \right) & \text{if } K < \log_2 N \\ \frac{2}{c\delta_{\mathcal{T}_K}^2} \left(K \ln \frac{24e}{\delta_{\mathcal{T}_K}} + \ln \frac{2}{K+1} + t \right) & \text{if } K \ge \log_2 N \end{cases}$$

Theorem: An *M*x*N* iid subgaussian random matrix has the Tree(*K*)-RAmP if

$$M \ge \begin{cases} \frac{2}{\left(\sqrt{1+\epsilon_{K}}-1\right)^{2}} \left(10K+2\ln\frac{N}{K(K+1)(2K+1)}+t\right) & \text{if } K \le \log_{2} N\\ \frac{2}{\left(\sqrt{1+\epsilon_{K}}-1\right)^{2}} \left(10K+2\ln\frac{601N}{K^{3}}+t\right) & \text{if } K > \log_{2} N \end{cases}$$

Performance

Using model-based IHT, CoSaMP with RIP and RAmP

Model-sparse signals

- noise-free measurements: exact recovery
- noisy measurements: stable recovery

• Model-compressible signals

recovery as good as K-model-sparse approximation

$$\|x - \hat{x}\|_{\ell_2} \le C_1 \|x - x_K\|_{\ell_2} + C_2 \frac{\|x - x_K\|_{\ell_1}}{K^{1/2}} + C_3 \epsilon$$

CS recovery error signal model *K*-term approx error

signal model *K*-term noise approx error

Tree-Sparse Signal Recovery

target signal

CoSaMP, (MSE=1.12)

N=1024 M=80

L1-minimization (MSE=0.751)

Tree-sparse CoSaMP (MSE=0.037)

Simulation

- Recovery performance (MSE) vs. number of measurements
- Piecewise cubic signals + wavelets
- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse
 (tree-CoSaMP)

Simulation

- Number samples for correct recovery
- Piecewise cubic signals + wavelets
- Models/algorithms:
 - sparse (CoSaMP)
 - tree-sparse (tree-CoSaMP)

Block-Sparse Signal

target

CoSaMP (MSE = 0.723)

block-sparse model recovery (MSE=0.015)

Block-Compressible Signal

best 5-block approximation (MSE=0.116)

CoSaMP (MSE=0.711)

block-sparse recovery (MSE=0.195)

Clustered Signals

- Graphical model
- Model clustering of significant pixels in space domain using Ising MRF
- Ising model approximation performed efficiently using graph cuts

target

Ising-model recovery CoSaMP recovery

