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Concise Signal Model: Sparsity

e Sparse signal:
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Concise Signal Model: Sparsity

e Sparse signal:

T T ITTTTITT]
— only K out of N coordinates nonzero

e Geometry: union of K-dimensional subspaces
aligned w/ coordinate axes
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Compressive Sensing

e Sampling via dimensionality reduction
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Restricted Isometry Property (RIP)

e Preserve the structure of sparse signals
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Compressive Sensing
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e Random subgaussian matrix @ has the RIP whp if

M = O(K log(N/K))



Stable Recovery

e Efficient, stable algorithms that give back signal
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Compressive Sensing
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e /1-optimization
[C, R, T]; [D]; [F,W,N]; [H,Y,Z]

e Greedy algorithms
- OMP [G, T]
— iterated thresholding [N, F]; [D, D, DeM]; [B, D]
— CoSaMP [N,T]; Subspace Pursuit [D,M]



[terated Thresholding

goal: given y = dx, recover a sparse x
initialize: 2o =0,r=vy, 1=0
Iteration:
o 1 —1+1
o b— 2,1+ dlr update signal estimate
o 7, — thresh(b, K) prune signal estimate
(best K-term approx)
o r—y— P update residual

return: I «— x;



Performance

e Sparse signals
- noise-free measurements: exact recovery
— Noisy measurements: stable recovery

o Compressible signhals
— recovery as good as best K-sparse approximation
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From Sparsity
to
Structured Sparsity



Beyond Sparse Models

e Sparsity captures simplistic primary structure

5% sparse image



Beyond Sparse Models

e Most real-world apps exhibit additional structure

5% sparse image



Beyond Sparse Models

pixels:

wavelets: Gabor atoms: background subtracted
natural images chirps/tones images



Sparse Signals

e Defn: K-sparse signals comprise all
K-dimensional canonical subspaces
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Model-Sparse Signals

e Defn: A K-sparse signal model comprises a
particular (reduced) set of K-dim canonical
subspaces [B, b, [L, D]
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Model-Sparse Signals

e Defn: A K-sparse signal model comprises a
particular (reduced) set of K-dim canonical
subspaces [B, b, [L, D]
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Model-based CS



Sampling Bounds

e RIP: stable embedding
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Sampling Bounds

e Model-RIP: stable embedding
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[B, D]; [B,D,DeV,W]
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[terated Thresholding

goal: given y = dx, recover a sparse x
initialize: 2o =0,r=vy, 1=0
Iteration:
o 1 — 1+ 1
o b— 2,1+ dlr update signal estimate
o 7, — thresh(b, K) prune signal estimate
(best K-term approx)
o r— y— by, update residual

return: I «— x;



Iterated Model Thresholding

goal: given y = ®dx, recover model-sparse x
initialize: 2o =0,r=vy, 1=0
Iteration:
o 1—1+1
o b— 1T, 1+ dlr update signal estimate
o 1, — M(bK) prune signal estimate
T — (best K-term model approx)
o r—y— P update residual

return: T «— x;



Recipe for CS recovery algorithm

Ingredients

e Model

e Sampling bound M

e Signal approximation algorithm M(-, K)



Application: 1D-signals

e Eg. Neuronal spike trains
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Application: spike trains

e Absolute refractoriness
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Ingredient 1: model

r e M(K,AD) if

o |zllo=K

e no pair of consecutive nonzeros occur within A
locations of each other.



Ingredient 2: sampling bound

e # subspaces = # sparsity patterns

My = (N—(K—ll()(A—l))

e Number of measurements

M > CKIlog(N/K — A)



Ingredient 3: approximation
Given arbitrary = € RY | find closest z* € M(K,A)

Equivalent to finding optimal binary support pattern
s=(s1,...,8n) € M(K, D)
Portion of signal lying within a given support pattern:

CU‘S = (Slwla S2L2,y ..., SN:CN)

Problem
min; ||z — x|4|[2, s € M



Ingredient 3: approximation

e Can be transformed into a integer program
sT = arg min cTs,

Ws < .

e Can be relaxed into a linear program

*



Ingredient 3: approximation
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s* = argminc's,
Ws < .

e Can be relaxed into a linear program

e W is totally unimodular, so polytope corners are
integer, so solution is always integer



Ingredient 3: approximation

e Can be transformed into a integer program
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e Can be relaxed into a linear program
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integer, so solution is always integer




Theorem

If y=®z+n,2ec M(K,A) and P satisfies (K, A)-RIP,
then the algorithm converges to an estimate z , such
that

|z —z||2 < Cfn|2



Results
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Results
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Results
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Related Work

e Ex: wavelet-trees
[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

e EX: block sparsity / signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi],
[Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]

e EX: clustered signals
[C, D, H, B], [C, Indyk, H, B]



Related Work

Ex: wavelet-trees
[Duarte , Wakin, Baraniuk], [La, Do], [Baraniuk, Cevher, Duarte, H]

Ex: block sparsity / signal ensembles
[Tropp, Gilbert, Strauss], [Stojnic, Parvaresh, Hassibi],
[Eldar, Mishali], [Baron, Duarte et al], [B, C, D, H]

Ex: clustered signals
[C, D, H, B], [C, Indyk, H, B]

Model-compressible signals
— Restricted Amplification Property (RAmMP)

- Instance-optimal guarantees in some cases
[Baraniuk, Cevher, Duarte, H]



Summary

e Why CS works: stable embedding for signals
with concise geometric structure

e Sparse signals > > model-sparse signals

e Model-based recovery algorithms

Advantages: provably fewer measurements

flexible framework for algorithm design
stable recovery

www.dsp.rice.edu/cs



e Blank slide



e Another blank slide



Compressible Signals

e Real-world signals are compressible, not sparse

e Recall: compressible <> approximable by sparse

— compressible signals lie close to a union of subspaces
— ie: approximation error decays rapidly as K — oo

- nested in that supp{zx} C supp{z/)}, K < K’

| ;]

e If ® has RIP, then
both sparse and
compressible signals
are stably recoverable K sorted index
via LP or greedy alg

s —



Model-Compressible Signals

e Model-compressible <> approximable
by model-sparse

— model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — o0

e Nested approximation property (NAP):
model-approximations nested in that

supp{zx} C supp{zfy}, K <K'
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Model-Compressible Signals

e Model-compressible <> approximable
by model-sparse

— model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — o0

e Nested approximation property (NAP):
model-approximations nested in that

supp{zx} C supp{zfy}, K <K'

e New result: while model-RIP enables
stable model-sparse recovery,
model-RIP is not sufficient for
stable model-compressible recovery!



Model-Compressible Signals

Model-compressible <> approximable
by model-sparse

— model-compressible signals lie close to a
reduced union of subspaces

— ie: model-approx error decays rapidly as K — o0

New result: while model-RIP enables
stable model-sparse recovery,
model-RIP is not sufficient for

stable model-compressible recovery!

Ex: If P has the Tree-RIP, then tree-sparse signals
can be stably recovered with M = O(K)

However, tree-compressible signals cannot be
stably recovered



Stable Recovery

e Result: Stable model-compressible signal recovery
requires that @ have both:
— RIP + Restricted Amplification Property

e RAMP: controls nonisometry of @ in the
approximation’s residual subspaces

optimal K-term optimal 2K-term residual subspace
model recovery model recovery (error not controlled
(error controlled (error controlled by @ RIP)

by @ RIP) by P RIP)



Tree-RIP, Tree-RAmMP

Theorem: An MxN iid subgaussian random matrix
has the Tree(K)-RIP if
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Theorem: An MxN iid subgaussian random matrix
has the Tree(K)-RAmP if
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Performance
e Using model-based IHT, CoSaMP with RIP and RAmMP

e Model-sparse signals
— noise-free measurements: exact recovery
— Noisy measurements: stable recovery

e Model-compressible signals
— recovery as good as K-model-sparse approximation

" |z — x|l
|z —Zlle, < Chflz — 2xlle, + Co— 75— + C3e
CS recovery signal model K-term signal model K-term  noise

error approx error dapprox error



Tree-Sparse Signhal Recovery

N=1024
M=80

AVAVY,

target signal CoSaMP,
(MSE=1.12)
L1-minimization Tree-sparse CoSaMP

(MSE=0.751) (MSE=0.037)



Simulation

e Recovery performance (MSE) vs. number of
measurements
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Simulation

Number samples for correct recovery

Piecewise cubic

signals + 121 |.=.= Standard recovery
- Model-based recovery

wavelets e
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Block-Sparse Signal

target CoSaMP (MSE = 0.723)

N = 4096

K = 6 active blocks

J = block length = 64
M = 2.5]JK = 960 msnts

block-sparse model recovery
(MSE=0.015)



Block-Compressible Signal

M WIHMH’}IHHHMMM
iwu [ l‘ l]lll [ 1 ‘ HH ll’ ‘

target CoSaMP (MSE=0.711)

-5

it
J

|
Il

i
P e

¥ -

best 5-block approximation block-sparse recovery
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Clustered Signals

e Graphical model

e Model clustering of significant pixels
in space domain using Ising MRF

target Ising-model CoSaMP LP (FPC)
recovery recovery recovery



