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3D Z-string: A new knowledge structure to represent
spatio-temporal relations between objects in a video
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Abstract

In this paper, we propose a new knowledge structure called 3D Z-string, extended from the 2D Z-string, to represent
the spatial and temporal relations between objects in a video and to keep track of the motions and size changes of the
objects. Since there are no cuttings between objects in the 3D Z-string, the integrity of objects is preserved. The string
generation and video reconstruction algorithms for the 3D Z-string representation of video objects are also developed.
The string generated by the string generation algorithm is unique for a given video and the video reconstructed from a
given 3D Z-string is unique too. The experimental results show that the 3D Z-string is more compact and efficient than
the 3D C-string in terms of storage space and execution time.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

With the advances of information technologies,
the amount and volume of multimedia data, such
as images, audios, and videos, rapidly increases.
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There is an urgent need to develop effective video
retrieval and summarization methods (Sebe et al.,
2003). To represent spatial and temporal relations
between objects in a video is one of the most impor-
tant methods for retrieving the videos from a
database.
To represent the spatial relations between the

objects in a symbolic image, many iconic indexing
approaches have been proposed, such as, 2D string
(Chang and Jungert, 1986), 2D G-string (Jungert,
ed.
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Table 1
The definitions of spatial operators in 2D C-string

Notations Conditions

A < B End(A) < Begin(B)
A = B Begin(A) = Begin(B), End(A) = End(B)
A j B End(A) = Begin(B)
A% B Begin(A) < Begin(B), End(A) > End(B)
A [ B Begin(A) = Begin(B), End(A) > End(B)
A ] B Begin(A) < Begin(B), End(A) = End(B)
A / B Begin(A) < Begin(B) < End(A) < End(B)
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1988), 2D C-string (Lee and Hsu, 1990), 2D C+-
string (Huang and Jean, 1994), unique-ID-based
matrix (Chang et al., 2000), GPN matrix (Chang
et al., 2001), virtual image (Petraglia et al., 2001),
BP matrix (Chang et al., 2003) and 2D Z-string
(Lee and Chiu, 2003).
To represent the spatial and temporal relations

between the objects in a symbolic video, many ico-
nic indexing approaches, extended from the notion
of 2D string to represent the spatial and temporal
relations between objects in a video, have been
proposed, such as, 2D B-string (Shearer et al.,
1996), 2D C-Tree (Hsu et al., 1998), 9DLT strings
(Chan and Chang, 2001), 3D-list (Liu and Chen,
2002), and 3D C-string (Lee et al., 2002). The
3D-list approach (Liu and Chen, 2002) uses the
projection of the objects to represent spatial and
temporal relations between them. The basic idea
is to project the objects onto the x-, y-, and time-
axes to form three strings representing the relative
positions of the projections in the x-, y-, and time-
axes, respectively. However, the 3D-list approach
only records the central point and starting frame
number for an object. So the spatial overlapping
relations and precise temporal relations between
the objects cannot be realized. The information
about the motions and size changes of objects
was omitted in their work.
To resolve such a problem, Lee et al. (2002)

proposed the 3D C-string approach, extended the
concept of the 2D C+-string, to represent the spa-
tial and temporal relations between objects in a
video and to keep track of the motions and size
changes of the objects. By using the same cutting
mechanism of the 2D C-string and 2D C+-string,
the 3D C-string approach may produce O(n2) cut
sub-objects in the generated u-, v- or t-strings,
where n is the number of objects in the video.
To reduce the number of cut sub-objects in the

generated strings and preserve the integrity of ob-
jects, in this paper, we propose a new knowledge
structure called 3D Z-string. The 3D Z-string, ex-
tended from the concept of the 2D Z-string, can
represent the spatial and temporal relations be-
tween objects in a video and keep track of the mo-
tions and size changes of the objects. The string
generation and video reconstruction algorithms
are also developed. The string generated by the
string generation algorithm is unique for a given
video and the video reconstructed from a given
3D Z-string is unique too. Since there is no cutting
between the objects in the video, the 3D Z-string is
more compact and efficient than the 3D C-string
approach in terms of storage space and execution
time.
The rest of this paper is organized as follows. In

Section 2, we present the new spatial knowledge
representation of the 3D Z-string. The string gen-
eration algorithm of the 3D Z-string is described
in Section 3. In Section 4, we propose the recon-
struction algorithm based on the 3D Z-string
representation. In Section 5, some experiments
are conducted to compare our proposed approach
with the 3D C-string approach. Finally, conclud-
ing remarks are made in Section 6.
2. 3D Z-string approach

In the 3D Z-string, the objects in a video are
projected onto the x-, y-, and time-axes to form
three strings representing the relations and relative
positions of the projections in the x-, y-, and time-
axes, respectively. These three strings are called u-,
v-, and t-strings. The projections of an object onto
the x-, y-, and time-axes are called x-, y-, and time-
projections, respectively. In the 2D C-string, Lee
and Hsu (1990) proposed 13 possible relations be-
tween the x- (or y-) projections as shown in Table
1, where Begin(A) and End(A) are the begin-bound
(beginning point) and end-bound (ending point) of
the x- (or y-) projection of object A, respectively.
One of them is ‘‘equal’’ relation and six of them
are symmetric relations of the others. Hence, those



2502 A.J.T. Lee et al. / Pattern Recognition Letters 26 (2005) 2500–2508
relations can be represented by seven spatial oper-
ators. In the time dimension, there are 13 temporal
relations between the time-projections, too. So we
use the temporal operators as the same as the spa-
tial operators. For example, in the x- (or y-)
dimension, ‘‘A < B’’ denotes that object A is before
that of object B. In the time dimension, ‘‘A < B’’
denotes that object A disappears before object B
appears.
In the 3D Z-string, like the 3D C-string, for

each object, we keep track of the initial location
and size of the object by a minimum bounding
rectangle (MBR) whose sides are parallel to the
x- or y-axes. We also record the information about
their motions and size changes. To record the time
points of motion and size changes, the 3D C-string
introduces a temporal operator, ‘‘jt’’. It denotes an
object contains motion state changing. For exam-
ple, A2 jt A6 denotes that in the first 2 frames, ob-
ject A is in the same motion state and from the
third frame to the eighth frame, the motion state
is changed into another. In the 3D Z-string, we
introduce a new temporal operator ‘‘#’’ to repre-
sent the interval of motion and size changes. So,
A2 jt A6 in the 3D C-string can be represented as
A8#2#6 in the 3D Z-string.
The knowledge structure of 3D Z-string is

defined as follows.
Definition 1. The 3D Z-string is a 6-tuple (O, A,
Rg, Rl, Rt, S) where

(1) O is a set of objects in a video;
(2) A is a set of attributes to describe the objects

in O;
(3) Rg = {‘‘<’’, ‘‘j’’} is the set of global relation

operators;
(4) Rl = {‘‘ = ’’, ‘‘[’’, ‘‘]’’, ‘‘%’’, ‘‘/’’} is the set of

local relation operators;
(5) Rt = {‘‘"’’, ‘‘#’’, ‘‘#’’}, where ‘‘"’’ and ‘‘#’’ are

the motion operators to denote the direction
of the motion of an object, and they are only
used in the u- and v-strings. Operator ‘‘"’’
(‘‘#’’) denotes that the object moves along
the positive (negative) direction of the x-
(or y-) axis. ‘‘#’’ is the interval operator to
denote the interval of a motion/size change.
It is only used in the t-string.
(6) S = {‘‘(’’, ‘‘)’’} contains a pair of separators
which are used to describe a set of objects
as a spatial or temporal template object
(see Section 3 for the detail).

Most metric measures in the 3D Z-string are the
same as those in the 2D Z-string except that the
3D Z-string has the temporal metric measure of
interval operator ‘‘#’’. Those metric measures are
listed as follows:
1. The size of an object: As denotes the size of its
x- (y- or time-) projection is equal to s, where
s = End(A) � Begin(A), Begin(A) and End(A)
are the begin-bound and end-bound of the pro-
jection of object A in the x- (y- or time-) axis,
respectively.

2. The distances associated with operator <, % and
/: The distances d associated with A <d B,
A %d B, and A /d B are equal to Begin(B) �
End(A), Begin(B) � Begin(A), and End(A) �
Begin(B), respectively.

3. The velocity and rate of size change associated
with motion operators "v,r and #v,r: Operators
"v,r and #v,r have two subscripts (fields). ‘‘v’’ is
the velocity of the motion and ‘‘r’’ is the rate
of size change of the object. For example, an
u-string: A"2,1 denotes that object A with the
velocity = 2 and the rate of size change = 1.
That is, the velocity of object A moves along
the positive direction with 2 units/frame and
the size remains unchanged.

4. The interval associated with operator #: #i

denotes that the interval length associated with
the motion/size change is equal to i. If an object
has not motion or size changing, there is not an
interval operator associated with the object in
the t-string.

To see how the 3D Z-string works, let us con-
sider the example as shown in Fig. 1. The pro-
jections of the initial locations of objects A, B,
C, and D in the x- and y-axes are shown in
Fig. 1(b). The corresponding 3D Z-string of the
video is shown in Fig. 1(c).
From frame 1 to frame 2, object (car) A moves

along the x-axis with the velocity of 4 units/frame.
In frame 3, it changes its velocity into 3 units/frame.



Fig. 1. An example video and the corresponding 3D Z-string. (a) A video contains three frames. (b) Projecting the initial locations of
objects A, B, C and D onto the x–y plane. (c) The corresponding 3D Z-string.
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From frame 1 to frame 3, objectA has no motion in
the y-axis. So A2 is followed by operators "4,1"3,1 in
the u-string, A1 followed by operator "0,1"0,1 in the
v-string and A3 followed by operator #2#1 in the
t-string. From frame 1 to frame 3, object (car) B
moves along the x-axis with the velocity of 2
units/frame, but no motion along the y-axis. So,
B2 is followed by operators "2,1 in the u-string, B1
followed by operator "0,1 in the v-string and B3
followed by operator #3 in the t-string. From frame
1 to frame 3, there is no motion for object (house)C
along the x- (or y-) axis. Object (car) D appears in
frame 3 with the same initial location and size of
object A. Therefore, the 3D Z-string provides an
easy and efficient way to represent the spatio-
temporal relations between objects in a video.
3. String generation algorithm

We first introduce the notations using in the
string generation algorithm. Assume that there
are n objects in the video.

Bi/Ei: the begin-bound/end-bound of object i.
Si: the object string of object i. To gener-

ate the u- (v- or t-) string, we first gener-
ate a list of object strings. In the x (or y)
dimension, Si contains the information
of the size, motions and size changes of
object i. In the time dimension, Si con-
tains the interval length and a list of
interval operators recording the inter-
vals of motions/size changes for object i.

SQ: same-value-list sequence. Sort all Bi

and Ei, i = 1,2,. . .,n in non-decreasing
order and group the same value points
into a same-value list which contains at
least one point. Those same-value lists
form a same-value-list sequence SQ.

DO: dominating object (Lee and Hsu, 1990).
For the objects with the same end-
bound, those end-bounds are grouped
into a same-value list. Among them,
an object with the smallest begin-bound
is called the dominating object.

FO(i): former object (Lee et al., 2002). The
former object of object i is the object
with smaller begin-bound than object
i or with equal begin-bound and bigger
end-bound than object i.

FONest(i): nearest former object (Lee et al., 2002).
The nearest former object of object i is
the former object with the biggest
begin-bound. If the number of such
objects is more than one, choose one
with the smallest end-bound as the
nearest former object.
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FONone: the object is not the nearest former
object of any other objects.

To generate strings, for each object we first
generate Si for each object i and use (Bi,Ei,Si),
i = 1,2, . . .,n as the input to the string generation

algorithm, where n is the number of objects in
the video. Second, find all dominating objects
(DOs) by scanning from left to right along the x-
(y- or time-) dimension. For each DO, if no object
partly overlaps with the DO, find the objects cov-
ered by the DO (including the DO). Otherwise, if
any objects partly overlap with the DO, choose
among them the object with the smallest end-
bound. If the number of objects with the smallest
end-bound is more than one, choose the object
with the smallest begin-bound. Let the chosen ob-
ject be PO. Then find the objects covered by the
Fig. 2. String genera
range from the begin-bound of DO to the end-
bound of PO. The covered objects are merged
into a template object (TO). Repeat the above
processes for each DO.
Finally, we can merge together those template

objects and the remaining objects. This is the main
idea of the string generation algorithm as shown in
Fig. 2. How to merge objects into a template ob-
ject is described later in the templateObjectGenera-

tion function as shown in Fig. 3.
Now, let us demonstrate how to apply the string

generation algorithm to obtain the u-string for the
example as shown in Fig. 1. To generate the u-
string, the initial locations of objects A, B, C and
D are projected onto the x–y plane as shown in
Fig. 1(b). Next, we generate the object string in
the x dimension for each object: A2"4,1"3,1, B2"2,1,
C3, and D2. Then, those objects A(0,2,A2"4,1"3,1),
tion algorithm.



Fig. 3. templateObjectGeneration function.
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B(1,3,B2"2,1), C(3,6,C3), and D(0,2,D2) are the
input to the string generation algorithm.
In step 5, the first DO is A. Since objects A and

D have the same end-bound and the begin-bound
and object B partly overlaps with object A. In step
8, only one object is covered by object B (B itself).
In step 9, the object covered by object A is object
D. Call the templateObjectGeneration function with
objects A and D as the input parameter. In the first
while-loop of the templateObjectGeneration func-

tion, steps 3 and 4 are executed. The template
object TO1(0,2,(A2"4,1"3,1 = D2)) is generated.
In step 10, object B and template object
TO1(0,2,(A2"4,1"3,1 = D2)) are merged into a tem-
plate object TO2(0,3, ((A2"4,1"3,1 = D2) /1 B2"2,1)).
In step 17, input all the remaining objects: tem-

plate object TO2(0,3, ((A2"4,1"3,1 = D2) /1 B2 "2,1))
and object C to the templateObjectGeneration func-

tion. In the first while-loop, steps 4, 5, 6, 7(e), 8, 9,
10 and 11 are executed. The template object
TO3(0,6, (((A2"4,1"3,1 = D2) /1 B2"2,1) j C3)) is gen-
erated. Since all the objects are merged together
as a template object. So, the corresponding
u-string of the video shown in Fig. 1 can be repre-
sented as (((A2"4,1"3,1 = D2) /1 B2"2,1)jC3).
Theorem 1. For an input list containing n objects,

the string generation algorithm generates a unique

u- (v- or t-) string.
4. Video reconstruction algorithm

In this section, we present the video reconstruc-

tion algorithm which converts an u- (v- or t-) string
to construct the locations, motions and size
changes for the objects in the x (or y) dimension
or to construct the starting frame, duration and
intervals of motions and size changes in the time
dimension.
Assume that a given u- (or v- or t-) string consist

of n elements, each of which may be a string object,
or an operator of ‘‘<’’, ‘‘%’’, ‘‘/’’, ‘‘j’’, ‘‘]’’, ‘‘[’’, ‘‘"’’,
‘‘#’’, or ‘‘#’’. For each element E, E.sym represents
the symbol of a string object or an operator and
E.size represents the size associated with E. For a
string object, E.size represents the initial size in
the x (or y) dimension, or the interval during which
E appears in the time dimension. For a relation
operator of ‘‘<’’, ‘‘%’’ or ‘‘/’’, E.size represents
the metric measure of the relation. For a relation
operator of ‘‘j’’, ‘‘[’’, ‘‘]’’, E.size is set to zero.
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For a motion operator of ‘‘"’’ or ‘‘#’’, E.size has
two fields, (v, r), to record the velocity and rate of
size change for the associated string object. For
Fig. 4. Video reconstru
an interval operator ‘‘#’’, E.size represents the
interval during which the motion/size change of
the associated string object lasts. Similarly, a video
ction algorithm.
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objectO contains four fields:O.sym,O.size,O.loca-
tion, and O.motionList (or O.intervalList). For an
u- (or v-) string, O.sym, O.size, and O.location, rep-
resent the symbol, size, and location of object O
respectively. O.motionList is used to record a list
of velocities and rates of size changes of object O.
For a t-string,O.sym,O.size, andO.location, repre-
sent the symbol, appearing interval, and starting
frame of object O. O.intervalList is used to record
a list of intervals for each motion/size change state
of object O.
Assume that there are n elements in a given

u- (v- or t-) string and m string objects in the n ele-
ments. The video reconstruction algorithm converts
the given u- (v- or t-) string into a sequence of m
video objects. After all video objects are derived
from the given u- (v- or t-) string, we have finished
the video reconstruction. The video reconstruction

algorithm is described in detail in Fig. 4.
The function GetTemplateSize calculates the

size of the template object which is equal to the
summation of:

1. the size of the first element after ‘‘(’’,
2. the size of the element after global operator
‘‘<’’,

3. the size of the element after global operator ‘‘j’’,
4. the distance associated with the operator ‘‘<’’,
5. the size of the element after the operator ‘‘/’’,
6. the negative distance with the operator ‘‘/’’.

Notice that it is not necessary to extend the cal-
culation to the third or lower levels since the size of
a template object at the second level has already
included the sizes of all the template objects at
the third or lower levels.

Theorem 2. For a given u- (v- or t-) string, the list

of video objects generated by the video reconstruc-

tion algorithm is unique.
5. Performance analysis

To show the efficiency of our proposed ap-
proach, we perform two series of experiments to
compare our proposed approach with the 3D C-
string approach. All the algorithms are imple-
mented on an IBM compatible personal computer
of Pentium IV-2.0G with Windows 2000.
The first series of experiments is made on the

synthesized videos with three freely set cost fac-
tors: the number of videos, the number of objects
and the number of frames in a video. We compare
our string generation and video reconstruction

algorithms with those of the 3D C-string by using
synthesized videos. The execution time of every
experiment is measured by the average elapsed
time of video processing. We generate 1000 videos,
each of which contains 5000 frames. The experi-
ment result shows that the execution time grows
linearly as the number of videos increases from
200 to 1000 videos and the 3D C-string approach
spends about 10–60% more time than the 3D Z-
string approach to generate a string or to recon-
struct a video. In the experiment result of string
length versus the number of objects in a video,
the string length grows sharply as the number of
objects in a video increases from 5 to 160 objects
for the 3D C-string approach. The 3D C-string ap-
proach requires about 10–200% more storage than
the 3D Z-string approach.
The second series of experiments is made on the

real videos. In our real video database contain two
types of videos: 50 traffic videos and 50 news vid-
eos that contain objects of cars, people, buildings,
etc. Since the performance of both algorithms de-
pends on the number of objects, the average num-
ber of objects contained in a real video is 47.5
(traffic: 64, news: 31). All videos are around one
minute long. In general, we index one to 10 objects
from each frame. Typically, a video of one minute
long contains 1800 frames. To represent the move-
ments of the objects, at least a frame should be in-
dexed for every 10 frames. The experiment result
also shows that the execution time grows linearly
as the number of videos increases from 10 to 50
videos. The execution time of processing traffic
videos is larger than that of processing news videos
since traffic videos contain about twice as many
objects as news videos. It is shown that the differ-
ent types of videos have different costs of generat-
ing and reconstructing a video in the real video
database. Moreover, the longer the generated
string is, the more execution time and storage is
required. Generally speaking, the 3D C-string
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approach spends about 40–200% more time to
generate a string or to reconstruct a video than
the 3D Z-string approach does.
6. Conclusions

In this paper, we propose a new spatio-tempo-
ral knowledge representation called 3D Z-string,
which is extended from the concept of 2D Z-
string, to represent spatial and temporal relations
between objects in a video. The string generation
and video reconstruction algorithms are also
developed. The string generated by the string gen-
eration algorithm is unique for a given video and
the video reconstructed from a given 3D Z-string
is unique too. By inheriting the property of the
2D Z-string, there are no cuttings between objects
in the 3D Z-string, so the integrity of objects is
preserved. If we discard the motion and interval
operators in the generated string, like the 2D Z-
string (Lee and Chiu, 2003), the length of the
generated 3D Z-string is bounded by O(n) where
n is the number of objects in the video. However,
the length of the generated 3D C-string is
bounded by O(n2) since the 3D C-string inherits
the property of the 2D C+-string (Huang and
Jean, 1994). The shorter the generated string is,
the less storage space and execution time are
required for string generation and video recon-
struction. So, the 3D Z-string approach is more
compact and efficient than the 3D C-string
approach in terms of storage requirement and
execution time. Our proposed knowledge struc-
ture can be easily applied to a video database
system to reason about spatio-temporal relations
between objects in a video.
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