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Abstract

Visual landmark matching with a pre-built landmark
database is a popular technique for localization. Tradi-
tionally, landmark database was built with visual odome-
try system, and the 3D information of each visual landmark
is reconstructed from video. Due to the drift of the visual
odometry system, a global consistent landmark database is
difficult to build, and the inaccuracy of each 3D landmark
limits the performance of landmark matching. In this pa-
per, we demonstrated that with the use of precise 3D Li-
dar range data, we are able to build a global consistent
database of high precision 3D visual landmarks, which im-
proves the landmark matching accuracy dramatically. In
order to further improve the accuracy and robustness, land-
mark matching is fused with a multi-stereo based visual
odometry system to estimate the camera pose in two aspects.
First, a local visual odometry trajectory based consistency
check is performed to reject some bad landmark matchings
or those with large errors, and then a kalman filtering is
used to further smooth out some landmark matching errors.
Finally, a disk-cache-mechanism is proposed to obtain the
real-time performance when the size of the landmark grows
for a large-scale area. A week-long real time live marine
training experiments have demonstrated the high-precision
and robustness of our proposed system.

1. Introduction

High-precision localization is needed for a variety of
applications, such as augmented reality, military training,
robot navigation, etc. However, due to the drift issue of the
vision-based navigation system, it is very hard to maintain
tracking with high accuracy for hours, such as 5cm error
for locating a trainer within a median-sized training facility
during a course of hour-long training session. In order to
reduce the drift, different techniques have been proposed by
using either non-vision sensors such as IMU unit [8, 9], or
loop closure [6, 11] and landmark matching with a pre-built
visual landmark database [5, 7, 4]. Among them, using the
landmark matching for correcting the long-term drift in the
absence of GPS demonstrates the best performance so far.

The landmark matching solution does not require any ad-
ditional environment instrumentation and it only needs to
acquire a collection of the images and extract natural scene

landmarks of the environment online or in advance. For ex-
ample, in [10], the visual landmark database is built from a
stereo-rig directly, which may not be global consistent since
there is no guarantee that the site is able to provide enough
loop closures to reduce the drift. In [1], a sparse 3D re-
construction of an indoor environment is first built using the
structure from motion (SfM) techniques on a set of images
collected via a pre-calibrated camera. Then a mobile user’s
orientation and position pose can be directly estimated by
registering a captured view with respect to the reconstructed
3D point set. In [7], a set of appearance images is collected
to build a complex 3D object using the structure from mo-
tion and it is organized into a database and that will be used
to recover the camera pose. In [4], the 3D sparse point cloud
of the scene is reconstructed from the images collected by
a single calibrated cameras using the structure from motion.
Then a query image is matched against the collected images
of the scene to estimate its camera pose.

Most of the proposed techniques tried to recover the 3D
structure using either the pre-calibrated stereo-cameras [10]
or a single pre-calibrated camera together with the structure-
from-motion techniques [7, 4]. Two major issues with the
built landmark database using these 3D reconstruction tech-
niques are the low accuracy of the reconstructed 3D point
cloud, especially for the points that are far away from the
camera, and the global drift in the whole integrated point
cloud due to the accumulated drifts when the site is large.
As a result, once these inaccurate 3D scene is used to es-
timate the camera pose for a query image, it can reduce
the pose estimation accuracy dramatically. For example, as
shown in [3], if the bias in the stereo based motion estima-
tion is modelled, it is able to lead to a noticeable gain in
performance. Therefore, it is essential to build a landmark
database that both exhibits a global consistency and contains
high-precision landmark positions.

In this paper, we have developed a system to achieve
high-precision localization performance using a portable
multi-sensor navigation system that can be easily mounted
to a helmet or a robot platform. This was achieved by
building a custom LIDAR and camera sensor rig mounted
on a robot to rapidly collect and build a high-precision 3D
Model and landmark database simultaneously. Specifically,
the robot traverses the site under remote operation, contin-
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ually scanning the environment using calibrated video cam-
eras and 3D LIDAR range scanner, building an integrated
3D point cloud and collecting a set of visual landmarks
which contains both 2D image features and 3D point loca-
tions. The 3D point cloud is used to build a 3D model by
fitting planes and adding texture, and the landmarks are or-
ganized into a landmark database. During play, the system
loads the landmark database and matches to it, thus placing
them within a common coordinates system that is aligned
with the 3D model.

Compared to the built visual landmark database at [10],
there are two major improvements. First, via the lidar scans
to obtain the camera poses for each scan, the camera pose of
each landmark shot is more accurate in terms of the global
consistency. Second, For each visual landmark, its 3d coor-
dinates are replaced with the lidar 3d coordinates, which are
much more accurate, especially for those that are far away
from the camera.

2. System Overview

Our system includes two major components: a lidar-
camera sensor unit for 3D model and visual landmark build-
ing, and a multi-camera sensor unit for localization.

As shown in Figure 1, the lidar-camera sensor unit in-
cludes one lidar sensor (Hokuyo UTM-30LX), two pairs
of stereo cameras (Point Grey Flea2 CCD), one IMU unit
(CloudCap Crista) and a high-precision rugged pan-tilt unit
(Model PTU-D48). Specifically, the lidar sensor is mounted
on top of the cameras and the cameras are configured into
two stereo pairs, one facing forward and one facing back-
ward. They are all synchronized externally during data col-
lection. The images are captured at 20fps with a resolution
of 640 × 480 pixels. Via the Hokuyo lidar unit, a 3D point
is able to be measured with a less than 3cm error within 30
meters. Together with the high-precision PTU-D48 pan-tile
unit that provides extremely precise positioning (0.006◦), it
allows to generate a very accurate point cloud for a 360◦

scan.

Figure 1. A segway robotic platform (RMP400) with LIDAR-
camera sensor unit.

The lidar sensor, cameras, IMU and the pan-tilt unit are
calibrated automatically before any data collection. The
key calibration is between the lidar sensor and the cameras,
which is done via a similar approach to [2]. Once the cali-
bration is done, given a 360◦ lidar scan, we are able to trans-
form a point XL in the lidar coordinates system into the co-
ordinates of the front pair’s left camera coordinates system
XC as follows:

XC = PL→CXL (1)

where PL→C is the extrinsic calibration between the li-
dar and camera.

In order to carry and move the lidar-camera sensor rig
easily, a Segway robotic platform (RMP400) is used to sta-
tion it as shown in Figure 1. Currently, the Segway is driven
remotely through the site to build the 3D model and the vi-
sual landmark database.

Once the 3D model and the visual landmark database is
built, the visual landmark database is used to provide the
absolute camera pose of a vision-based localization system
in the 3D model. As shown in Figure 2, the vision-based
localization sensor consists of two pairs of stereo cameras
(AVT ProSilica GigE Camera) and one IMU unit (Cloud-
Cap Crista). Specifically, both stereo pairs are synchronized
with the IMU and they are placed as one facing forward
and the other facing backward, which allows for robust fea-
ture tracking even if one pair is completely occluded. All
of them are installed compactly inside a ruggedized cover
so that they can be easily mounted into a helmet, a robot or
vehicle platform for plug and play. As shown in Figure 2,
the sensor head is mounted into a helmet and connected to a
laptop that can be put into a backpack for people to wear.

Ruggedized�
Camera Sensor�

Computing�
Pack�

Cables�

Figure 2. A ruggedized portable vision-based localization sensor
system.

2.1. Simultaneous 3D Model and Visual Landmark
Database Construction

For the localization task in a given site, the first step of
our approach is to build a 3D model and collect visual land-
marks using a mobile platform as shown in Figure 1. As
the robot traverses the training site (autonomously or user-
controlled), it stops at regular intervals and pans for 180 de-
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grees, recording full omni-directional visual and 3D range
data at each position. Each of these local data collections
is called a 360◦ scan, and each 180 degree pan gives uni-
form 3D points and video over a full 360 degrees. The dis-
tribution of the scans should be uniform across the site to
ensure consistent landmark matching. Therefore, the robot
is tele-operated through the site while continually scanning
such that the spacing between scans is kept under five me-
ters. Overlapping 360 degree scans are aligned using ICP
(iterative closest point). Since the range of the LIDAR is
30 meters, and the overlapping scans are less than five me-
ters apart, the alignment algorithm is well constrained and is
effective in computing the relative position of each scan. Af-
ter all scans are collected, an accurate and consistent point
cloud is built. The last step is to generate a set of visual
landmark from each scan. The computed scan position is
used to compute an accurate camera pose for each image
in the video, and 2D features are extracted from the image.
Each 2D feature is associated with a 3D location which can
be computed either by stereo matching or by projection of
the 3D point cloud.

Specifically, a single 360◦ scan Sk includes LIDAR,
camera and pan tilt unit data recorded from time ti to
tj , which is the time taken by the pan-tilt unit to rotate
for scanning. The LIDAR data consists of a set of scan
lines L[ti...tj ], the camera data consists of a set of images
I[ti...tj ], and the pan-tilt unit outputs a corresponding set of
lidar poses (one for each scan line or image since they are all
synchronized) P [ti...tj ] formed from its readings. The data
is processed automatically, producing a point cloud model
of the site as well as a lidar-coordinates consistent visual
landmark database as follows:
For each scan Sk

(1) integrate L[ti...tj ] using P [ti...tj ] to get Xk

(2) query point cloud database DB3D for overlapping
scans XDB

(3) align Xk with XDB using ICP algorithm
(4) transform Xk with Xk

′
= PICP Xk

(5) add Xk

′
to DB3D

(6) transform P [ti...tj ] with P ′[ti...tj ] =
P−1
ICPP [ti...tj ]
(7) extract visual landmarks from I[ti...tj ] to form a set

of landmark shots LM [ti...tj ]
(8) find the 3d coordinates of each visual landmark

from Xk for each landmark shot LM [ti...tj ]

(9) add (P
′
[ti...tj ], LM [ti...tj ]) to the landmark

database DBLM

End
Once all scans have been processed and the two

databases have been populated with landmarks and point
clouds, post-processing can be done to apply global trans-
formations, remove redundant data, or subsample the point
clouds or the landmark shots to a uniform density. Figure

3 shows the 3D model built from the point clouds collected
at the Immersive Infantry Trainer (IIT) at Camp Pendleton,
CA. Totally, there are 487 scans collected and the built vi-
sual landmark database is around 1.8GB. The final aligned
scan locations are displayed as red in the bottom of Figure
3.

Figure 3. Top: the bird-view of the built 3D IIT model with tex-
tures; Bottom: the collected 487 scan positions.

3. Localization With Landmark Matching
Figure 4 illustrates the flowchart of the localization sys-

tem. Mainly, the system contains three components: IMU-
fused multi-stereo visual odometry, landmark matching, and
Kalman filtering based global localization estimation.

IMU-Based�
Multi-Stereo Visual�

Odometry�
(Local Pose)�

IMU�

Front Pair�

Bck Pair�

Landmark Matching�
(Global Pose)�

Landmark�
Database�

Kalman Filtering�
Based Global�

Pose Estimation�

3D Camera�
Pose�

Figure 4. The flowchart of the proposed localization system.

The system starts with loading the pre-built visual land-
mark database. Once the landmark database is loaded, the
system captures the synchronized stereo image pairs and
IMU measurements in real time. The captured stereo pairs
and IMU measurements are sent to the visual odometry
module that extracts Harris corners from each image and
estimates the initial camera pose from the extracted harris
corners. Once the initial camera pose is estimated from the
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image, it is further fused with the IMU measurements to re-
fine the estimation of the camera poses. Via the fusion of
the IMU measurements, the system is able to estimate the
camera poses (local pose) accurately even when there are
few corners extract due to the lack of textures in the scene
or the sudden occlusions of one or both cameras.

Once the local camera poses are estimated, the visual
odometry module sends the left images together with its ex-
tracted Harris corners and the estimated pose to the land-
mark matching module. Since visual odometry and land-
mark matching operates in its own thread, it will continue
capturing the synchronized stereo pairs and IMU measure-
ments while landmark matching is still being performed.

For the landmark matching, after receiving the extracted
Harris corners, the HOG descriptor is extracted for each
Harris corner from the received left image. Once the HOG
descriptors are extracted, the normalized 2D image coordi-
nates, 3D coordinates, and the HOG descriptors of the cor-
ners together with the camera pose is formed as a landmark
shot. The landmark shot will serve as a query landmark shot
and search the landmark database for a list of potential simi-
lar landmark shots and then an image-based 2D matching is
performed to refine the potential landmark shot list. Once a
matched landmark shot is found and pose estimation is per-
formed to compute a global camera pose. In order to further
refine the landmark matching results, a visual odometry tra-
jectory based consistency check is performed, which will be
described in Section 3.2.

After a successful landmark matching, due to the pos-
sible errors during the landmark matching, the estimated
global camera pose are sent to the global localization mod-
ule for the final camera pose fusion.

3.1. Efficient Landmark Matching with Disk-Cache
Mechanism

The landmark database size is a function of two factors:
1) coverage area of the training site; 2) density of the land-
mark shots collected at each scan. For any real-time vi-
sual odometry system, fast access to landmark database for
matching is critical. A small size landmark database can be
kept in memory to enable this fast access, however, when
database size grows, keeping entire database in memory is
not possible and a portion of it has to be stored in an external
disk. Therefore, it is important to devise a disk-cache index-
ing and searching solution of a large landmark database that
enables fast fetching of landmark shots that are in close spa-
tial proximity of the system’s current position with a limited
memory usage.

The architecture of disk-cache scheme is shown in Fig-
ure 5. It has two main components: 1) offline database spa-
tial indexing; and 2) online database search, fetching, and
cache updating. Spatial indexing and search is performed
by a module called disk-cache manager. For offline spatial

indexing of landmark shots, we have used R-trees that allow
splitting of coverage area into hierarchically nested region
blocks, which are possibly overlapped depending on how
landmark scans are distributed and the designated minimum
bounding rectangle for each scan. The minimum bounding
rectangle is referred to as region block size. The splitting
parameter controls how many entries we want at each non-
leaf node of R-tree. We set this parameter as 5, which means
that the region block is subdivided and new nodes are added
if we have more than 5 scans in a region block. The tree is
built by iterating over all collected scans, computing centers
for each scan, computing their bounding rectangle, and in-
serting them into the tree. Each leaf node stores the scan id
and its bounding box.

Figure 5. The disk-cache scheme for landmark matching.
In order to compute the scans that are in the neighbor-

hood of the system’s current position and bring them into the
landmark cache, we use 5x5 meter bounding box around the
current location as a search rectangle to perform its intersec-
tion with the bounding boxes in the R-tree. The search starts
from the root node of the tree. Every internal node contains
a set of bounding boxes and pointers to the corresponding
child node and every leaf node contains the rectangles of
the scan. For every rectangle in a node, the overlap with the
search rectangle is computed. If the overlap exists, then cor-
responding child node is also searched. Searching is done
in a recursive manner until all the overlapping nodes have
been traversed. When a leaf node is reached, the contained
bounding boxes are tested against the search rectangle and
all the scan ids within the search rectangle are fetched.

Now that we have landmark database indexing and
searching in place, we ensure that landmark scans in the
immediate vicinity of the system are always in the mem-
ory using above mentioned search strategy so that pose esti-
mation can proceed without any delay. Our cache updating
strategy uses two conditions to remove any unwanted scan
from the cache. The first condition ensures that scans that
are beyond 5x5m bounding rectangle of the current system
location are removed first. We can very quickly identify the
scans that are not in 5x5m vicinity of system’s current posi-
tion through set intersection and difference operations per-
formed in real-time using R-tree. If there is still not enough
cache space available, the second replacement condition en-
sures that least-used scans are removed first. For this pur-
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pose, disk-cache manager maintains a table of last accessed
time stamps for each scan that is in the cache.

In addition, in order to reduce the number of disk-access
operation, we bring one complete scan into the cache as op-
pose to individual landmark shots. This results in significant
performance gains as disk access is the most expensive op-
eration. Another important factor for integrating the disk-
cache into the system is the initial warmup time. To ensure
that pose estimation can quickly latch on to a correct loca-
tion, it is important to have corresponding landmark scans
in the memory. We bootstrap this process by uniformly se-
lecting scans over the given spatial region and adding them
into the cache during the system startup.

3.2. Local Visual Odometry Trajectory Based Con-
sistency Check

After a successful landmark database matching, it will
compute a camera pose for the input query landmark shot.
In order to improve the robustness of the localization, the
camera pose computed from the matched landmarks is first
checked with the camera poses from the visual odometry.
It serves as an outlier removal stage to remove any possi-
ble wrong matches, which works as imposing the temporal
consistency over the obtained landmark matching.

Specifically, it operates as follows. As the person trav-
els from location A to location B, the visual odometry will
compute a relative pose ∆Pvisodo between A and B. Mean-
while, if both images from location A and B are matched to
the landmark database successfully, a different relative pose
∆PLM can be computed from the obtained global camera
pose PA and PB . An error or a pose difference Pdiff is
computed via ∆Pvisodo ×∆P−1

LM first.
Usually, if both the time and the travelled distance be-

tween location A and B is small, the local trajectory from A
to B can be estimated from visual odometry very accurately.
Since Pdiff encodes both the position and orientation dif-
ferences, it can be served as a criteria to measure how good
a landmark matching is.

3.3. Kalman Filter Based Fusion for Global Local-
ization

To generate the final camera pose of each frame in global
coordinates system, the local pose estimated from our IMU-
based multi-stereo visual odometry module is transformed
to the global coordinates system using the global camera
pose estimated from the first successful landmark matching.

For each successful landmark matching after the first
matching, both the query landmark shot and matched
database landmark shot as well as the estimated global cam-
era pose of the query shot are sent to the Kalman filter-
ing based global pose estimation module. Then the global
pose transformed from the IMU-based multi-stereo visual
odometry module is further fused with the global landmark

point measurements in the Kalman filter. The global land-
mark point measurements are modelled from the 2D to 3D
feature point correspondences between the query landmark
shot features and the 3D local point cloud on the matched
database landmark shot.

We transform every 3D local landmark point X to the
global coordinates system using the estimated global pose
of the query shot. We denote pose PLG = [RLG TLG]
such that X can be transformed via the following equation:

Y = RLGX+TLG (2)

which can be written under small error assumption as

Ŷ + δY � (I− [ρ]×)R̂LG(X̂+ δX) + T̂LG + δTLG

where ρ is a small rotation vector. Neglecting second
order terms results in the following linearization

δY � R̂LGδX+
[
R̂LGX̂

]
×
ρ+ δTLG (3)

and letting X̃ = R̂LGX̂, the local 3D point covariance,
ΣY , can be represented in the global coordinates system
in terms of the local reconstruction uncertainty, ΣX , the
weight factor of the query landmark shot, W , and land-
mark pose uncertainty in rotation and translation,ΣRLG

and
ΣTLG

, as

ΣY � R̂LG(WΣX)R̂T
LG + [X̃]×ΣRLG

[X̃]T× +ΣTLG

We model the weight factor of the query landmark shot
as the distance between the query landmark shot and the
matched landmark shot. This factor reflects the accuracy of
landmark matching. If the distance is smaller, the landmark
matching is more accurate and the resulting 3D uncertainty
of all points on the query landmark shot is smaller. The
Kalman filter thus relies more on these landmark point mea-
surements since they have small covariance due to accurate
matching.

The above is applied to all the point correspondences re-
turned as a result of successful landmark matching. We use
the same techniques as [8] to fuse these point measurements
inside our Kalman filter.

4. Experimental Results
4.1. Landmark Matching Performance

In order to test the performance of the landmark match-
ing with fused Lidar measurements, a set of 5 Lidar scans
together with the images are collected as shown in Figure 6.
At each location, the videos are recorded at 20fps while it
rotates 180◦ to scan for 30 seconds, and so there are totally
600 image frames collected. After the Lidar-point cloud
alignment, the camera pose for each image can be com-
puted. For simplicity, only the front cameras are used in the
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following two experiments, and their computed camera tra-
jectories are shown as red at each location in Figure 6. Due
to the high-accuracy of the point cloud, the camera poses
computed from Lidar are served as the ground-truth.

1�

4�

3�

2�

0�

1�

4�

3�

2�

0�

(a) (b)
Figure 6. The landmark matching results at different locations: (a)
Stereo only; (b)Fused with Lidar measurements.

The first experiment is to extract the visual landmarks
from the scan location 0 and forms a reference landmark
database, but only the camera poses computed from lidar for
each landmark shot are injected. Then the landmark match-
ing is performed to search the reference landmark database
for each image at the remaining scan location 1, 2, 3, 4,
which are respectively 0.54m, 1.03m, 1.53m, 2.43m away
from the reference scan location 0. The camera pose for
each image is estimated via the landmark matching, and its
computed 3d location is plotted as the dark points in Figure
6 (a). As shown in Figure 6 (a), the computed camera pose
deviates from their actual camera poses more and more as
they move away from the reference scan position 0. Table 1
and Table 2 summarizes the maximal error that contains 69,
95 and 99.7 percentiles of data from the lowest in terms of
positions and euler angles (degree).

Table 1. The Computed Positional Upper Error Bounds (cm)

Stereo Lidar
Scan Lowest Lowest Lowest Lowest Lowest Lowest
ID 69% 95% 99.7% 69% 95% 99.7%

1 (0.5m) 1.70 2.80 3.76 3.03 3.63 3.97
2 (1.0m) 3.28 6.79 11.41 1.40 2.24 3.10
3 (1.5m) 11.02 32.96 146.70 5.20 8.29 10.14
4 ( 2.4m) 26.42 67.07 106.04 8.55 12.03 14.67

Different from the first experiment, once the reference
landmark database is extracted, besides injecting the com-
puted camera poses from lidar for each landmark shot, the
3D coordinates of each extracted visual landmark are re-
placed with the 3D coordinates from the lidar measure-
ments. Then the landmark matching is performed again
to search this lidar-point integrated reference landmark
database for each image at the test scan locations. The es-
timated camera poses from the landmark matching are plot-
ted as the dark points in Figure 6 (b). As shown in Figure 6
(b), although the estimated camera poses deviate more from

their actual ones as the scans move away from the reference
scan 0, their deviations are much smaller. From the Table
1 and Table 2, we can see that for a scan that is 2.4 me-
ters away from the reference position, landmark matching
is able to provide a positional error within 14.67cm and an
angular error with 0.61 degree for 99.7% of the data, which
is a significant improvement.

Table 2. The Computed Angular Upper Error Bounds (Degree)

Stereo Lidar
Scan Lowest Lowest Lowest Lowest Lowest Lowest
ID 69% 95% 99.7% 69% 95% 99.7%

1 (0.5m) 0.11 0.21 0.39 0.11 0.19 0.27
2 (1.0m) 0.19 0.46 0.67 0.16 0.30 0.38
3 (1.5m) 0.43 1.47 2.51 0.17 0.35 0.60
4 ( 2.4m) 1.29 3.25 4.28 0.27 0.45 0.61

4.2. Global Pose Fusion
In the following experiments, a landmark database is

built from 128 lidar scans collected inside a building, whose
locations are shown as pink circles in Figure 7. The database
is around 0.69GB and contains 17539 landmark shots.

In the experiment, a person who wearing our system
started near the front entrance, walked around the first floor
through the hallways, rooms and then went outside through
the back entrance and went inside through the front en-
trance. It lasts 5 minutes and 38 seconds, and the person
travelled around 223 meters. As shown in Figure 7, the sys-
tem locates itself inside the building immediately as the sys-
tem turns on and estimates the travelled trajectories of the
person, which is marked as red. Along the trajectory, there
are totally 819 landmark matching returned from the land-
mark database, which are marked as blue circles in Figure 7.
After imposing the local visual odometry trajectory-based
consistency check, a set of bad landmark matching hits are
removed and only 592 good landmark matchings are passed
through. Those passed landmark matching hits are marked
as dark in Figure 7, and they are utilized for final localiza-
tion fusion via kalman filtering.

As shown in the bottom portion of Figure 8, a portion
of the estimated trajectory is enlarged. Since each land-
mark matching contains a different level of error, the accu-
racy of the computed camera pose varies. If we accept the
computed camera poses directly from the landmark match-
ing and resets the estimated trajectory, the final trajectory is
marked as red in Figure 8, which apparently is jumpy and
contains large localization errors in certain portion. How-
ever, via the proposed fusion scheme via the Kalman fil-
tering, it will automatically give higher weights to those
landmark matching hits with higher accuracy and generate
a smoother and more accurate trajectory as shown the blue
curve in Figure 8.

Figure 9 (a) shows the distance between the query land-
mark shot and the matched landmark shot over a 60-frame
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Figure 7. The estimated trajectory with the poses computed from
landmark matching.

Figure 8. The estimated trajectory with the poses computed from
landmark matching.

period taken from the whole trajectory. Figure 9 (b) shows
frame-to-frame pose translation estimated before (green)
and after (blue) global fusion with Kalman filtering respec-
tively. Since the walking speed of the user doesn’t change
much in a very short period (such as one frame, 0.0677
seconds), the translation between frames should be very
smooth.

However, the peaks of the green curve in Figure 9 (b)
caused by landmark matching (Figure 9 (a)) generates the
jitter/jump of pose estimation. Big distance between the
query landmark shot and the matched landmark shot may
cause errors in pose estimation from landmark matching. By
capturing the 3D uncertainty of landmarks and thus relying
more on accurate landmark shots (with small distance to the
matched shots) in the Kalman filter, we can reduce the errors
in the final global pose estimation.

(a) (b)
Figure 9. (a) The computed distance between the current frame
to its matchedreference landmark shots; (b) The frame-to-frame
distance comparison before and after kalman filtering fusing.

4.3. Real-World Operation Results

To demonstrate the performance of our proposed local-
ization system, a week-long test has been conducted on the
marines who were performing training exercises in the IIT
training facility. During their training exercises, the marines
will walk, run, crouch, shoot, stay in dark region or in
crowds, etc., and the system will go through a set of very
difficult conditions that will fail the visual odometry alone
badly. However, with the constant landmark matching hits,
we are able to track them within around 15cm error very
robustly for hours. The ruggedized machine we are using
is DELL Latitude E6400 XFR, which is a dual-core 2.8Ghz
machine with 2GB memory. The whole system runs at 10fps
and the frequency of landmark matching thread maintains
stably at 2HZ. Together with our ruggedized sensor head, it
even survived after being banged into wall or door-frames
constantly while they were in exercises. Each training ses-
sion lasts around one hour and 8 helmet sensor heads are
used at each session. There are four sessions every day and
our system is able to provide accurate positions for each
marine, which is wireless-transmitted back to a server ma-
chine that displays their positions in the 3D model and then
projects it into the wall.

Figure 10 shows the red estimated trajectory with the first
landmark matching only and displayed in the 3D model. We
can see that without continuous landmark matching, the drift
of the marine’s location grows continuously and it fails to
tell the correct location of each marine after a while. How-
ever, with the continuous corrections from the landmark
whenever there is a chance, our proposed system is able to
track the marine’s location very accurately when they move
through the whole training site. Its estimated trajectory is
displayed as blue in the 3D model.

Figure 11 show a total of 17 test runs for a group of
marines who were engaged in the real training exercises in-
side the IIT training site.

As shown in an online video
“http://www.zhiweizhu.com/demo/Online Tracks.avi”,
as the marines went into the training site, out system is able
to immediately lock their positions inside the training site
and track them accurately as they move through the whole
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Figure 10. The comparison between the estimated trajectories with
continuous landmark correction or not.

Figure 11. The bird view of the estimated 3D trajectories overlayed
in the IIT 3d model.

site. With the use of the 3D model, the detailed position
and orientation information of each marine, as well as their
surroundings in the real environment is able to be viewed
from various angles in the 3D model as shown in Figure 12,
which is very important for the after action review for each
training exercise.

Figure 12. Different camera views of the people in the IIT 3d
model.

5. Application for Augmented Reality
Augmented reality training systems using Head Mounted

Displays (HMDs) require very high precision knowledge
of the 3D location and 3D orientation of the user’s
head. This is required by the system to know where
to insert the synthetic actors and objects in the HMD.
The inserted objects must appear stable and not jitter or
drift. We have developed a system to achieve this perfor-
mance using our proposed localization system mounted
on the HMD. A short video demo can be downloaded at
“http://www.zhiweizhu.com/demo/AugmentedReality.wmv”,

which shows a training scenario that inserts a group of
virtual guys for the trainer to interact with.

6. Conclusion
In this paper, we showed that when a high-precision vi-

sual landmark database is built, it is able to improve the
landmark matching performance dramatically. We built a
Lidar-Camera sensor rig mounted on a mobile robot that is
able to traverse around to collect both video and 3D range
data to build a global consistent and accurate visual land-
mark database. Once the landmark database is built for a
given environment, a disk-cache mechanism is proposed to
achieve real-time performance for the landmark matching.
In order to reduce the possible landmark matching errors,
a local visual odometry trajectory based consistency check
is performed to remove some large errors and a subsequent
kalman-filtering based fusion is used to further smooth out
some small landmark matching errors. Experiments on the
week-long real training exercises on a group of marines in
the IIT training site have confirmed both robustness and
high-precision of our proposed localization system.
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