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Abstract

Our goal is to automatically reconstruct 3D objects from
a single image, by using prior 3D shape models of classes.
The shape models, defined as a collection of oriented prim-
itive shapes centered at fixed 3D positions, can be learned
from a few labeled images for each class. The 3D class
model can then be used to estimate the 3D shape of an ob-
ject instance, including occluded parts, from a single image.
We provide a quantitative evaluation of the shape estima-
tion process on real objects and demonstrate its usefulness
in three applications: robot manipulation, object detection,
and generating 3D ’pop-up’ models from photos.

1. Introduction

Experience with instances of a class of 3D objects can
yield enough information to generate effective 3D models
of individual objects from a single image. In this report,
we describe an approach to the problem of reconstructing
3D shapes from a single 2D image, based on 3D class mod-
els that are an extension of the Potemkin model [1]. An
object class is defined as a collection of parts, which have
an arbitrary arrangement in 3D, but it assumes that, from
any viewpoint, the parts themselves can be treated as being
nearly planar.

This model can be efficiently learned from a few part-
labeled 2D views of instances of an object class from dif-
ferent, uncalibrated viewpoints. It does not require any 3D
training information.

Once a model is learned, the reconstruction mechanism
can be built on top of any 2D view-specific recognition sys-
tem that returns a bounding box for the detected object.
Within the bounding box, we use a model-based segmen-
tation method to obtain an object contour. We then deform
projections of the 3D parts of the class to match the object
contour. Based on this fit of the visible parts to the oriented
3D primitive shapes, we can obtain an approximate recon-
struction of the 3D object.

We can use the resulting 3D model to construct 3D ’pop-
up’ models from photos [9]; more importantly, we can
compute a reasonably accurate qualitative 3D shape model
for the whole object instance, including its occluded parts.
This information can be used in a variety of applications in
robotics as well as in vision and graphics.

We evaluate the quality of the 3D single-view recon-
structions by comparing the ground truth with the estimated
3D shapes of real objects in a controlled environment. We
show that the 3D estimation is sufficiently accurate for a
robot to estimate the pose of an object and successfully
grasp it, even in situations where the part to be grasped is
not visible in the input image. We also demonstrate that
the 3D reconstructions allow 2.5D data, such as depth maps
from stereo processing, to improve the recognition perfor-
mance of two existing object detection systems [17, 5].

2. Related work
There are many methods for single-view reconstruction

that compute 3D models with assistance from a human.
Taking advantage of manual specification of information
such as surface normals and discontinuities, these methods
can reconstruct either planar scenes [4, 11, 23] or special
classes of curved surfaces [19, 24]. There is also a long his-
tory of bottom-up methods for general 3D reconstruction of
images based on shading, texture, etc. [7].

Recent work in single-view reconstruction focuses on
automatic reconstruction of generic scene elements such as
the ground plane, vertical building facades, etc. For in-
stance, Hoiem et al. [9] learn segmentation cues to classify
image regions into geometric classes (ground, vertical sur-
faces, and sky), and then create a coarse 3D scene model
from the source image based on this classification. Hoiem
et al. [10] also use geometric classes to improve the perfor-
mance of existing object detection systems. They model the
contextual relationships between three elements (object de-
tections, rough 3D scene geometry, and approximate cam-
era position/orientation), and then use a statistical frame-
work that simultaneously infers the probabilities of these
three elements in a single image. Saxena et al. [22] train
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a Markov Random Field (MRF) to predict the relationships
between various image patches, and the relation between
the image features and the 3D location/orientation of the
planes. Then they use the MRF to infer a a depth map from
a 2D intensity image.

There is relatively little work on automatic single-view
reconstruction for specific object types. Prasad et al. [20]
adapt an object-specific 2D segmentation technique [12] for
curved objects, such as oranges or bananas, and then recon-
struct a smooth 3D parametric surface from the segmented
region by energy minimization. Romdhani and Vetter [21]
collect a database of 3D face models, then form a linear ba-
sis to instantiate a 3D face from a single image using MAP
estimation.

3. 3D class models

In this report, we use a 3D extension of the Potemkin
model [1]. The original Potemkin model was made up
of a set of vertical planar parts, and was primarily used
to transform images of objects from one view to several
other views, generating virtual data for many viewpoints
for multi-view recognition. In previous work [2], we have
extended the Potemkin model to allow parts to be selected
from a library of orientations, and demonstrated that the
new model was more effective for image viewpoint trans-
formation. In this report, we further augment the model to
support reconstruction of the 3D shapes of object instances.

3.1. Definition

Informally, the 3D Potemkin (3DP) class model can be
viewed as a collection of 3D planar shapes, one for each
part, which are arranged in three dimensions. The model
can also be viewed as an approximation of a detailed 3D
model using a small set of 3D planar polygons. The 3DP
model specifies the locations and orientations of these parts
in an object-centered 3D reference frame. In addition, it
contains canonical images with labeled parts, which allow
detection results to be decomposed into parts. The view
space is divided into a discrete set of view bins, and an
explicit 3D rotation from the object-centered 3D reference
frame to the view reference frame is represented for each
view bin.

The recognition process produces a 3DP instance model,
which is also a collection of 3D planar shapes arranged in
three dimensions, corresponding to the parts of the particu-
lar 2D instance from which it was constructed.

More formally, a 3DP object class model with N parts is
defined by:

• k view bins, which are contiguous regions of the view
sphere. Each view bin is characterized by a rotation
matrix, Tα ∈ R3×3, which maps object-centered 3D

coordinates to 3D coordinates in each view reference
frame α;

• k part-labeled images, specifying the image regions of
parts of an instance in each view bin α;

• a class skeleton, S1, . . . , SN , specifying the 3D posi-
tions of part centroids, in the object-centered reference
frame; and

• N 3D planes, Qi, i ∈ 1, . . . , N , specifying the 3D
plane parameters for each planar part, in the object-
centered reference frame;

Qi : aiX + biY + ciZ + di = 0. (1)

In addition, the 3DP class model contains an estimated
bounding polygon to represent the extent of the 3D part
graphically, but this polygon plays no role in reconstruc-
tion. Instead, the part shapes in the part-labeled images for
each viewpoint are used for reconstruction.

3.2. Estimating a 3DP model from data

In broad outline, the part centroids are obtained by solv-
ing for 3D positions that best project into the observed part
centroids in the part-labeled images in at least two views.
The 3D planes are chosen so as to optimize the match be-
tween the 2D transformations between the boundaries of
corresponding parts in the part-labeled images. Below, we
give a brief overview of this estimation process; further de-
tails can be found in [2].

• The view bins are selected. The choice of view bins
is arbitrary and guided by the demands of the applica-
tion. In our applications, we have used 12 views bins
equally spaced around a circle at a fixed elevation. The
view bins determine the associated rotation matrices.

• The part-labeled images in each viewpoint should be
for similarly-shaped instances of the class (though they
can be significantly deformed during the recognition
process) and two of them must be for the same actual
instance.

• The skeleton locations Sj are estimated [1], from the
mean and covariance of the coordinates of the cen-
troids of labeled part j in the set of part-labeled im-
ages.

• Learning the 3D planes is more involved. The process
is trained in two phases: one generic, and one object-
class specific.

The generic phase is class-independent and carried out
once only. In it, the system learns, for each element



Figure 1. 3D shape primitives selected for each part of each class.

of a set of oriented 3D shape primitives, what 2D im-
age transformations are induced by changes of view-
point of the shape primitive. The necessary data can
be relatively simply acquired from synthetic image se-
quences of a few objects rotating through the desired
space of views. Transforms for each primitive between
each view bin pair are learned by establishing corre-
spondences between points on these synthetic train-
ing images using the shape context algorithm [16], and
then using linear regression to solve for a 2D projective
transform that best models the correspondence data.

The second phase is class-specific. The shape-context
algorithm is used again to match points on the bound-
aries of each part; these matched points are then used
to construct the cross-view transforms for the part
across the labeled views. For each part, the oriented
planar primitive that best accounts for observed cross-
view transforms of the parts in the training set is se-
lected to represent the part.

In previous experiments [2], we ran a greedy selec-
tion algorithm to select a small set of primitives that
would effectively model four test object classes (chair,
bicycle, airplane, car), which together have 21 sepa-
rate parts. Four primitive orientations suffice to model
all of the parts of these classes effectively. The prim-
itives chosen for each part of each class are shown in
Figure 1.

Once the primitives are selected, a small set of images,
which are a subset of the k part-labeled images in the
model, of the same object instance, from any set of
views, as long as each part is visible in at least two
views, are used to estimate the positions and orienta-
tions of the parts for this class. By finding a similarity
transform between the actual part outlines and the pro-
jections of the primitives in two different views, and
having computed correspondences between the out-
lines of the projections of the primitives in phase 1,
we can solve for 3D positions of points on the outline
of the shape. This allows us to estimate a rough extent
and planar model of the part in 3D, even when there
is very little data available. We compute Q1, . . . , QN

based on these planar parts.
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Figure 2. Learned 3DP class model for four-legged chairs in the
object-centered reference frame, and in each view reference frame.

Figure 3. 3DP class model of airplanes, constructed from two part-
labeled views.

Figure 2 shows an estimated 3DP class model for chairs.
It was constructed from two part-labeled images of the same
object instance, knowing the view bins but with no further
camera calibration.

These easily-obtained 3DP class models may not be able
to capture highly detailed shape information or all of the
variability within a class, but each provides adequate in-
formation to represent the basic 3D structure shared by in-
stances of a class. Figure 3 shows two views of the learned
3DP class model of airplanes.

4. Automatic single-view reconstruction
In this section we will describe how to use 3DP object

class models to reconstruct 3D objects from a single image.
To achieve complete automation of the reconstruction pro-
cess, we developed an approach involving several steps: de-
tection, segmentation, part registration, and model creation.
We will address the details of each step below.

4.1. Detection and segmentation

Given the input image, we need to detect the object, iden-
tify the viewpoint, and obtain the contour of the object. This
step can be carried out by using any existing multi-view
object-class recognition system. For example, Leibe et al.’s
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Figure 4. Given a model instance with labeled parts (blue), the
parts of another instance (red) in the same view can be found by
matching points along the boundaries of the instances (middle) and
by deforming the model instance into the target instance (right).

car detection system [13], composed of a set of seven view-
dependent ISM detectors [14], provides robust results on lo-
calizing cars (a bounding box and a coarse object segmenta-
tion for each detected car) and identifying their viewpoints
on test images.

We assume that the detection system is able to, at least,
determine a bounding box for the detected object and to
identify the viewpoint bin. Within the bounding box, the
outline of the detected object can be obtained by existing
model-based segmentation techniques [15, 12]. We use the
part-labeled outline for the identified view bin in our model
to initialize the segmentation process. All of the examples
in this report were obtained by using the publically available
implementation of level-set evolution by Li et al. [15].

4.2. Part registration

Once an object outline is available, we need to obtain
the part regions corresponding to the individual parts in the
model. Our approach is based on the fact that objects in
the same class, seen from the same view, have similar 2D
arrangements of parts. That is, the centroids of the projected
parts have characteristic arrangements.

We use the shape context algorithm [16] to match and
deform the boundaries of the stored part-labeled image for
the detected view bin into the corresponding boundary of
the detected instance, as shown in figure 4. This match in-
duces a deformation of the part-labeled image that is used
to predict internal part boundaries for the detected instance.

4.3. Creating the 3D model

Now we are able to generate a 3D instance model from
the segmented parts of the detected object in the input image
using our 3D model of the class. We will assume a known
camera matrix M ∈ R3×4 and a known 3D ground plane
Qg(agX + bgY + cgZ +dg = 0). Later we explore various
ways of obtaining these.

We proceed in the following stages:

• Use the method developed by Hoiem et al. [9] to clas-
sify the ground region in the input image, and recover
3D coordinates of each image point (xim, yim) on the

ground region by solving for X , Y , and Z in the fol-
lowing projection equations.

M =

 m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

 . (2)

xim =
m11X + m12Y + m13Z + m14

m31X + m32Y + m33Z + m34
. (3)

yim =
m21X + m22Y + m23Z + m24

m31X + m32Y + m33Z + m34
. (4)

agX + bgY + cgZ + dg = 0. (5)

• For each planar part i of the 3DP class model, compute
the parameters (aiα, biα, ciα) of the 3D plane Qiα in
the 3D reference frame of view bin α (identified by the
detector) by applying the 3D rotation matrix Tα to Qi.
Note that the scale of parameter diα is unknown.

• Fit a line lg through image points where the detected
object touches the ground region in the image, and get
the 3D coordinates of those ground points.

• For each object part j that includes points along the
line lg , estimate djα based on the recovered 3D coor-
dinates of points on that ground line. Then, solve for
the 3D coordinates of all image points of part j using
equations (2)–(4) and Qjα (the plane supporting part
j).

• For each part k connected via adjoining pixels in the
image to some previously recovered part j, estimate
dkα based on the recovered 3D coordinates of those
points on the intersection of part j and part k. Then
solve for the 3D coordinates of all the image points
of part k using equations (2)–(4) and Qkα (the plane
supporting part k). Repeat this process until all parts
are reconstructed.

Figure 5 shows one example of a completely auto-
mated reconstruction. It involves detection [13], segmenta-
tion [15], part registration, and finally the projection of the
3D instance model into a new viewpoint. Figure 6 shows
one failed example of our automated reconstruction due to
inaccurate detection and segmentation.

4.4. Estimating locations of occluded parts

After we reconstruct a 3D model for the visible parts of
the detected instance in the source image, we are able to
further predict approximate 3D coordinates of the occluded
parts. We compute a 3D transformation from the 3D class
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Figure 5. The processing pipeline for automatic single-view 3D reconstruction.
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Figure 6. One failed example of our automatic single-view 3D reconstruction.

model to the reconstructed 3D instance, by mapping 3D co-
ordinates between the recovered 3D parts of the instance
and corresponding 3D primitive parts in the class model.
Then for each occluded part i of the instance in the source
image, we apply this 3D transformation to part i in the class
model.

The ability to estimate the 3D shape and extent of the
entire instance, including parts that are not visible in the
source image, is very useful in robotics applications, as
demonstrated in section 5.2.

5. 3D object localization
One important use of 3D localization and shape estima-

tion is in robotic manipulation, where it can be crucial for
the robot to have good 3D estimate of the object’s pose and
shape. Although in some special cases, when grasping is
done perpendicular to the image plane, simple grasping can
be done without a 3D understanding of the scene, robust
manipulation of complex objects requires reliable 3D infor-
mation.

In this section, we present several evaluations of the reli-
abilty of the 3D instance models constructed by our system.

5.1. Localization performance

We evaluated the quality of the 3D reconstruction results
on a domain consisting of 20 diecast model cars (Figure 7),
varying in shape and appearance. We calibrated a fixed
camera (both M and Qg are estimated) in advance, using
the Matlab camera calibration toolbox. We then randomly
placed each of the cars on the known 3D ground plane, a
black table, within a 1m by 1.2m area, visible from the cam-
era.

We took images of each of the cars, and constructed 3D

instance models of them. In this setting, detection was done
simply by color segmentation. Figure 7 shows a typical re-
construction (for the green-circled car in the figure) and its
bounding box in the 3D coordinate system.

We measured the accuracy of the single-view reconstruc-
tions by comparing the ground truth with the recovered 3D
model according to three criteria:

• The overlap of two volumes (the volume of the inter-
section divided by the volume of the union): the esti-
mated 3D bounding box of the car and the ground truth
bounding box;

• The distance from the estimated 3D centroid of the car
to the ground truth centroid; and

• The absolute value of the difference between the esti-
mated orientation of the car and the ground truth.

For comparison, we also tested the quality of reconstruc-
tion using a single 3D surface perpendicular to the ground
plane for the whole object (as in [9]) instead of our 3D class
model. The 3D objects reconstructed using our 3D class
model were much more accurate than those modeled by
only a vertical 3D plane, as shown by the average measure-
ments in the table below. (The single-plane method can-
not compute bounding boxes, and so overlap scores are not
available).

overlap centroid error orientation error
3DPotemkin 77.5% 8.75mm 2.34◦

Single plane 73.95mm 16.26◦

All our estimates were reasonably accurate, except for the
red-circled Ferrari F1, whose shape is the most different
from our 3D class model of cars, for which it had 26.56%
overlap, 24.89 mm centroid error, and 3.37◦ angle error.
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Figure 8. Some snapshots taken in the process (from left to right) of the robot grasping a car.
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Figure 10. First Row: The input image (left) and our 3D class
model of baskets (right). Second Row: Two views of the recon-
structed 3D basket. The handle is recovered even it is occluded in
the input image.

5.2. Robot manipulation

We can use estimated 3D poses of the parts of objects as
input to a robot motion planner, which calculates a motion
trajectory for a robot arm and hand, which should result in
the robot grasping the object. We have used a Barrett robot
arm and hand, together with the OpenRave robot motion
planning system [6] together with the 3DP model estima-
tion outputs, to build a system that demonstrates hand-eye
coordination in picking objects. Figure 8 shows some snap-

shots of the Barrett arm picking up a model car.
To test the utility of the 3D localization results, we

placed each of the 20 model cars in 3 different positions
and orientations on the table, and reconstructed the 3D car
from each input image. The robot successfully grasped the
car in all these 60 trials, except for the trials involving the
red Ferrari F1 (circled in red in Figure 7). Although the re-
construction for the Ferrari was accurate enough for a grasp,
the model car was too fragile and it shattered.

We repeated the same 60 experiments using the single-
plane reconstruction method. The robot was only able to
grasp the car in 6 of 60 trials. The successful grasps hap-
pened only when thin cars were placed with their sides
nearly face-on to the camera. For these cases, the esti-
mated orientation and 3D centroids are accurate enough for
a grasp.

To demonstrate the ability to predict the position of, and
then grasp, occluded parts, we built a 3DP model from two
views of a wooden ’basket’, and then showed the system
a completely novel view in which the handle is occluded
(shown in Figure 10). The system recovered approximate
3D coordinates for the handle of the basket and the robot
grasped the basket successfully via the occluded handle, as
shown in figure 9. In this particular case, the class model
was built for the particular instance, so there was no gener-
alization exhibited, but we expect the results to continue to
be good when there are more instances in the class.

6. Object detection using 2.5D data
We can use 3DP class models to predict reasonably ac-

curate depths of objects in 2D intensity images (Figure 11
for labeled cars) using projections from 3D reconstructions.
Given a predicted depth map, we can match it against other



Figure 9. Some snapshots taken in the process (from left to right) of our robot’s grasp of a basket.
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Figure 12. Row 1: Original image. Row 2 and 3: 3D instance model generated from the 3DP class model.
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Figure 11. Imaged objects with corresponding stereo depth maps
(the second row) and depth maps generated by reconstruction from
the 3DP model (the third row).

available 2.5D data (such as from stereo images), to im-
prove recognition performance. In this section, we apply
this strategy to enhance the performance of two existing
2D object detection systems, using intensity images cou-
pled with 2.5D range images.

We performed experiments using two trained single-
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Figure 13. ROC curves for car detection.

view detectors for cars: one from Murphy, Torralba, and
Freeman [17] and one from Dalal and Triggs [5]. The Dalal-
Triggs detector is currently among the most accurate for
cars.

In this experiment, our test set consists of 109 outdoor
intensity images and corresponding depth maps obtained
from a Videre Designs stereo device [3]. These images in-



clude 127 annotated cars, all seen from the same viewpoint.
We ran the 2D detector on each image to get the 15

highest-scoring candidate detections. Each candidate ci

consists of a bounding box bi and a likelihood li. We con-
verted the SVM outputs of the Dalal and Triggs system to
probabilities using the method of Platt [18]. Inside each
candidate box, we used the 3DP reconstruction method to
estimate a depth map Zi. Note that the 3D ground planes
and the camera parameters of these images are unknown, so
we used a default camera matrix and 3D ground plane (as
in [10]).

Then, we compared the predicted depths with the mea-
sured depths, in each of the detection bounding boxes. Be-
cause the camera was not calibrated, we had to first register
our predicted depth map Zi to the stereo depth map Zs. We
computed the difference Di between Zi and the normalized
stereo depth map Zs over the depth region inside bi as fol-
lows (a1 is a scale parameter and a2 is an offset):

Di = min
a1,a2

√
(Zs − (a1Zi + a2))2 (6)

Then, we computed the posterior likelihood for each of the
15 candidates in the test image using a very simple log-
linear model:

exp(log(li)× w + log(1−Di)× (1− w)) (7)

The weighting parameter w was determined empirically by
optimizing over a separate validation set of 20 images and
corresponding depth maps. For the Dalal-Triggs detec-
tor, we found that w = 0.6 and for the Murphy-Torralba-
Freeman detector, w = 0.5.

Figure 13 shows that the performance of both detectors
can be substantially improved by generating predicted range
information for each detection and filtering detections based
on the match between the predicted and actual ranges.

7. 3D pop-up scenes from a single image
Once we reconstruct a 3DP instance model from an im-

age, we can automatically construct a 3D ’pop-up’ visual-
ization of that instance. We use the same method as [9] to
set the camera matrix and a 3D ground plane. Figure 12
shows some 3D popup models of chairs and cars; these
3D scenes can be further appreciated by watching our on-
line videos1. In contrast to previous work on photo pop-
up [9, 22], our results focus on creating realistic 3D shapes
of objects.

8. Conclusion
We have presented an approach for reconstructing 3D

objects from a single image, by using a learned 3D class

1http://people.csail.mit.edu/chiu/demos.htm

shape model. The 3D class model is based on a set of 3D
oriented primitives, and can be learned from a small set of
labeled views of an object in the class. The single-view re-
construction generates not only realistic views of 3D mod-
els, but also provides accurate 3D information for entire ob-
jects. We demonstrated the usefulness of our reconstruction
in three applications: robot manipulation, object detection,
and object pop-up.
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