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Qutline

* Goal
—Large-area augmented reality training/gaming systems using head
mounted displays (HMDs)
* The real-time vision-aided navigation component

* An extended Kalman filter for 6 DOF pose estimation
—Error-state, IMU-centric
—Relative pose estimation through multi-camera visual odometry
—Absolute correction from landmark matching with a pre-built database
—Covariance modeling on landmark points for stabilization
—Head prediction for real-time implementation

* Results

» Conclusions and future work



Large-Area Augmented Reality:
Making Live Training/Gaming Come to Life
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Demanding Requirements for Navigation

* It must estimate highly-accurate 6DOF pose estimation of the user’s head,
then the system knows where to insert virtual objects in the real scene
viewed by users.

» The pose estimation needs to be consistent and stable. Jitter or drift on
inserted objects disturbs the illusion of mixture between rendered and real

world.

* It needs to operate seamlessly for large areas indoors and outdoors.




Helmet based Interface Subsystem for Navigation
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Extended Kalman Filter

- Our Kalman filter adopt the so called "error-state" formulation, so there is no
need to specify an explicit dynamic motion model.

- The filter dynamics follow from the IMU error propagation equations
- Which evolve slowly over time
- And are more amenable to linearization

» The updating of the Kalman filter comes from two external source data
» Relative pose information provided by visual odometry module
« Global measurements provided by the visual landmark matching module
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Prediction (IMU Propagation)

* The total states of our filter: camera location T, the gyroscope bias vector b,
velocity vector v in global coordinate frame, accelerometer bias vector b,, and
ground to camera orientation .
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* IMU mechanization equations for the state estimate propagation with the
gyroscope M, (t) and accelerometer a_(t) readings from the IMU between
consecutive video frame time instants.

* The Kalman filter error state:
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* The dynamic process model of the error-state:
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Multi-Camera Visual Odometry: Front/Back Stereo Pairs

Backpack system with
two stereo pairs

Back view

Wide total FOV greatly enhances accuracy/robustness
* Ambiguity of estimation between rotation and translation is mitigated
* Moving objects unlikely to dominate total FOV
 Harris-corner features are tracked across frames to estimate relative pose
* Improved precision by using multiple cameras and tracking features across large FOV



Bundmg a Landmark database from Lidar and Video

» 40 scans and video taken outdoor
and indoor (every 5 m)

» Automatic alignment of Lidar scans
using coarse-to-fine algorithms

* Different colors show overlapping
of different aligned scans
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Technical Approach

* HOG descriptor-based feature
representation of landmark scene
points

» Geometry-constrained landmark
matching with outlier removal

*Detection of distinctive natural
landmarks under various viewpoint
illumination, and distance changes

 Robust, real-time matching of
landmarks from a large database
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Correction (Vision Measurements)

* We use the stochastic cloning approach to handle relative pose measurements
from visual odometry module.

- measurements are a function of the propagated error-state of the current time
instance and the cloned error-state from previous time instance.

* We transfer each 3d local landmark point to global coordinate as point
measurements from landmark matching.
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Results on Fusing Visual Odometry and Inertial Data

* We compare our new error-state filter to our previous old filter
 Previous old filter used a constant motion model assumption.
* New filte$ based on error state model does not need to make any assumption.
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Outdoor: Total distance — 129 meters

Closure error: Old filter: 1.2020 meter,
New filter: 0.3916 meter

Indoor: Total distance — 157.5 meters

Closure error: Old filter: 0.6760 meter,
New filter: 0.4639 meter



Results on Fusing Local and Global Measurements

* Blue: local measurements, Red: local and global measurements.

Outdoor: Total distance — 256 meters Indoor: 5 repetitions, 165 meters
Closure error: Local Measurements: 2.49 m, Average error on 12 marked positions
Global Measurements: 0.57 m (60 repetitions): 0.085 meters

Global Measurements
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Indoor/ Outdoor Tracking Long Sequence Results




Reducing Jitter in Insertion
Covariance-Based Filtering of Pose

* Inconsistent pose estimation causes jumps/jitters during insertion.

* The accuracy of pose estimation decreases if there are fewer landmark point
matches closer to the camera where the “depth information” is more accurate.

* We model the 3d reconstruction uncertainty of landmarks P = [Px,Py,Pz] and
implicitly rely more on closer landmark point matches in Kalman filter.
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Results: Accurate Pose and Jitter-Free

— Without covariance filtering —— With covariance filtering
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Pose Prediction for Real-Time Implementation

* We use the buffered high-frequency (100Hz) IMU data between the latest frame
time and the current render time (15Hz frame rate) to predict the pose.

* This solution is effective when the camera poses are lagged within a single frame
period (66 milliseconds at 15Hz frame rate).
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Long Sequence Results with Landmark Matching
——
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Insertion is

done using:

*Estimated
3D Head
Pose and
Location

Insertion of Avatars (Outdoors)
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Insertion is
done using:

*Estimated
3D Head
Pose and
Location

*Depth map
from stereo
for occlusion
culling

Insertion of Avatars (Indoors)

Video




Conclusions and Future Work

* We proposed a unified Kalman filter framework using local and global sensor
data fusion for vision-aided navigation related to augmented reality
applications.

* We use landmark matching from a pre-built landmark database to prevent long
term drift.

* We capture the 3D reconstruction uncertainty of landmark points to improve
the stability of pose estimation.

* Future work:
— Reduce the number of cameras while maintaining accuracy
— Update the landmark database automatically
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Thank you!




