Stable Vision-Aided Navigation for Large-Area Augmented Reality

Taragay Oskiper, Han-Pang Chiu, Zhiwei Zhu
Supun Samarasekera, Rakesh “Teddy” Kumar

Vision and Robotics Laboratory
SRI-International Sarnoff, Princeton, NJ, USA
Email: {han-pang.chiu,rakesh.kumar}@sri.com
Outline

• Goal
 – Large-area augmented reality training/gaming systems using head mounted displays (HMDs)

• The real-time vision-aided navigation component

• An extended Kalman filter for 6 DOF pose estimation
 – Error-state, IMU-centric
 – Relative pose estimation through multi-camera visual odometry
 – Absolute correction from landmark matching with a pre-built database
 – Covariance modeling on landmark points for stabilization
 – Head prediction for real-time implementation

• Results

• Conclusions and future work
Large-Area Augmented Reality: Making Live Training/Gaming Come to Life

Insert Tracers, explosions, muzzle flashes, and “3D sound” in the real scene,

Culturally realistic, reactive, dynamic, synthetic entities support non-kinetic and kinetic interactions

Seamless indoor/outdoor tracking of trainee and weapon position and orientation

Augmented outdoor scene

Place intelligent synthetic actors into the real 3D scene

Realistic depth mapping and occlusion

War-fighter Worn Video & HMD

• Closed loop full spectrum collective training,
• Repeatable and scriptable, with unlimited variation
• Rapidly deployable at home and deployed stations

Real scene

• Exercise Review and Immersive After Action Analysis
Demanding Requirements for Navigation

• It must estimate highly-accurate 6DOF pose estimation of the user’s head, then the system knows where to insert virtual objects in the real scene viewed by users.

• The pose estimation needs to be consistent and stable. Jitter or drift on inserted objects disturbs the illusion of mixture between rendered and real world.

• It needs to operate seamlessly for large areas indoors and outdoors.
Helmet based Interface Subsystem for Navigation

Portable Sensor Module. Front and Back stereo cameras and IMU. Attaches to sensor mount on helmet.

Cables integrated for communications between helmet and backpack

Sensor Integrated Helmet

Computing Pack

Battery/Comms. Pack

Option 1: Ruggedized Fanless Intel Core 2 Duo 2.26GHz, 5.25” x 5.25” x 2” 2.5 lbs

Option 2: Dell rugged laptop system, Intel Core 2 Dua 2.53GHz
Extended Kalman Filter

- Our Kalman filter adopt the so called "error-state" formulation, so there is no need to specify an explicit dynamic motion model.

- The filter dynamics follow from the IMU error propagation equations
 - Which evolve slowly over time
 - And are more amenable to linearization

• The updating of the Kalman filter comes from two external source data
 • Relative pose information provided by visual odometry module
 • Global measurements provided by the visual landmark matching module
Prediction (IMU Propagation)

• The total states of our filter: camera location T_{CG}, the gyroscope bias vector b_g, velocity vector v in global coordinate frame, accelerometer bias vector b_a, and ground to camera orientation q_{GC}.

$$s = [q_{GC}^T \ b_g^T \ v^T \ b_a^T \ T_{CG}^T]^T$$

• IMU mechanization equations for the state estimate propagation with the gyroscope $\omega_m(t)$ and accelerometer $a_m(t)$ readings from the IMU between consecutive video frame time instants.

• The Kalman filter error state:

$$\delta s = [\delta \Theta^T \ \delta b_g^T \ \delta v^T \ \delta b_a^T \ \delta T_{CG}^T]^T$$

• The dynamic process model of the error-state:

$$\delta s = F \delta s + G n$$

$$F = \begin{bmatrix} -[\hat{\omega}]_x & -I_3 & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \end{bmatrix}, \ n = \begin{bmatrix} n_g \\ n_{wg} \\ n_a \\ n_{wa} \end{bmatrix}, \text{ and } G = \begin{bmatrix} -I_3 & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & I_3 & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \\ 0_{3x3} & 0_{3x3} & 0_{3x3} & 0_{3x3} \end{bmatrix}$$
Multi-Camera Visual Odometry: Front/Back Stereo Pairs

Backpack system with two stereo pairs

Wide total FOV greatly enhances accuracy/robustness
- Ambiguity of estimation between rotation and translation is mitigated
- Moving objects unlikely to dominate total FOV
- Harris-corner features are tracked across frames to estimate relative pose
- Improved precision by using multiple cameras and tracking features across large FOV
Building a Landmark database from Lidar and Video

- 40 scans and video taken outdoor and indoor (every 5 m)
- Automatic alignment of Lidar scans using coarse-to-fine algorithms
- Different colors show overlapping of different aligned scans

Accumulated Point Cloud
Global Landmark Matching

Histogram of Gradient (HOG) features

Technical Approach

• HOG descriptor-based feature representation of landmark scene points

• Geometry-constrained landmark matching with outlier removal

• Detection of distinctive natural landmarks under various viewpoint illumination, and distance changes

• Robust, real-time matching of landmarks from a large database
Correction (Vision Measurements)

- We use the stochastic cloning approach to handle relative pose measurements from visual odometry module.
 - Measurements are a function of the propagated error-state of the current time instance and the cloned error-state from previous time instance.
- We transfer each 3D local landmark point to global coordinate as point measurements from landmark matching.

\[
\mathbf{Y} = \mathbf{R}_{LG} \mathbf{X} + \mathbf{T}_{LG}
\]

\[
\delta \mathbf{Y} \sim \hat{\mathbf{R}}_{LG} \delta \mathbf{X} + [\hat{\mathbf{R}}_{LG} \hat{\mathbf{X}}]_x \rho + \delta \mathbf{T}_{LG}
\]

\[
\Sigma_Y \sim \hat{\mathbf{R}}_{LG} \Sigma_X \hat{\mathbf{R}}_{LG}^T + [\hat{\mathbf{X}}]_x \Sigma_{RLG} [\hat{\mathbf{X}}]_x^T + \Sigma_{T_{LG}}
\]

\[
z = f(\mathbf{Z}) + \nu \quad \text{with} \quad f(\mathbf{Z}) = [Z_1/Z_3 \quad Z_2/Z_3]^T
\]

\[
\mathbf{Z} = \mathbf{R}_{CG} \mathbf{Y} + \mathbf{T}_{CG} = \mathbf{R}_{CG} (\mathbf{Y} - \mathbf{T}_{CG}).
\]

\[
\delta \mathbf{Z} \sim [\hat{\mathbf{R}}_{CG} (\hat{\mathbf{Y}} - \hat{\mathbf{T}}_{CG})]_x \delta \mathbf{\Theta} + \hat{\mathbf{R}}_{CG} (\delta \mathbf{Y} - \delta \mathbf{T}_{CG}) + \nu.
\]

\[
\delta \mathbf{Z} \sim \mathbf{H}_L \delta s + \eta
\]

\[
\mathbf{H}_L = \mathbf{J}_f [\mathbf{J}_\Theta \quad 0_{3 \times 3} \quad 0_{3 \times 3} \quad 0_{3 \times 3} \quad \mathbf{J}_{\delta \mathbf{T}_{CG}}]
\]

\[
\mathbf{J}_f = \begin{bmatrix}
1/\hat{z}_3 & 0 & -\hat{z}_1/\hat{z}_3^2 \\
0 & 1/\hat{z}_3 & -\hat{z}_2/\hat{z}_3^2
\end{bmatrix}
\]

\[
\mathbf{J}_\Theta = [\hat{\mathbf{R}}_{CG} (\hat{\mathbf{Y}} - \hat{\mathbf{T}}_{CG})]_x, \quad \text{and} \quad \mathbf{J}_{\delta \mathbf{T}_{CG}} = -\hat{\mathbf{R}}_{CG}
\]

\[
\Sigma_\eta = \mathbf{J}_f [\hat{\mathbf{R}}_{CG} \Sigma_Y \hat{\mathbf{R}}_{CG}^T] \mathbf{J}_f^T + \Sigma_\nu
\]
Results on Fusing Visual Odometry and Inertial Data

- We compare our new error-state filter to our previous old filter.
 - Previous old filter used a constant motion model assumption.
 - New filter based on error state model does not need to make any assumption.

Indoor: Total distance – 157.5 meters
Closure error: Old filter: 0.6760 meter,
New filter: 0.4639 meter

Outdoor: Total distance – 129 meters
Closure error: Old filter: 1.2020 meter,
New filter: 0.3916 meter
Results on Fusing Local and Global Measurements

- Blue: local measurements, Red: local and global measurements.

Outdoor: Total distance – 256 meters
Closure error: Local Measurements: 2.49 m, Global Measurements: 0.57 m

Indoor: 5 repetitions, 165 meters
Average error on 12 marked positions (60 repetitions): 0.085 meters
Global Measurements
Indoor/Outdoor Tracking Long Sequence Results

Top View

Camera View
Reducing Jitter in Insertion Covariance-Based Filtering of Pose

- Inconsistent pose estimation causes jumps/jitters during insertion.
- The accuracy of pose estimation decreases if there are fewer landmark point matches closer to the camera where the “depth information” is more accurate.
- We model the 3d reconstruction uncertainty of landmarks $P = [P_x, P_y, P_z]$ and implicitly rely more on closer landmark point matches in Kalman filter.

$$
\Sigma_X = J \begin{bmatrix}
I_2 & 0_{2 \times 2} \\
0_{2 \times 2} & I_2
\end{bmatrix} J^T
$$

$$
pl = [pl_x, pl_y]^T + n = [P_x/P_z, P_y/P_z]^T + n
$$

$$
pr = [pr_x, pr_y]^T + n
$$

$$
pr_x = \frac{R_1 P_x + R_2 P_y + R_3 P_z + T_1}{R_7 P_x + R_8 P_y + R_9 P_z + T_3}
$$

$$
pr_y = \frac{R_4 P_x + R_5 P_y + R_6 P_z + T_2}{R_7 P_x + R_8 P_y + R_9 P_z + T_3}
$$

$$
R = \begin{bmatrix}
R_1 & R_2 & R_3 \\
R_4 & R_5 & R_6 \\
R_7 & R_8 & R_9
\end{bmatrix}, \quad T = [T_1 \quad T_2 \quad T_3]^T
$$

$$
\hat{P}_x = pl_x \hat{P}_2
$$

$$
\hat{P}_y = pl_y \hat{P}_2
$$

$$
\hat{P}_z = \frac{T_1 - T_3 pr_x}{pr_x(R_7 pl_x + R_8 pl_y + R_9) - (R_1 pl_x + R_2 pl_y + R_3)}
$$
Results: Accurate Pose and Jitter-Free

- Without covariance filtering
- With covariance filtering

Frame-To-Frame Translation (meter)

Time (frame)

©2010 Sarnoff Corporation
Pose Prediction for Real-Time Implementation

• We use the buffered high-frequency (100Hz) IMU data between the latest frame time and the current render time (15Hz frame rate) to predict the pose.
• This solution is effective when the camera poses are lagged within a single frame period (66 milliseconds at 15Hz frame rate).
Long Sequence Results with Landmark Matching

Total Travelled Distance: 810.6 meters
Total Travelled Time: 16.46 minutes
Insertion of Avatars (Outdoors)

Insertion is done using:

• Estimated 3D Head Pose and Location
Insertion of Avatars (Indoors)

Insertion is done using:

- Estimated 3D Head Pose and Location
- Depth map from stereo for occlusion culling

Video
Conclusions and Future Work

• We proposed a unified Kalman filter framework using local and global sensor data fusion for vision-aided navigation related to augmented reality applications.

• We use landmark matching from a pre-built landmark database to prevent long term drift.

• We capture the 3D reconstruction uncertainty of landmark points to improve the stability of pose estimation.

• Future work:
 – Reduce the number of cameras while maintaining accuracy
 – Update the landmark database automatically
Thank you!