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Abstract 
 
    We present a new method to perform reliable matching 
between different images. This method finds complete 
region correspondences between concentric circles and 
the corresponding projected ellipses centered on interest 
points. It matches interest points exploiting all the 
available luminance information in the regions under 
affine transformation. Experiments have been conducted 
on many different data sets to compare our approach to 
two SIFT-based local descriptors. The results show the 
new method is more effective in natural scenes without 
distinctive texture patterns. It also offers increased 
robustness to partial visibility, object rotation in depth, 
and viewpoint angle change. 
 
 
1. Introduction  
 
Image matching is an essential aspect of many approaches 
to problems in computer vision, including object 
recognition, stereo matching, and motion tracking. A 
prominent approach to image matching has consisted of 
identifying “interest points” in the images, finding 
photometric descriptors of the regions surrounding these 
points and then matching these descriptors across images. 
The development of these methods has focused on 
finding interest points and local image descriptors that are 
invariant to changes in image formation, in particular, 
invariant to affine transformations of the image regions. 
The idea is to compute local descriptors from constructed 
“affine invariant image regions” [5, 6] around interest 
points for matching. Then they compute a cost of the 
match based on the similarity of the local descriptors 
sampled from small image patches around them. 
    Many local descriptors such as steerable filters [7], 
moment invariants [8], and SIFT-based descriptors [3, 4] 
have been developed. Image matching based on affine-
invariant interest point detectors and local photometric 
descriptors has been shown to work well in the presence 
of changes in viewpoint, partial visibility and extraneous 
features. However, not surprisingly, the accuracy of 
matching decreases with substantial changes in viewpoint 

and also when the regions around the interest points lack 
distinctive textures.  
    So systems that rely on matching interest points across 
images using local descriptors typically employ some set 
of additional filters to “verify” the putative matches based 
on local descriptors. A good example of this can be found 
in Schaffalitzky and Zisserman’s [9] method for multi-
view matching, which involves first increasing the 
correlation neighborhood size of a putative match, 
followed by intensity based affine registration, followed 
by growing using affine registration and followed, finally, 
a robust fit for the epipolar geometry. The need for better 
descriptors to reduce false matches is also evident in 
Mikolajczyk and Schmid’s comparative study [1], where 
they found the ranking of accuracy in different methods is 
relatively insensitive to the choice of interest point 
detector but more dependent on the representation used to 
model the regions around interest points. 
    In this paper, we explore an alternative method for 
matching interest points that does not rely on local 
photometric descriptors but, instead, involves building 
complete region correspondences centered on interest 
points under an affine transformation and that exploits all 
the available luminance information in the regions. Our 
proposed method is a computational compromise between 
the local descriptor comparison and full region 
registration methods that search over transformation 
parameters. We find it performs better than matching 
based on the popular SIFT-based descriptors [3, 4], 
particularly for more natural images than the highly 
textured images normally used to benchmark interest 
point detection and feature descriptors. It is also more 
robust to variations in viewpoint and allows for a more 
powerful handling of occlusion. 
 

2. Concentric Circles and Ellipses 
 
Concretely, we assume that a set of “interest points” has 
been identified in each image and that these image points 
are likely to correspond to different views of the same 
points in the scene. The problem is then to decide which 
pairs of interest points in fact correspond to the same 
scene point.  



 
 
 
 
 
 
 
 
    This situation is illustrated in Figure 1, which shows 
one image point P1 in an initial (reference) image I1 and 
another image point P2 in a second (transformed) image 
I2. We want to compute a cost of the match of P1 to P2 
based on the similarity of the colors in the image patches 
around them. We will assume that P1 and P2 correspond to 
point P in the scene, which is on a 3D planar surface in 
the scene. We want to compute a cost that is insensitive to 
the viewpoint change (T) between the images, 
approximated by an affine transformation. In our 
approach, we will define the region G1 to be a set of 
concentric circles around p1 and attempt to find a set of 
concentric ellipses around p2 that minimize the image 
differences and that satisfy the conditions required for an 
affine transformation. This set of ellipses defines G2. 
    Let us now focus on the relationship between 
concentric circles and ellipses under affine 
transformation. We know a perspective transformation of 
a smooth surface can be locally approximated by an 
affine transformation. Under a pure affine transformation, 
the projections of concentric circles will be ellipses with 
the same center, which is the center point of the projected 
concentric circles. An affine transformation has six 
degrees of freedom including the 2 by 2 affine matrix A 
and the offset two-component vector t. Assume x1 and x2 
are image coordinates of matched points on the circle in I1 
and the projected ellipse in I2 respectively. It can easily be 
shown that this following form represents an affine 
transformation and the transformed circles are co-
incident. 

txAx += 12  
    Since a circle in I1 should be an ellipse in I2 under any 
transformation, we define that the origins of the polar 
coordinates in I1 and I2 are P1 and P2 in Fig. 1 
respectively, thus the two translation degrees of freedom 
(represented by vector t) can be fixed. The point x1 on the 
circle with radius R and angle θ1 in I1 has the form 
(Rcosθ1, Rsinθ1) and each point in the polar coordinate 
system of I2 has the form (rcosθ2, rsinθ2). So the final 
equation to generate the projection of concentric circles in 
I2 becomes. 
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    There are eight parameters in this equation (2). But if 
P1 and P2 are obtained by an affine invariant point/region 
detector, the detector has already constructed the affine-

invariant elliptical regions E1 and E2 around P1 and P2. 
And the normalized matrices A1 and A2 can be derived. 
So, we can normalize E1 and E2 in an affine invariant way 
around center points P1 and P2 respectively. Then we can 
set the affine matrix A= A2A1

-1 which projects elliptical 
region E1 onto E2.  
    So in our implementation, we can just match concentric 
circles G1 and the resulting projected ellipses G2 in Fig. 1 
based on A and a set of known (R, r, θ1, θ2), that is, the 
set of points (r, θ2) on an ellipse in the transformed image 
corresponding to the set of points on a circle of radius R 
and associated angle θ1 in the original image. 
 
3 Matching Method 
 
Our approach aims to find an explicit correspondence for 
all the pixels in the regions around a pair of interest 
points. We address the problem of changes in 
illumination by normalizing intensity in the R, G, and B 
channels [2]. For each pair of interest points that we want 
to match, we generate polar-sampled (m angles) templates 
T1 and T2 originated from the interest points in the 
reference image I1 and transformed image I2 respectively 
as shown in Fig. 2. The problem of matching concentric 
circles in I1 and the corresponding projected ellipses in I2 
becomes that of computing color difference cost between 
the line in T1 and the path in T2, generated by the affine 
transformation equation in Section 2. 
    Note that as Fig. 3 makes clear, corresponding columns 
in the template cannot be compared directly. There is an 
unknown stretching along the θ axis as well as an 
unknown rotation. 
 
 

             
Figure 2: There are n1 rows and n2 rows in polar-sampled (m 
angles) templates T1 and T2 respectively. 
 

     

       
Figure 3: Two corresponded rays in reference image I1 and 
transformed image I2 are marked respectively. The warping 
situation exists in the polar sampled templates T1 and T2 
generated from I1 and I2. Polar sampled templates T1 and T3 
generated from I1 and I3 can’t be compared directly due to an 
unknown image rotation.  
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Figure 1. Characterizing regions for image matching. 
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    To address these issues, for each pair of matched 
interest points, we run a dynamic warping algorithm to 
match polar sampled templates T1 and T2 generated from 
reference image I1 and transformed image I2 respectively. 
We take one narrow horizontal patch from row 1 to k in 
T1 (corresponding to a circular region of radius R in I1) 
and the corresponding area in T2 (corresponding to an 
elliptical region in I2) generated by the affine equation in 
section 2. Then we run the dynamic warping algorithm 
formulated in the following equations to match them. 
Note that strip column C1 on T1 could warp to more than 
one strip columns on T2, and vice versa.  
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    This is started with one particular column on T1 and 
different starting columns on T2 so as to handle image 
rotation. The one with lowest cost(m,m) is the starting 
column of T2 we want. Since the transformation 
parameters of adjacent projected ellipses are identical, we 
take the next horizontal line at row K where K > k in T1 
and generate the mapped path (r, θ2 : the row r along each 
column θ2) on T2 (Fig. 2).  Since we know the warping, 
from T1 to T2, we can efficiently compute the cost of a 
neighborhood of radius R within the original circle 
around the interest point P1 on reference image I1 (Fig. 4) 
versus the projected ellipse on transformed image I2 
around the interest point P2 as 

),,(),(

)),(),((

12

1

2
2211

1

ARTrwhere

rIRIcost
m

θθ

θθ
θ

=

−= �
≤≤  

    Then this process can be continued with the circle of 
larger radius. Thus the matched region is grown by 
increasing the radius of the original circle.  
    If (I1 (θ1, R)-I2 (θ2, r)) of any angle θ1 along the 
trajectory is bigger than some pre-specified threshold, we 
mark the position with this particular angle θ2 along the 
trajectory of the ellipse as being occluded, as shown in 
Fig. 4. We keep track of what fraction of the rays 
radiating from the interest point is marked occluded and 
stop the matching process if this fraction exceeds 1/3. 
This process does a good job of stopping the growing of 
the matched regions in the presence of partial occlusion. 
    The top N candidate pairs of matched interest points 
with the lowest average cost will be preserved. They are 
the pairs of matched points P1 and P2 that we will return. 
The matched regions around P1 and P2 in the reference 
image I1 and the transformed image I2 respectively after 
the process is the final result of image matching in our 
method.  
  

  
 
Figure 4: The concentric circular region in the reference image 
I1 and the elliptical region in the transformed image I2 that is the 
result of the projection of the concentric circles. The lighter 
colored points indicate possible occlusion positions we detected 
along the trajectory of the projected ellipse.   
 
4. Experimental Results 
 
The results of our matching method are compared with 
those from two SIFT-based local descriptors [3, 4] since 
they performed best among existing local photometric 
descriptors in Mikolajczyk and Schmid’s evaluation [1]. 
To make the comparison fair, all three methods use the 
same input set of “interest points” obtained by the affine 
invariant points method in [5]. Our initial implementation 
takes about 1.8 seconds to process a pair of 320*240 
images on a standard 2.52 GHz Pentium PC. Although 
this is slower than simple local descriptor comparisons; it 
is faster than most verification methods required to 
reduce the errors in the initial descriptor matches. 
    The main data set we used to evaluate the performance 
is from MIT-CSAIL Database1. We conducted 
experiments on several sequences of image frames from 
natural scenes of offices, streets, and corridors. We divide 
them into two parts: indoor scenes and outdoor scenes. 
Then we matched the image frames that are taken from 
widely separated viewpoints. We also evaluated five 
different data sets of controlled object images to address 
several issues that can affect the performance of image 
matching methods, including significant geometric 
transformation (Small_Rotation, Large_Rotation), texture 
(Distinctive_Texture, Similar_Texture) and occlusion. 
Each data set contains 10 image pairs collected from the 
Internet.  
    As shown in Fig. 5, only a handful of interest points 
can be detected on most images in our data sets as 
opposed to highly textured images (graffiti and cereal 
boxes) often used for evaluation. Since the number of 
detected interest points tends to be small, the matching 
accuracy per point pair is more important than the sheer 
quantity of the matched pairs, especially for applications 
such as recognition. So all three methods return the best 
N matches for each image pair (N is usually 5 or 10, 
depending on the size of the image). We report the 
accuracy rate (percentage of correct matches among the 
best N matches) to evaluate the performance of each 
method. The performance is displayed in Table 1. 

                                                 
1 http://web.mit.edu/torralba/www/database.html 
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Data Set  Ours SIFT PCA-SIFT 
Indoor  0.717/675 0.479/675 0.431/675 
Outdoor  0.711/665 0.507/665 0.517/665 
Small_Rot  0.92/50 0.90/50 0.92/50 
Large_Rot  0.50/50 0.36/50 0.35/50 
Distinctive  0.91/100 0.81/100 0.96/100 
Similar  0.70/100 0.68/100 0.67/100 
Occlusion 0.80/50 0.72/50 0.71/50 

 
Table 1: Accuracy rate/total number of returned matches 
of the three methods on all data sets. 
 
    Our method outperforms other two methods by about 
20-30% in the main data set. This result illustrates the 
advantage of incorporating more photometric information 
around matched points to verify the matches. SIFT-based 
descriptors occasionally produce incorrect matches due to 
large change in viewpoint (Fig. 6). Our method still 
returns correct matches in the overlapped part.         
    We also want to mention the occlusion data set since it 
is an important issue in image matching tasks. We used 
some pairs of images where the object in the reference 
image is partially covered by other objects in the 
transformed image. The results of our method in these 
cases are better than when using SIFT-based descriptors, 
as illustrated in Fig. 7. SIFT-based descriptors generate 
mismatches if the texture around an incorrectly matched 
point in the transformed image is similar to that of the 
correct match, which is occluded. It rarely happens in our 
methods because the matched region is extended to verify 
the match and we detect the sudden change in intensity 
difference due to the occlusion.   
 

 

 
         (a)                             (b)                            (c)                                      
Figure 6. (a) All five matches returned by our method are 
correct. (b) Two of five matches returned by SIFT descriptors 
are the matches that the correct answer does not exist. (c) Three 
of five matches returned by PCA-SIFT descriptors are incorrect. 
Two incorrect matches are due to occlusion. 

   

    
         (a)                             (b)                            (c)                                      
Figure 7. (a) All five matches returned by our method are 
correct. (b) One of five matches returned by SIFT descriptors is 
wrong due to similar texture. (c) One of five matches returned 
by PCA-SIFT descriptors is wrong due to occlusion.   
 
5. Conclusions  
 
In this paper we present a new method to perform reliable 
matching between different images. Our method 
constructs detailed pixel level matches between regions 
rather than relying on local photometric descriptors. We 
showed how to find complete region correspondences 
between concentric circles and the corresponding 
projected ellipses under affine transformation.  It is more 
robust than previous methods to a variety of textures and 
to occlusion because it incorporates more luminance 
information around the interest points and because it finds 
a more detailed region correspondence. Experiments 
showed the new method performs substantially better in a 
variety of natural scenes than two SIFT-based descriptors. 
It also offers increased robustness to partial visibility, 
greater object rotation in depth, and more viewpoint angle 
change with acceptable computation cost. 
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Figure 5. The Box-and-Whisker plot of the number of detected 
interest points in each data set using affine interest point detector 


