
Computer Vision and Image Understanding 113 (2009) 1183–1197
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Learning to generate novel views of objects for class recognition

Han-Pang Chiu *, Leslie Pack Kaelbling, Tomás Lozano-Pérez
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
a r t i c l e i n f o

Article history:
Received 14 July 2008
Accepted 10 June 2009
Available online 12 August 2009

Keywords:
Object recognition
Categorization
Shape representation
1077-3142/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.cviu.2009.06.004

* Corresponding author.
E-mail address: chiu@csail.mit.edu (H.-P. Chiu).

1 So-called ‘Potemkin villages’ were artificial villages
Our models, too, are constructed of facades.
a b s t r a c t

Multi-view object class recognition can be achieved using existing approaches for single-view object class
recognition, by treating different views as entirely independent classes. This strategy requires a large
amount of training data for many viewpoints, which can be costly to obtain. We describe a method for
constructing a weak three-dimensional model from as few as two views of an object of the target class,
and using that model to transform images of objects from one view to several other views, effectively
multiplying their value for class recognition. Our approach can be coupled with any 2D image-based rec-
ognition system. We show that automatically transformed images dramatically decrease the data
requirements for multi-view object class recognition.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

After seeing a number of instances of objects from the same
class from different views, a vision system should be able to recog-
nize other instances of that class from arbitrary views, including
views that have not been seen before. In most current approaches
to object class recognition, the problem of recognizing multiple
views of the same object class is treated as one of recognizing mul-
tiple independent object classes, with a separate model learned for
each. This independent-view approach can be effective when there
are many instances at different views available for training, but can
typically only handle new viewpoints that are a small distance
from some view on which it has been trained.

An alternate strategy is to use multiple views of multiple in-
stances to construct a model of the distribution of three-dimen-
sional shapes of the object class. Such a model would allow
recognition of many entirely novel views. This is a very difficult
problem, which is as yet unsolved.

In our work, we take an intermediate approach, which exploits
the fact that there is a fundamental relationship between multiple
views of the same class of objects, and allows subsequent unla-
beled views of new objects from the same class to be transformed
into novel views. We define the Potemkin1 model of a three-dimen-
sional object as a collection of parts, which are oriented 3D primitive
shapes. The model allows the parts to have an arbitrary arrangement
in 3D, but assumes that, from any viewpoint, the parts themselves
can be treated as being nearly planar. We will refer to the arrange-
ment of the part centroids in 3D as the skeleton of the object. As
ll rights reserved.

, constructed only of facades.
one moves the viewpoint around the object, the part centroids move
as dictated by the 3D skeleton; but rather than having the detailed
3D shape model that would be necessary for predicting each part’s
shape in each view, we model the change of each part’s image be-
tween views as a 2D perspective transformation.

The Potemkin model is trained and used in three phases. The
first phase is class-independent and carried out once only. In it,
the system learns, for each element of a set of simple oriented
3D primitive shapes, what 2D image transformations are induced
by changes of viewpoint of the shape primitive. The necessary data
can be relatively simply acquired from synthetic image sequences
of a few objects rotating through the desired space of views. After
the first phase is complete, the model can be used for new object
classes with very little overhead. This process might be seen as
learning basic view transformations of primitive 3D shapes by
‘‘watching the world go by”, and then using that knowledge to
accelerate learning about new object types which are constituted
of these primitives.

The second phase is class-specific: a few images from a target
class (typically of a single object from two views) are used to esti-
mate the 3D skeleton of the object class, to select an oriented prim-
itive 3D shape for each of the parts, and to initialize image
transforms between pairs of views, for each part.

The third phase is view-specific: given a new view of interest,
the class skeleton is projected into that view, specifying the 2D
centroids of the parts. Then, all available 2D training images, from
any view, are transformed into this view using the image trans-
forms selected in the second phase. These new images are ‘‘virtual
training examples” of previously seen objects from novel views.
These virtual training examples, along with any real training exam-
ples that are available, can then be used as training data for any
view-dependent 2D recognition system, which can then be used

http://dx.doi.org/10.1016/j.cviu.2009.06.004
mailto:chiu@csail.mit.edu
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu


1184 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
to detect instances of the object class in the novel viewpoint. In our
experiments, we have trained a recognizer for a novel view of an
object with 100 virtual images transformed from 100 training
examples in other views; that recognizer, even though it had never
seen an actual image of an object of this class from this view, per-
forms as well as the same recognition algorithm trained on 50 ac-
tual images from this view.

In the following section we provide an overview of related
work. Then in Section 3 we sketch a basic version of the Potemkin
model, which uses only a single oriented primitive for learning the
transforms from view to view in the first phase. These transforms
are then used as the basis for transforms of all parts in the model.
This basic model is ultimately too weak to describe many object
classes well. Section 4 extends the basic Potemkin model to use a
basis set of multiple oriented primitives in the first phase, and to
select among them to represent each of the parts of the target class
based on a pair of initial training images of the class. For each part,
the transforms learned from the selected primitive are used to ini-
tialize image transforms between pairs of views. In Section 5 we
provide a self-supervised labeling method that obviates the need
for most of part labeling in the real training data. Section 6 demon-
strates that these extensions significantly outperform the basic
model and enable existing view-dependent detection systems to
achieve the same level of performance with many fewer real train-
ing images required.
2. Related work

There has been a great deal of work on modeling and recogni-
tion for single 3D objects (e.g., [1–4]), but these methods are not
designed to cover the variability in shape and appearance among
instances of a class and cannot be readily generalized for object
class recognition. There is also a long tradition of representing ob-
jects as arrangements of 3D building blocks (e.g., [5–11]). However,
it has been difficult to achieve robust recognition performance in
real images using these approaches.

Most recent advances in object class recognition attempt to
detect examples of a target class from only a single viewpoint
[12–22]. Our work leverages such advances, and enables them to
be applied to multi-view recognition without excessive training-
data requirements.

There is an existing body of work on multi-view object class
recognition for specific classes such as cars and faces [23–28].
For example, Everingham and Zisserman [29] generate virtual
training data for face recognition from multiple viewpoints using
a reconstructed 3D model of the head.

For object recognition, more generally, there are a number of
effective multi-view object class recognition systems that are con-
structed from several independent single-view detectors. Crandall
and Huttenlocher [30] treat ranges of poses as separate classes,
with a separate model learned for each. Torralba et al. [31] show
that sharing features among models for multiple views of the same
object class improves both running time and recognition perfor-
mance. Leibe et al.’s detection system [32] for cars combines a
set of seven view-dependent ISM detectors [33], each of which re-
quires hundreds of training examples to be effective.

There is increased recent interest in methods that make deeper
use of the relationship between views of the same class, via a range
of approaches.

One approach is to link regions of the same or similar training
instances across different viewpoints, forming a multi-view class
model for recognition. Thomas et al. [34] construct separate
view-dependent detectors for each of the viewing directions, and
track regions of the same instance across different viewpoints.
They use these integrated view-dependent detectors to improve
detection, by transferring information from one viewpoint to an-
other. Savarese and Fei-Fei [35] also relate multiple views by find-
ing correspondences among 2D regions, formed by feature
grouping, on the same instance across different views. Compared
to the work of Thomas et al, these models are more compact and
can be learned with very weak supervision. Rather than construct-
ing multiple view-dependent detectors, Kushal et al. [36] construct
a single model that relates partial surfaces of the target object class
among multiple viewpoints. Each partial surface is formed by lo-
cally dense rigid assemblies of image features on instances across
different views. Each of these three methods requires many train-
ing images from each viewpoint and the first two methods require
many views of the same training instances, which are relatively
difficult to obtain.

An alternative approach is to construct explicit 3D shape mod-
els of object classes. Hoeim et al. [37] create a coarse 3D model
from mean segmentations of two views of training instances, and
avoid the need for multiple views of the same training object in-
stance during learning. Yan et al. [38] use training images, taken
from a dense sampling of viewpoints around a specific object, to
reconstruct a 3D model for the target class. Both methods form cor-
respondences between 2D features across training instances at
arbitrary viewpoints by projecting the surfaces of the 3D model
onto each instance. Thus, the features can be shared across view-
points through 3D correspondence. However, these systems still
require many training instances at many viewpoints to achieve sat-
isfactory recognition results. To avoid collecting real training
images, Liebelt et al. [39] use a database of 3D CAD models of ob-
jects of the target class, and construct feature descriptors on syn-
thetic images generated from these 3D models. However, 3D CAD
models with realistic textures are not easily obtained for some ob-
ject classes.

The Potemkin model [40] is intermediate between the ap-
proaches based on cross-view constraints and those based on de-
tailed 3D models. Cross-view constraints, which are formed by
linking 2D regions of instances from one viewpoint to another, re-
quire many training images in each of the modeled viewpoints. De-
tailed 3D models of variable object classes can be difficult to learn
and use. Therefore, we construct a relatively weak 3D model,
which can be learned from as few as two labeled images, but is
powerful enough to generate virtual examples in novel viewpoints,
amplifying the effectiveness of any method that needs images from
multiple views.
3. Basic shape model

The Potemkin model is used to represent the approximate 3D
shape and relationship among views of a class of objects. In this
section we describe the basic version of the Potemkin model in de-
tail, including how to estimate the parameters from a small num-
ber of training images, and use it to generate virtual training
images in novel views. The basic model is ultimately too weak to
describe many classes of objects well, because it has only a single
primitive part shape. We will extend it to include multiple primi-
tive shapes and self-occlusion in Section 4. In addition, the training
algorithm for the basic model requires the outlines of the parts in
all real training images to be labeled. We will describe a simple ap-
proach that obviates the need for most of this labeling but still
requires a decomposition into parts in Section 5.
3.1. The basic Potemkin model

Informally, a basic Potemkin model can be viewed as a collec-
tion of planar ‘‘facades”, one for each part, which are arranged in
three dimensions. In order to model the transformation of an



H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1185
object from one view to another, the 3D structure is used to specify
the location of each part in the new view, and a set of learned view
transforms is used to specify how the pixels belonging to that part
in the first view should be transformed into the new view. To
achieve this, the view space is divided into a discrete set of view
bins, and an explicit 2D projective transform between each view
bin pair is represented for each part. Different transforms are nec-
essary because the parts have different shapes, depths, and orien-
tations, so their pixels move differently from view to view. This
paper makes assumption that all view bins can be transformed
to all others. If the portion of the view sphere covered by these bins
is large, it will necessary to limit transformations of images in one
bin to nearby bins in which nearby the same set of parts is visible.

More formally, a Potemkin model for an object class with N
parts is defined by:

� k view bins, which are contiguous regions of the view sphere;
� k projection matrices, Pa 2 R2�3, from normalized 3D coordinates

to image coordinates for each view bin a;
� a class skeleton, hS1; . . . ; SNi, specifying the 3D positions of part

centroids, in a fixed, normalized reference frame; and
� Nk2 view transformation matrices, Tj

a;b 2 R3�3, one for each part j
and pair of view bins a; b, which map points of an image of part
j from view a to view b.

This model is appropriate for object classes in which the skele-
ton is relatively similar for all of the instances of the class; if there
is more variability, and especially multi-modality, it will become
necessary to extend the model to probability distributions over
the skeleton and matrices, and to integrate or sample over model
uncertainty when using it for prediction.

Of course, a single linear projection cannot correctly model pro-
jections from 3D coordinates to all views in a bin, or from all views
in one bin to all views in another; we assume that the bins are
small enough that the error in such a model is tolerable. The choice
of bin size represents a model-selection problem. The smaller the
bins, the more accurate the model, but the more data needed to
train it reliably.

Label images indicate which pixels in a training image corre-
spond to each part. A Potemkin model, together with a label image
whose view bin is known, can be used to produce additional
images containing predicted views of the parts of the instance from
other view bins from which this same set of parts are visible.
Fig. 1. A synthetic nearly-planar box object used for learning the generic view
transformations.
3.2. Estimating the model

Our overall goal is to use the Potemkin model to enable learning
from fewer images than would otherwise be necessary. It is crucial,
then, that we be able to estimate the model itself from few labeled
training images. To enable this, we initialize the view transforms
using cheaply available synthetic data, then refine the transforms
using the available training images. Similarly, we solve for the skel-
eton points by pooling the data from all the instances in a view bin,
exploiting the assumption that the skeleton is relatively stable
across instances of the class.

The view bins are currently selected by hand, but it might be
desirable, in future, to use an adaptive quantization method to find
a variable-resolution partition of the view space that optimizes
model complexity and effectiveness.

The projection matrices Pa, from 3D to view, are dependent only
on the choice of view bins, and can be computed analytically for
the centroid of the view bin or estimated from data sampled over
the whole bin.

The model is estimated in two phases: one generic, and one ob-
ject-class specific.
3.2.1. Generic phase: learning generic view transformations
The generic phase starts by learning a set of generic view trans-

formations, based on a single oriented 3D primitive shape.
The set of generic transforms Ta;b map points of an image in

view bin a to points of an image in view bin b. These transforms
are learned from synthetic binary images (one drawn randomly
from each of the k view bins) of approximately 30 relatively ‘‘flat”
vertical blocks of varying dimensions and aligned orientation, as
depicted in Fig. 1. Note that since we are using synthetic images,
we can generate enough data to get a good initial estimate for all
the pairwise view transforms.

To learn the generic transforms Ta;b, we begin by finding the
boundaries of the object in each pair of images, from views a and
b. Then we use the shape context algorithm [41] to obtain a dense
matching between the 2D boundaries across the images. Finally,
we use linear regression to solve for a 2D projective transform that
best explains the observed matches across the set of training image
pairs. Note we are learning from images that vary substantially in
pose and viewpoint, so an analytic solution for the best 2D projec-
tive transform is not straightforward. We will ultimately use this
technique on real images as well, which makes analytic approaches
infeasible.

General 2D projective transforms have 8 degrees of freedom
and they can be decomposed [42] as

Ta;b ¼
I 0

vT 1

� �
K 0
0T 1

� �
sRðhÞ t

0T 1

" #
; ð1Þ

with RðhÞ the 2D rotation matrix representing angle h,
vT ¼ ½v1;v2�; t ¼ ½tx; ty�T , and K an upper-triangular matrix of the
form

K ¼
Ka Kb

0 1=Ka

� �
:

In our case, the translation t ¼ ½tx; ty�T is a zero vector because
Ta;b models the shape transformation around the centroid of the
2D projected object from view a to view b. For all synthetic images,
the centroid of the object is the origin in the 2D coordinate system.

The decomposition in (1) is unique if s > 0. We can therefore
represent each transform as a vector of 6 parameters:
½log s; h;Ka;Kb;v1; v2�. We use the mean of these parameters over
the training data as our generic view transform.

3.2.2. Class-specific phase: refining the view transformations
In the class-specific phase, a collection of real training images of

different instances of the class from arbitrary views can be used to
estimate the 3D class skeleton of the object class, and to tune the
view transforms Tj

a;b for each of the parts, j, from view a to view
b. The outlines of the parts must be labeled in all images used in
this phase, but reasonable results can be obtained using only two
such images.



1186 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
If the real training data set happens to contain more than one
view of a particular instance, in different view bins, then that data
can be used to refine the generic view transforms, making them
specific to the particular parts of the class. If it does not, the model
can still be used with the original generic transforms.

Assume we are given a set of label-image pairs hxi
a; x

i
bi with

views of the same instance in bins a and b. For each part j in each
image pair, i, we use the shape-context algorithm to match points
on the boundaries of the part and then construct the transform T̂ ij

a;b,
represented as a vector of 6 parameters, as above.

We then combine the generic view transform learned in phase
1, with the part transforms estimated from each image pair to ob-
tain a part-specific view transform Tj

a;b:

Tj
a;b ¼

1
jþm

Xm

i¼1

Tij
a;b þ

j
jþm

Ta;b: ð2Þ

The relative weighting of the generic and specific transforms is
determined by the ‘‘pseudo-count” parameter j, which is currently
chosen empirically as 9 and seems to be well behaved in practice.
3.2.3. Class-specific phase: learning the class skeleton
The class skeleton can be estimated from any collection of real

training images of instances in any view, and does not require mul-
tiple views of any single instance. We directly compute the cen-
troids of the individual parts from the training label images. We
then use these to estimate the skeleton, using the projection matri-
ces Pa, which specify the projection from 3D points into 2D view
bin a.

We begin by aligning and scaling the training images in each
view bin so that the object bounding boxes are all aligned. Next,
for each view bin a and part j, we compute the mean lj

a and covari-
ance Rj

a of the coordinates of the centroid of part j in the normal-
ized images in bin a.

For each part, we find the 3D position whose 2D projections
minimize a sum of weighted distances to the observed 2D mean
centroids in each view. The weighted distances are the Mahalan-
obis distances with respect to the observed covariances in each
Fig. 2. The ellipses indicate the distribution of 2D positions of the centroids of each pa
estimate of the skeleton positions Sj for each part.
view. The minimizing 3D location Sj for part j in the skeleton is gi-
ven by [43]:

Sj ¼
X

a
PT

aðR
j
aÞ
�1Pa

 !�1 X
a

PT
aðR

j
aÞ
�1lj

a

 !
; ð3Þ

The skeleton location for each part is estimated independently,
because we have no prior on the structure of a new object class.

Fig. 2 shows a schematic version of this process. In each view
bin, the distribution on the 2D centroid of each part is estimated,
shown by the ellipses. Then, the 2D centroid distributions are used
to estimate the 3D skeleton locations, shown in the center. The
centroids of parts that are sometimes occluded by other object
parts have higher variance. As we consider more complex objects
from a larger variety of viewpoints, we may have to introduce ex-
plicit reasoning about occlusion into this modeling step.
3.3. View-specific phase: using the model to generate virtual images

Finally, we can use the Potemkin model to generate ‘‘virtual”
training data for a set of k view-specific 2D recognizers. Any train-
ing instance in one view bin can be transformed to many other
view bins, using the skeleton and the view transforms, and used
as training data for that recognizer. This strategy effectively multi-
plies the value of each training image, and allows us to train recog-
nizers for view bins that have never actually been seen, based only
on virtual data.

Given an input image and associated label image, indicating
which pixels correspond to which parts, in view bin a, for each
viewpoint b – a for which the same set of parts are visible, we

� transform the pixels belonging to part j using Tj
a;b, then

� center the resulting shape at PbSj, the view projection of the 3D
skeleton location of part j into view bin b.

This process generates a complete virtual label for view b; in
addition, it generates a virtual image with pixels corresponding
to the object determined, which can be easily combined with the
rt in the training set of chair images for each viewpoint. The 3D spheres show the



Fig. 3. A basic Potemkin model is constructed from the two real labeled images on the left. Given the label images for two object instances, each in only one viewpoint bin
(highlighted), the other virtual views are generated from the model.

Fig. 4. Virtual views generated from the highlighted image using a basic Potemkin model that is minimally trained.

ig. 5. The top row of the figure shows the three 3D primitive shapes: cube, flat
lock, and stick. Each of these shapes is considered at several orientations with
espect to the skeleton. The lower part of the figure shows, for the flat shape, several
iews of the shape at three example (azimuth, elevation) orientations.

H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1187
background of the original image to generate a complete image in
the new view.

An example of this process can be seen in Fig. 3, which shows
virtual images constructed from a basic Potemkin model, trained
with only two real labeled images. Even with just two training
images, the results are useful for recognition, as shown in Section
6. As the amount of training data is increased, the quality of the
transformed images improves [40].

4. The use of multiple primitive shapes

When a basic Potemkin model for an object class is built from
only one real training image-pair of the same instance, the part-
specific transforms default to the generic view transforms for an
upright block.

Another example of results under these minimal training condi-
tions is shown in Fig. 4. This process can in some cases be very
effective, but in other cases the transformed parts are distorted
in the new view. The problem highlighted by the red rectangle in
Fig. 4 arises because we are relying entirely on the generic view
transform, which was learned for a vertical flat block. But, because
the seat of the chair is actually horizontal, the generic transform
does a very poor job of predicting pixels in the new view.

To address this problem, we expand the set of possible primi-
tive 3D part shapes, with associated generic view transforms, avail-
able to the Potemkin model. Given a new object class, using just
two views of one instance to select an appropriate shape primitive
for each part allows us to make much better predictions of appear-
ance in unseen views.

4.1. Oriented shape primitives

We will augment the basic Potemkin model with an oriented
primitive model for each part. Each shape primitive is a simple
3D box at one of a small number of possible 3D orientations with
respect to the frame of the skeleton. As shown in Fig. 5, we con-
sider two rotational degrees of freedom: azimuth and elevation an-
gles of rotation about the shape’s centroid. This allows us to ignore
irrelevant rotations of in-plane rotation of nearly planar shapes
and rotations about the long axis of nearly linear shapes. It does,
however, limit the possible set of orientations of more general
shapes.

We select the primitive shape and its orientation with respect
to the skeleton frame jointly from M possibilities. For each oriented
primitive m and each view bin, we generate a set of synthetic
images. First, we generate a 3D shape that is a random minor var-
iation on the 3D shape primitive in size and aspect ratio and place
it at the specified orientation. Then, from each view bin, we select a
view uniformly at random, and create a 2D image by projecting the
3D instance according to the chosen view. This gives us a set of
images, one from each view bin, of each of a set of instances of each
oriented primitive.

Now, we apply methods from the basic Potemkin model to use
pairs of these images to estimate Mk2 primitive view transforms,
Um

a;b, one for each pair of view bins a; b and oriented primitive m.
In addition to computing the mean transform, as was done in the
basic Potemkin model, we also estimate the standard deviation,
rUm

a;b . Note that the variance in the transform is modeling uncer-
tainty due to variation in the shape primitive as well as the partic-
ular views chosen from the view bins.

4.2. Selecting primitives

To learn a new object-class model, we need to select an oriented
primitive for each part. Further, we might want to find a ‘‘basis set”
of primitives that can be used, collectively, to represent the parts of
a large number of object classes. This basis set could then be used
as a restricted domain of primitives for constructing new class
models, thereby making the process more efficient, and preventing
F
b
r
v



mU βα ,

M

jT βα ,

k2

jR βα ,

jZ N

Fig. 6. Generative model for 2D part-specific transforms. There are plates for the M
possible oriented primitives, for the N parts of the object model, and for the k2 view
bin pairs. Um

a;b and Tj
a;b represent the view transform from view bin a to b for

oriented primitive m and part j, respectively. Rj
a;b represents an actual observed

transform of part j from view bin a to b in real data. Zj is an indicator variable that
selects which primitive m is the appropriate shape for part j of the object.

1188 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
the tendency to overfit when there are a huge number of primitives
available.

We will approach the problem of selecting primitives by devel-
oping a latent-variable model for 2D part-specific transforms; the
graphical model is shown in Fig. 6. In this model, there are plates
for the M possible oriented primitives, for the N parts of the object
model, and for the k2 view bin pairs. We can think of the variable Zj

as an unobserved indicator variable that selects which oriented
primitive m is the appropriate shape for part j of the object. Thus
Zj � Multið1=M; . . . ;1=MÞ has a uniform distribution over the dis-
crete set of possible oriented primitives.

The observed variables Um
a;b represent the mean and standard

deviation (U and rU) of the generic transform for oriented primi-
tive m from view bin a to view bin b.

The variable Tj
a;b represents the actual view transform of part j

from view bin a to b. We treat it as normally distributed, according
to the generic transform distribution associated with its primitive
part. Thus, for a choice of Zj ¼ m,

Tj
a;b �NðUm

a;b;r
Um

a;bÞ: ð4Þ

Finally, the variable Rj
a;b represents an actual observed trans-

form of part j from view bin a to b in real data. In general, we might
have many such observations, in which case we would have a plate
for R; but one will illustrate the inference process. The observed
transforms are modeled as normally distributed about the true
transform, with fixed variance set by hand:

Rj
a;b �NðTj

a;b;rRÞ: ð5Þ

So, given this model, our goal is to infer, for each part j, the max-
imum a posteriori probability (MAP) set of view transforms Tj; that
is, arg maxTj PrðTjjU;RjÞ. This model is completely independent for
each part, so they can be maximized separately. Because we are
ultimately interested in the MAP assignment of primitives to parts,
as well as the transforms, we will seek

arg max
Tj ;Zj

PrðTj; ZjjU;RjÞ:

For any particular choice of Zj ¼ m, the posterior mean on Tj
a;b

for any pair of view bins a and b that have observed samples
Rj

a;b, can be computed [44] as:

Tj;m
a;b ¼

j0

j0 þ 1
Um

a;b þ
1

j0 þ 1
Rj

a;b ¼

r2
R

rUm2
a;b

r2
R

rUm2
a;b

þ 1
Um

a;b þ
1

r2
R

rUm2
a;b

þ 1
Rj

a;b: ð6Þ

The weight parameter j0 could be determined as a function of
rR and rUm

a;b , but, since rR was already being selected arbitrarily,
we experimented informally with values of j0, and set it to 9
throughout results reported in this paper.
To find the MAP value of Zj, we enumerate possible values m,
and select the one for which

PrðTj;m; Zj ¼ mjU;RjÞ / PrðRjjTj;mÞPrðTj;mjUm; Zj ¼ mÞPrðZj

¼ mÞ ð7Þ

is maximal; because the distribution on Zj is uniform, this means
that we can select the m that maximizesQ

a;bPrðRj
a;bjT

j;m
a;bÞPrðTj;m

a;bjU
m
a;bÞ, which is straightforward to compute.

4.3. Learning and using an object class model

Training the Potemkin model with multiple primitives is similar
to training the basic Potemkin model, but it requires some new
steps. In the first phase, constructing the generic transforms relat-
ing 2D shapes across each pair of views is essentially unchanged,
except that it is done for each of the oriented primitives.

We begin the second phase by using any available paired in-
stances to select the most appropriate oriented primitive for each
part of the class, and to estimate the associated view transforms,
as just described.

We can take the additional useful step of estimating a rough ex-
tent and planar model of the part in 3D. We find a similarity trans-
form between the actual part outlines and the projections of the
primitives into views a and b; then, already having computed cor-
respondences between the outlines of the projections of the prim-
itives in phase 1, we can solve for 3D positions of points on the
outline of the shape.

The 3D position of the centroid of each part is estimated as for
the 3D skeleton of the basic Potemkin model.

Fig. 7 shows the skeleton and shape primitives estimated from
two part-labeled images. These easily-obtained 3D class models
are not sufficiently detailed to be used directly for recognition,
but they provide important information about self-occlusion.
When transforming an input image to a novel view, it often hap-
pens that pixels belonging to different parts in the original image
are transformed to the same point in the new view. In that case,
we use the 3D class model to determine which part is in front,
and select those pixels to be painted. This strategy of self-occlusion
handling works when there is a clear order in depth for the parts in
the target viewpoint. Fig. 8 shows how understanding self-occlu-
sion can improve the transformed images.

By increasing the set of primitives and supporting reasoning
about occlusion, the Potemkin model with multiple primitives gen-
erates significantly more realistic virtual images compared to those
generated by the basic Potemkin model, as shown in Fig. 9. Note
that in both cases, the models are trained with only two real la-
beled images.
5. Self-supervised part labeling

The training algorithm for the Potemkin model requires the
viewpoints of the objects and the outlines of the parts in all real
training images to be labeled. While viewpoint labels and object
outlines are readily available, from sources like LabelMe [45],
part-labeled images are not.

We have developed a simple approach that obviates the need
for most of this labeling; we require hand part-labeling on only a
single pair of images of the same object to build the 3D class model
and on one image of any instance for each additional view bin from
which images will be transformed.

Our approach is based on the fact that objects in the same class,
seen from the same view, have similar arrangements of parts. For
each view of the class, we select one instance and hand-label its
parts. Then we use the shape context algorithm [41] to match



Fig. 7. Visualization of 3D skeleton and shape primitives. Top: two views of the four-legged chair model; bottom: two views of the airplane model. Note that these models
were each constructed from two part-labeled images of the same object, knowing the view bins but with no further camera calibration.

Fig. 8. First row: virtual images generated from highlighted instance without occlusion handling; second row: with occlusion handling.

H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1189
the boundary shapes and deform the boundaries of the labeled in-
stance into the unlabeled instances, as shown in Fig. 10. The de-
formed part boundary encloses a region in the new image, which
is labeled as the corresponding part.
6. Experimental results

In this section, we report a number of experiments aimed at
evaluating different aspects of the performance of the Potemkin



Fig. 9. The Potemkin model with multiple primitives (second and fourth rows)
generates more realistic virtual images than the basic Potemkin model (first and
third rows).

1190 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
model. We also demonstrate that the virtual training examples
generated by the Potemkin model can be used effectively to train
an existing view-dependent detection system [15], with the result
that many fewer real training images are required to reach the
same level of performance.

6.1. Dataset

We used four different object classes, shown in Fig. 11, for our
experiments. We described chairs using six parts, bicycles using
five parts, airplanes using five parts, and cars using five parts.
50 100 150 200

20
40
60
80

100

50 100 150 200

20
40
60
80

100

50 100 150 200

20

40

60

80

100

100 samples

50 100 150 200

20

40

60

80

100

100 samples

20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

100

110

75 correspondences (

Fig. 10. Given a model instance with labeled parts (blue), the parts of another instance (
instances (middle) and by deforming the model instance into the target instance (righ
referred to the web version of this article.)

Fig. 11. Decomposition of o
The four-legged chair data set and the airplane data set were col-
lected by our research group. These two data sets contain 432
images and 262 images, respectively. The chair data are discretized
into six view bins (Fig. 4) and the other data sets into four (Fig. 12).
The bicycle data set is from the TU-Graz-02 database, which is part
of the PASCAL Visual Object Classes (VOC) Challenge [46]. It con-
tains 365 images of bicycles. The car data set contains 243 images,
which were collected by our research group and taken from the car
database of the VOC Challenge. Images in all four data sets have
considerable variation in pose, view, and clutter. Note that in this
paper the scale of the object instance is assumed to be known. Out-
lines of objects in all images were labeled by users of LabelMe [45]
and normalized based on object scale. We also collected four differ-
ent background data sets—indoor scenes, street scenes, sky scenes,
and road scenes—which were used to evaluate detection perfor-
mance for the corresponding object classes.
6.2. Basis set of primitives

We began by conducting an experiment to see whether there
was a small ‘‘basis set” of primitives that would effectively model
all four of our object classes, which together have 21 separate
parts. For this experiment only, we provided one part-labeled real
image of a single instance of each object class in each of its canon-
ical views, which we used to generate one observed transform Rj

a;b
for each part and view pair.

We used a set of oriented primitives generated from three dif-
ferent types of 3D shapes: flat blocks, sticks, and cubes. We consid-
ered flat blocks and sticks at each of eight possible orientations
(four elevation angles and two azimuth angles) and cubes at two
different orientations (two azimuth angles), yielding a set of 18
possible oriented primitives. For each primitive, we generated 30
slightly varying instances, and then for each view bin we selected
a view and rendered a 2D image. Now, for each pair of view bins,
we computed the transforms between the image-pair for each in-
stance, and used that data to estimate the mean and standard devi-
ation of the underlying transform distribution.
140 160 180 200 220

unwarped X)

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

70

80

90

100

110

k=6, λo=1, If=0.055368, aff.cost=0.084792, SC cost=0.14406

red) in the same view can be found by matching points along the boundaries of the
t). (For interpretation of the references to color in this figure legend, the reader is

bject classes into parts.



Fig. 12. Four selected view bins for bicycles, cars, and airplanes.

H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1191
To select a set of primitives sufficient to represent all four mod-
els, we ran a greedy forward-selection process, starting with the
single primitive that maximizes

scoreðmÞ ¼
Y

c

Y
j

Y
a;b

Pr Rj
a;b

���Tj;m
a;b

� �
; ð8Þ

the data likelihood over all classes c given a single primitive. Then,
we added the next single primitive which, together with the first,
increased the aggregate score the most, etc. We stopped when the
score failed to improve substantially with further additional
primitives.

We measure the quality of these transforms on real images with
an aggregate overlap score:

1
NK2

X
j

X
a;b

overlap T
j;Zj
a;bAj;Bj

� �
; ð9Þ

where Aj is the region associated with part j in view a; T
j;Zj
a;bAj is the

transform of that region into view b;Bj is the true region for that
same part in view b, and the overlap of two regions is defined to
be the ratio between their intersection and their union.
Fig. 13. The quality of transforms as the number of available primitives (M) incre
We ran this greedy selection algorithm for each of the four ob-
ject classes independently, and for all four classes jointly. Fig. 13
(left) shows the quality of the transforms on the training set as
the number of primitives increases. We can see that four primitives
suffice to model all of the classes effectively. Testing on held-out
data (Fig. 13, right) shows that we are not overfitting the data, in
general, but does suggest that a single primitive may be better than
two for the bicycle class.

In all future experiments, we restricted our set of primitives to
the four chosen in this process. This restricted domain of four
primitives makes our modeling process more efficient, and pre-
vents the tendency to overfit when there are a huge number of
primitives available. All four were flat blocks (the same 3D shape),
but at different 3D orientations. The primitives chosen for each
part of each class are shown in Fig. 14. The most popular primitive,
which represents 10 of 21 parts, is actually the one used in the ba-
sic Potemkin model; but considerable representational accuracy is
gained by adding other primitives to the set. We anticipate that for
a more varied collection of object classes, it would be useful to in-
crease the set of primitives, but are encouraged to find that individ-
ual primitives seem to be applicable to a large number of different
object parts.
ases. Left: evaluated on training data; right: evaluated on held-out test data.



1192 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
6.3. Part labeling

Since we have introduced a self-supervised part labeling strat-
egy, we would like to independently evaluate the quality of the
Fig. 14. 3D shape primitives select

Fig. 15. Some part labeling results for four-legged chairs. First

Fig. 16. Some part labeling results of bicycles. First row:
labelings. We do this by comparing the automatic part labelings
to hand-labeled images, measuring the percentage of pixels that
have the same part labels in both the automatically labeled and
hand labeled images.
ed for each part of each class.

row: hand labeling; second row: self-supervised labeling.

hand labeling; second row: self-supervised labeling.



H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1193
Averaged over all real images from all views, the aggregate
labeling overlap was: 96.72% for chairs, 98.23% for bicycles,
92.59% for airplanes, and 85.84% for cars.

The automatically generated labels for chairs and bicycles are
extremely accurate, probably because the parts in these classes
are clearly separable, as shown in Figs. 15 and 16.

On the other hand, the label results for cars are less accurate, as
shown in Fig. 17. We found that different users labeled parts of cars
in different ways, since these parts are not clearly defined, but the
automatically generated part labels are more consistent. For exam-
ple, some users thought the headlights of cars should belong to the
‘‘grille” part, while other users included headlights in the ‘‘hood”
Fig. 17. Some part labeling results of cars. First row: ha

Object Class: aircraft

0 10 20 30 40 50 60
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Real Training Images in Target View Bin

Fr
ac

tio
n

of
ar

ea
un

de
rR

O
C

cu
rv

e

Object Class: chair

Real + virtual (multiple primitives, self-supervised)
Real + virtual (multiple primitives)
Real + virtual (single primitive)
Real + virtual (global transforms)
Only real images

0 5 10 15 20 25 30 35 40
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Real Training Images in Target View Bin

Fr
ac

tio
n

of
ar

ea
un

de
rR

O
C

cu
rv

e

Object Class: aircraft

Fig. 18. Average single novel view detection results over four repetitions of each of four o
(right-bottom).
part. Ultimately, the real test is whether the labels improve recog-
nition performance. We will also compare the performance of
these two labeling strategies in the end-to-end system in the fol-
lowing sections.
6.4. Single-view detection

The Potemkin model is useful both for recognizing objects at
previously unseen views and for leveraging sparse training data
by transforming any training image into a view that is suitable
for training any view-dependent recognizer [40]. In this set of
experiments we evaluate the quality of virtual training examples
nd labeling; second row: self-supervised labeling.

Object Class: car

0 1 2 3 4 5 6 7 8 9 10
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Real Training Images in Target View Bin

Fr
ac

tio
n

of
ar

ea
un

de
rR

O
C

cu
rv

e

Object Class: bicycle

0 5 10 15 20 25 30 35
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Real Training Images in Target View Bin

Fr
ac

tio
n

of
ar

ea
un

de
rR

O
C

cu
rv

e

Object Class: car

bject classes: chairs (left-top), bicycles (right-top), airplanes (left-bottom), and cars



Fig. 19. Six examples of real images (highlighted) and virtual images constructed by the Potemkin model with multiple primitives.

1194 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
generated using Potemkin models. We test them in single-view
and multi-view detection tasks using a publicly available view-
dependent recognizer developed by Crandall et al. [15]. The goal
of our experiments is to show that these virtual training images
are almost as effective as input for a standard 2D recognition
method as novel real training images.

In order to illustrate the impact of using multiple oriented
primitives on the quality of the virtual training images generated
by the Potemkin model, as well as to highlight the model’s effec-
tiveness with very little training data, all 3D models and trans-
forms were constructed using only two real images of the target
object class. In this situation, the quality of virtual training images
is most influenced by the prior transforms for each of the parts,
which are determined by the chosen oriented primitive. This does
mean, however, that the performance shown here could be
improved by using more image pairs to refine the cross-view trans-
forms, as shown previously [40]. For efficiency, all recognition was
done at a single scale.
We trained the single-view recognizer using a combination of
real and virtual images, for each of the four data sets. The real
images are all from the same view bin, called ‘‘the target view bin”.
The virtual images were transformed from all ‘‘source” view bins
different from the target view bin. In all cases, for testing we used
30 object images from the target view bin and 30 background
images from the corresponding background data set (indoor scenes
for chairs, street scenes for bicycles, sky scenes for airplanes, and
road scenes for cars), and computed an ROC curve for discrimina-
tion between the object and background.

We did four repetitions of the detection experiments for each
class, varying the target view bin. In each case, we held the num-
ber of virtual images constant (at 100 for chairs, 10 for bicycles,
75 for airplanes, and 50 for cars), and varied the number of real
images in the target view bin. One data point on a curve in the
first two columns of Fig. 18 is the percentage area under the
ROC curve, averaged over all four repetitions. Note that an object
class with higher variability among instances requires more



H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1195
virtual training images to achieve satisfactory detection perfor-
mance. Thus we provided different amounts of virtual training
images for different classes.

For each object class, we tested five methods of generating vir-
tual images:

� No virtual images.
� Virtual images generated using a single global transform for the

entire object, ignoring part structure.
� Virtual images generated using a separate transform for each

part, but based on a single primitive (the basic Potemkin model),
using hand-labeled parts.

� Virtual images generated with multiple primitives (the Potem-
kin model), using hand-labeled parts.

� Virtual images generated with multiple primitives (the Potem-
kin model), using self-supervised part labeling.

In every case but the first, the same number of virtual training
images, along with real training images, were used for training the
view-based recognizer for the target class. The basic Potemkin
model and the Potemkin model with multiple primitives were con-
structed from only two real images, which were used to construct
the skeleton and select the primitives for each part.

In the case of bicycles, all five parts selected only one primi-
tive, which is the single primitive of the basic Potemkin model,
so the results of the Potemkin model with multiple primitives
are the same as for the original. In the other three classes, the
use of additional primitives improves performance considerably.
Note that for cars, the basic Potemkin model performs worse than
a single global transform because of unrealistic virtual images.
However, the Potemkin model with multiple primitives generates
reasonable virtual images which improve the detection perfor-
mance. Some virtual training images (virtual examples placed
into the background from the original image) generated from
the Potemkin model with multiple primitives are shown in
Fig. 19.

Self-supervised part labeling decreases detection performance
of airplanes, compared to the model trained with hand-labeled
parts. We observed that incorrect labels in self-supervised part
labeling are mostly due to instances without tails or with one wing
occluded, which are significantly different from the model instance
we used to deform the shapes. In the future, we could use several
model instances in the same view bin for matching shapes and
defining labels. The labels of other instances could then be deter-
mined using the best matching model instance.
0.5

0.6

0.7

0.8

0.9

1

Tr
ue

P
os

iti
ve

R
at

e

Multi-View Class Detection: chair

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

False Positive Rate

Tr
ue

P
os

iti
ve

R
at

e

Fig. 20. Multi-view recognition performa
Our self-supervised approach for labeling parts works well if
most instances of the target class have the same number of parts
and big parts are not occluded, such as for four-legged chairs. It
is particularly interesting that for cars, self-labeling works better
than hand-labeling, probably because self-labeling provides a more
consistent ‘‘definition” of parts.

6.5. Multi-view detection

We have also carried out experiments in multi-view detection,
in which the goal is to label the class of an object, independent of
its view point. We train single-view recognizers for each view of
each object, using virtual training data generated by the Potemkin
model, and output the class associated with the recognizer gener-
ating the largest response on each test image. We compared the
same five training conditions as in the single-view detection exper-
iment, as well as one in which all of the views are pooled and used
to train a single detector. The results are shown in Fig. 20. The com-
bined recognizers trained with the data generated from the Potem-
kin model with multiple primitives outperform the others by a
substantial margin.

6.6. Dalal–Triggs detector

To support our claim that our virtual training images can im-
prove the performance of any 2D image-based detector, we also
conducted experiments using the detector from Dalal and Triggs
[47], which is currently among the most accurate for cars. In this
section, we performed experiments on the PASCAL VOC Challenge
2005 Cars Test 2 data set [46] and PASCAL VOC Challenge 2007 Car
Test data set, which are two standard data sets for many state-of-
the-art approaches. The Dalal–Triggs detector requires a pool of
positive/negative (car/non-car) examples for training. Because
the data set in the PASCAL Challenge does not provide the outline
segmentations for all objects, we use the car data set collected by
our research group for training. However, we still used the ‘‘back-
ground” data set provided by the PASCAL Challenge in the car
detection task as the negative examples for training the Dalal–
Triggs detector.

For each of the four training viewpoints of cars as shown in
Fig. 12, we collected 20 real images and generated 60 virtual
images, by transforming real images from the other three view-
points. We also made use of symmetries and generated mirrored
versions of these images. Thus we had a total of 160 real training
images and 480 virtual training images.
0.5

0.6

0.7

0.8

0.9

1
Multi-View Class Detection: car

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

False Positive Rate

Tr
ue

P
os

iti
ve

R
at

e

Real + virtual (multiple primitives, self-supervised)
Real + virtual (multiple primitives)
Real + virtual (single primitive)
Real + virtual (global transforms)
Only real images
Real images from all views

nce (ROC curve) for chairs and cars.



1
INRIA-Dalal(Real)

1

INRIA-Dalal(Real)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recall

pr
ec

is
io

n

INRIA-Dalal(Real)
INRIA-Dalal(Real+Virtual)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recall

pr
ec

is
io

n

INRIA-Dalal(Real)
INRIA-Dalal(Real+Virtual)

PASCAL VOC 2005 PASCAL VOC 2007

Fig. 21. The precision–recall curves of the Dalal–Triggs detector using our training images on PASCAL Challenge 2005 Car Test 2 (left) and PASCAL Challenge 2007 Car Test
(right).

1196 H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197
We set the parameters of the Dalal–Triggs detector and evalu-
ated the detection results as in Ref. [46]. Note the best three aver-
age precision (AP) scores on this standard test set in PASCAL VOC
Challenge 2005 [46] are 0.304 (the Dalal–Triggs detector), 0.181,
and 0.106. Our real training data set of cars is smaller than the
training data set provided by the PASCAL VOC Challenge. In addi-
tion, our training data set does not cover all the viewing directions
of cars used in Ref. [46]. Thus, for example, our trained detector
cannot recognize rear views of cars. Our goal in these experiments
is only to give an estimate for the improvement expected from vir-
tual images using a state-of-the-art detector on a standard data set.

Fig. 21 shows the precision–recall curves of the Dalal–Triggs
detector using our training data set on both the VOC Challenge
2005 Car Test 2 data set and VOC Challenge 2007 Car Test data
set. The incorporation of our virtual training images increased
the AP score of the same detector from 0.162 to 0.272 and from
0.098 to 0.206, respectively. Using both real and virtual images
for training, more cars in the test set were detected (highest recall:
0.32 for PASCAL 2005 and 0.35 for PASCAL 2007).
7. Conclusions

In this paper, we have proposed an approach to multi-view ob-
ject class recognition based on independent view-dependent rec-
ognizers. Our approach makes efficient use of training data in
each view by transforming it into virtual training data for all other
views. The virtual training examples we generate can be used as
training input for any view-dependent 2D recognizer. We have
demonstrated the effectiveness of this approach in learning sin-
gle-view recognizers in novel views and in multi-view recognition.

This approach provides a middle ground between methods that
are based only on 2D images and those based only on a 3D model;
it seeks to gain the best of both worlds by taking advantage of our
general knowledge of the relationship between 3D objects and
their 2D projections and using that as leverage for efficient and
effective learning of view-based recognizers.

The demonstrations in the paper have been for a set of view
bins that are significantly different, but that do not exhaust the en-
tire view sphere. In order to handle such a wide variety of views,
we would need to add at least two extensions. First, explicit mod-
eling of occlusion during the skeleton-learning phase so that lar-
gely occluded views of parts do not contribute to the estimation
of the 3D structure. Second, reasoning about how the viewpoint
change influences the quality of the transformed virtual images.
For some view pairs, the transformed images will be excellent;
but as the views become very different, their quality will degrade.
When asked to generate virtual images for a new view, we should
only use a subset of related views as ‘‘source” images for the trans-
formation. With these extensions, we believe the Potemkin model
can serve as the basis for a robust, efficient strategy for multi-view
object class recognition.
8. Acknowledgements

This work was supported under DARPA IPTO Contract FA8750-
05-2-0249, ‘‘Effective Bayesian Transfer Learning”.

References

[1] M. Vrown, D. Lowe, Unsupervised 3d object recognition and reconstruction in
unordered datasets, in: 3D Imaging and Modeling, 2005.

[2] V. Ferrari, T. Tuytelaars, L. Van Gool, Simultaneous object recognition and
segmentation from single or multiple model views, International Journal of
Computer Vision (2006).

[3] D. Lowe, Object recognition from local scale-invariant features, in: Proceedings
of International Conference on Computer Vision, 1999, pp. 1150–1157.

[4] F. Rothganger, S. Lazabnik, C. Schmid, J. Ponce, 3D object modeling and
recognition using local affine-invariant image descriptors and multi-view
spatial constraints, Internationl Journal of Computer Vision 66 (2006) 231–
259.

[5] L.G. Roberts, Machine perception of three-dimensional solids, Technical Report
315, Lincoln Laboratory, 1963.

[6] D. Marr, H.K. Nishihara, Representation and recognition of the spatial
organization of three dimensional structure, Proceedings of the Royal Society
of London, B 200 (1978) 269–294.

[7] D. Marr, Vision, W.H. Freeman, San Francisco, 1982.
[8] I. Biederman, Recognition-by-components: a theory of human image

understanding, Psychological Review. 94 (1987) 115–147.
[9] I. Biederman, E.E. Cooper, Priming contour-deleted images: evidence for

intermediate representations in visual object recognition, Cognitive
Psychology 23 (1991) 393–419.

[10] A. Pentland, Recognition by parts, in: Proceedings of International Conference
on Computer Vision, 1987, pp. 612–620.

[11] G. Prasanna, G. Mulgaonkar, L.G. Shapiro, R.M. Haralick, Matching sticks, plates
and blocks objects using geometric and relational constraints, Image Vision
Computation 2 (1984) 85–98.

[12] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised
scale-invariant learning, in: Proceedings of Computer Vision and Pattern
Recognition, 2003, pp. 264–271.

[13] R. Fergus, P. Perona, A. Zisserman, A sparse object category model for efficient
learning and exhaustive recognition, in: Proceedings of Computer Vision and
Pattern Recognition, 2005.

[14] M.P. Kumar, P.H.S. Torr, A. Zisserman, Extending pictorial structures for object
recognition, in: Proceedings of British Machine Vision Conference, 2004.

[15] D. Crandall, P.F. Felzenszwalb, D.P. Huttenlocher, Spatial priors for part-based
recognition using statistical models, in: Proceedings of Computer Vision and
Pattern Recognition, 2005.



H.-P. Chiu et al. / Computer Vision and Image Understanding 113 (2009) 1183–1197 1197
[16] D. Crandall, D.P. Huttenlocher, Weakly supervised learning of part-based
spatial models for visual object recognition, in: Proceedings of European
Conference on Computer Vision, 2006.

[17] A. Berg, T. Berg, J. Malik, Shape matching and object recognition using low
distortion correspondences, in: Proceedings of Computer Vision and Pattern
Recognition, 2005.

[18] C. Dance, J. Willamowski, L. Fan, C. Bray, G. Csurka, Visual categorization with
bags of keypoints, in: European Conference on Computer Vision Workshop on
Statistical Learning in Computer Vision, 2004.

[19] K. Grauman, T. Darrell, The pyramid match kernel: discriminative
classification with sets of image features, in: Proceedings of International
Conference on Computer Vision, 2005.

[20] B. Leibe, B. Schiele, Combined object categorization and segmentation with an
implicit shape model, in: Workshop on Statistical Learning in Computer
Vision, 2004.

[21] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of Computer Vision and Pattern Recognition, 2001,
pp. 511–518.

[22] M. Weber, M. Welling, P. Perona, Unsupervised learning of models for
recognition, in: Proceedings of European Conference on Computer Vision,
2000, pp. 101–108.

[23] E. Bart, E. Byvatov, S. Ullman, View-invariant recognition using corresponding
object fragments, in: Proceedings of European Conference on Computer Vision,
2004.

[24] Z.G. Fan, B.L. Lu, Fast recognition of multi-view faces with feature selection, in:
Proceedings of International Conference on Computer Vision, 2005.

[25] S. Li, Z. Zhang, Floatboost: learning and statistical face detection, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (2004) 1112–
1123.

[26] J. Ng, S. Gong, Multi-view face detection and pose estimation support vector
machine across the view sphere, in: Workshop on Recognition, Analysis and
Tracking of Faces and Gestures, 1999.

[27] H. Schneiderman, T. Kanade, A statistical method for 3D object detection
applied to faces and cars, in: Proceedings of Computer Vision and Pattern
Recognition, 2000.

[28] M. Weber, W. Einhaeuser, M. Welling, P. Perona, Viewpoint-invariant learning
and detection of human heads, in: Conference on Automatic Face and Gesture
Recognition, 2000.

[29] M. Everingham, A. Zisserman, Identifying individuals in video by combining
generative and discriminative head models, in: Proceedings of International
Conference on Computer Vision, 2005, pp. 1103–1110.

[30] D. Crandall, D.P. Huttenlocher, Composite models of objects and scenes for
category recognition, in: Proceedings of Computer Vision and Pattern
Recognition, 2007.
[31] A. Torralba, K.P. Murphy, W. Freeman, Sharing visual features for multiclass
and multiview object detection, in: Proceedings of Computer Vision and
Pattern Recognition, 2004.

[32] B. Leibe, N. Cornelis, K. Cornelis, L. Van Gool, Dynamic 3D scene analysis from a
moving vehicle, in: Proceedings of Computer Vision and Pattern Recognition,
2007.

[33] B. Leibe, E. Seemannand, B. Schiele, Pedestrian detection in crowded scenes, in:
Proceedings of Computer Vision and Pattern Recognition, 2005.

[34] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, B. Schiele, L. Van Gool, Towards
multi-view object class detection, in: Proceedings of Computer Vision and
Pattern Recognition, 2006.

[35] S. Savarese, L. Fei-Fei, 3D generic object categorization, localization and pose
estimation, in: Proceedings of International Conference on Computer Vision,
2007.

[36] A. Kushal, C. Schmid, J. Ponce, Flexible object models for category-level 3D
object class recognition, in: Proceedings of Computer Vision and Pattern
Recognition, 2007.

[37] D. Hoeim, C. Rother, J. Winn, 3D LayoutCRF for multi-view object class
recognition and segmentation, in: Proceedings of Computer Vision and Pattern
Recognition, 2007.

[38] P. Yan, M. Khan, M. Shan, 3D model based object class detection in arbitrary
view, in: Proceedings of International Conference on Computer Vision, 2007.

[39] J. Liebelt, C. Schmid, K. Schertler, Viewpoint-independent object class
detection using 3d feature maps, in: Proceedings of Computer Vision and
Pattern Recognition, 2008.

[40] H. Chiu, L.P. Kaelbling, T. Lozano-Perez, Virtual training for multi-view object
class recognition, in: Proceedings of Computer Vision and Pattern Recognition,
2007.

[41] G. Mori, S. Belongie, J. Malik, Shape contexts enable efficient retrieval of similar
shapes, in: Proceedings of Computer Vision and Pattern Recognition, 2001.

[42] R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2004.

[43] R. Hartley, F. Schaffalitzky, PowerFactorization: 3D reconstruction with
missing or uncertain data, in: AJAWCV, 2003.

[44] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis, second ed.
Chapman and Hall/CRC, 2004.

[45] B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, LabelMe: a database and
web-based tool for image annotation, International Journal of Computer Vision
(2007).

[46] M. Everingham, A. Zisserman, C. Williams, L. Van Gool, The PASCAL visual
object classes challenge 2005 (VOC2005) results, in: 1st PASCAL Challenges
Workshop, 2006.

[47] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
Proc. CVPR, 2005.


	Learning to generate novel views of objects for class recognition
	Introduction
	Related work
	Basic shape model
	The basic Potemkin model
	Estimating the model
	Generic phase: learning generic view transformations
	Class-specific phase: refining the view transformations
	Class-specific phase: learning the class skeleton

	View-specific phase: using the model to generate virtual images

	The use of multiple primitive shapes
	Oriented shape primitives
	Selecting primitives
	Learning and using an object class model

	Self-supervised part labeling
	Experimental results
	Dataset
	Basis set of primitives
	Part labeling
	Single-view detection
	Multi-view detection
	Dalal–Triggs detector

	Conclusions
	Acknowledgements
	References


