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Abstract

In many multi-agent applications such as distributed
sensor nets, a network of agents act collaboratively un-
der uncertainty and local interactions. Networked Dis-
tributed POMDP (ND-POMDP) provides a framework
to model such cooperative multi-agent decision making.
Existing work on ND-POMDPs has focused on offline
techniques that require accurate models, which are usu-
ally costly to obtain in practice. This paper presents a
model-free, scalable learning approach that synthesizes
multi-agent reinforcement learning (MARL) and dis-
tributed constraint optimization (DCOP). By exploiting
structured interaction in ND-POMDPs, our approach
distributes the learning of the joint policy and employs
DCOP techniques to coordinate distributed learning to
ensure the global learning performance. Our approach
can learn a globally optimal policy for ND-POMDPs
with a property called groupwise observability. Exper-
imental results show that, with communication during
learning and execution, our approach significantly out-
performs the nearly-optimal non-communication poli-
cies computed offline.

Introduction
Decentralized partially observable MDP (DEC-POMDP)
provides a powerful framework for modeling cooperative
multi-agent decision making problems under uncertainty.
Due to the intractability of optimally solving general DEC-
POMDPs, research has focused on restricted versions of
DEC-POMDP that are easier to solve yet rich enough to rep-
resent many practical applications. Networked Distributed
POMDP (ND-POMDP) (Varakantham, Tambe, and Yokoo
2005) is one such model that is inspired by a real-world sen-
sor network coordination problem (Lesser, Ortiz, and Tambe
2003). ND-POMDP assumes transition and observation in-
dependence and locality of interaction.

A rich portfolio of algorithms have been developed for
solving ND-POMDPs (Varakantham, Tambe, and Yokoo
2005; Marecki et al. 2008; Kumar and Zilberstein 2009).
One good feature of these techniques is that, although com-
puting policies is centralized or requires extensive communi-
cation, executing computed policies does not require explicit
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communication. However, this feature may prevent agents
from better coordination during execution when communi-
cation is allowed. In fact, in many practical applications,
communications (at least between neighboring agents) are
necessary for agents to perform tasks. For example, for tar-
get tracking in sensor networks, agents need to fuse their
observations and actions to determine sensing results. The
work (Tasaki et al. 2008) introduced communication in ND-
POMDPs to periodically synchronize the belief state and
extended existing algorithms to obtain policies with longer
horizons. However, extensive communication is required for
global synchronization, which is not scalable. In addition,
all these algorithms for ND-POMDPs are offline techniques
and require accurate models of the environment, which are
usually costly to obtain in practice.

In this paper, we present a model-free, scalable learn-
ing approach to developing policies for ND-POMDPs. Our
approach synthesizes multi-agent reinforcement learning
(MARL) and distributed constraint optimization (DCOP).
By exploiting locality of interactions in ND-POMDPs, our
approach factors a global joint action-value function and
distributes the learning of the joint policy, which poten-
tially scales up the learning to large-scale ND-POMDPs.
Using communication between neighboring agents, our ap-
proach employs DCOP techniques to coordinate distributed
learning to ensure the global performance. Coordinated rein-
forcement learning based on coordination graphs (Guestrin,
Koller, and Parr 2001) has been explored in (Guestrin,
Lagoudakis, and Parr 2002; Kok and Vlassis 2006) for fac-
tored MDPs. In contrast to these previous work, in this
paper, we explore coordinated multi-agent reinforcement
learning in a principled way in ND-POMDPs and prove
that our coordinated learning approach can learn the glob-
ally optimal policy for ND-POMDPs with a property, called
groupwise observability. In addition, we also demonstrate
that a max-sum algorithm (Stranders et al. 2009) can be
used for an approximate solution to our distributed coordi-
nation problem in learning, which requires limited commu-
nication overhead (typically scaling linearly with the num-
ber of agents) and computation. This DCOP algorithm can
be readily implemented as an anytime algorithm to trade
off solution quality and cost of computation and commu-
nication. Unlike the message-passing algorithm in (Kok
and Vlassis 2006), this algorithm can be directly used for



Figure 1: A 4-chain sensor configuration

coordinating interactions involving more than two agents.
Our previous work (Zhang, Abdallah, and Lesser 2009;
Zhang, Lesser, and Abdallah 2010) presented a general su-
pervisory framework for coordinating MARL, but did not
provide a general coordination algorithm. In this paper, we
demonstrate that DCOP algorithms can be used as general
techniques for coordinating MARL in ND-POMDPs. Ex-
perimental results show that, even in ND-POMDPs with-
out groupwise observability, our approach scales to larger
domains and performs significantly better and with orders
of magnitude time savings (in the offline mode) over the
previous best offline algorithm. Note that, as our approach
needs communication during execution, a direct comparison
among approaches is not appropriate. However, the offline
results do provide a way to evaluate our approach by pro-
viding a baseline (i.e., nearly-optimal performance without
communication).

Background
This section briefly introduces an illustrative problem in the
sensor network domain, the ND-POMDP model, and basic
learning approaches.

Illustrative Domain
This illustrative problem is motivated by a real-world chal-
lenge, where a network of agents (sensors) are used to track
targets. Figure 1 shows a specific problem instance consist-
ing of four sensors. Here, each sensor node can scan in one
of four directions: North, South, East or West. To track a
target and obtain the associated reward, two sensors with
overlapping scanning areas must coordinate by scanning the
same area simultaneously. For example, sensor1 needs to
scan East and sensor2 needs to scan West simultaneously
to track a target in location1. Thus, sensors have to act in a
coordinated fashion. The movement of targets is unaffected
by sensor agents. Sensors have imperfect observability of
the target, so there can be false positive and negative obser-
vations. Sensors receive a reward on successfully tracking a
target, and they incur a cost, when they either scan an area
in an uncoordinated fashion or when the target is absent.

Networked Distributed POMDPs
Observe that sensors in this domain are mostly independent.
Their state transitions, given the target location and the ob-
servations, are independent of the actions of the other agents.
The only dependence arises from the fact that two agents
must coordinate by scanning the same region to track a tar-
get. This dependence can be translated into a joint reward
function. Such dependence is usually localized among a few
agents (only two agents in this sensor network problem).
The ND-POMDP model (Varakantham, Tambe, and Yokoo
2005) was introduced to express such a type of interactions.

Definition 1. An ND-POMDP is defined by the tuple
⟨I, S,A,Ω, P,O,R, b⟩, where

I = {1, . . . , n} is a set of agent indices.
S = ×i∈ISi × Su. Si refers to the local state of agent i. Su

refers to a set of uncontrollable states that are indepen-
dent of the actions of the agents. In the sensor network
example, Si is empty, while Su corresponds to the set of
locations where targets can be present.

A = ×i∈IAi, where Ai is the set of actions for agent i. For
the sensor network example, A1 = {N,W,E, S,Off}.

Ω = ×i∈IΩi is the joint observation set.
P P (s′|s, a) = Pu(s

′
u|su) ·

∏
i∈I Pi(s

′
i|si, su, ai), where

a = ⟨a1, . . . , an⟩ is the joint action performed in joint
state s = ⟨su, s1, . . . , sn⟩ resulting in joint state s′ =
⟨s′u, s′1, . . . , s′n⟩. (This models the transition indepen-
dence.)

O O(ω|s, a) =
∏

i∈I Oi(ωi|si, su, ai), where s is the joint
state resulting after taking joint action a and receiving
joint observation ω. (This models the observation inde-
pendence.)

R R(s, a) =
∑

l Rl(sl, su, al). The reward function is de-
composable among sub groups of agents referred by l.
If k = |l| agents i1, . . . , ik are involved in a particu-
lar sub group l, then sl denotes the state of group l, i.e.,
⟨sl1, . . . , slk⟩. Similarly, al = ⟨al1, . . . , alk⟩. In the sen-
sor domain, the reward function is expressed as the sum
of rewards between sensor agents that have overlapping
areas (k = 2) and the reward functions for an individ-
ual agent’s cost for sensing(k = 1). Based on the reward
function, an interaction hypergraph G = (I, E) can be
constructed, where I is a vertex (i.e., agent) set and E is
a set of hyperlinks. A hyperlink l ∈ E connects the subset
of agents which form the reward component Rl. Note that
this interaction hypergraph will be used to develop our
learning approach in later sections.

b b = (bu, b1, . . . , bn) is the initial belief (or distribution)
for joint state s = ⟨su, s1, . . . , sn⟩ ∈ S and b(s) = b(su)·∏

i∈I bi(si), where bu and bi are the initial distribution
over Su and Si.

The goal for ND-POMDPs is to compute a joint policy π
that maximizes the total expected reward of all agents over
a finite horizon T starting from b. Without communication,
agents can only act based on its local observations. In this
case, a joint policy π is defined by ⟨π1, . . . , πn⟩, where πi

refers to the individual policy of agent i that maps its history
of observations to an action ai ∈ Ai. If communication is
allowed, a joint policy π can also be defined by one policy,
called global policy, that maps from a history of joint ob-
servations to a joint action a ∈ A. This is because agents
can exchange their observations and select actions based on
joint observations. Obviously, the optimal global policy in-
herently performs better than the optimal set of individual
policies. In this paper, we assume agents can communicate
(at least with their neighbors) during the execution time and
focus on representing and learning the optimal global policy
in a scalable way.



Basic Learning Approaches
To learn the joint policy, we need to define Q-function (or
Q-value function). Let Q-function Q(⃗h, a) represent the ex-
pected reward of doing joint action a with history h⃗ of joint
observations and actions and behaving optimally from then
on. The globally joint policy π can be derived from Q(⃗h, a)

by setting π(⃗h) = argmaxa∈AQ(⃗h, a).
In principle, we can directly estimate Q(⃗h, a) by using

standard single-agent Q-learning:

Q(⃗ht, at) = (1− α)Q(⃗ht, at) + α[rt + γmax
a

Q(⃗ht+1, a)]

(1)
where α ∈ (0, 1) is the learning rate, rt is the immediate
reward of doing at for observation history h⃗t, γ ∈ [0, 1]
is the discount factor, which is usually set to 1 for a finite
horizon. We call this approach globally joint learning. Al-
though this approach leads to an optimal policy, it is practi-
cally intractable, because the policy space is exponential in
the number of agents and the agents might not have access
to the needed information (i.e., observations, actions, and re-
wards of all other agents) for learning and selecting actions.

At the other extreme, we can have the independent learn-
ing approach (Claus and Boutilier 1998) in which agents
ignore the actions and rewards of the other agents, and con-
currently learn their own action-value functions solely based
on their local observations and rewards. To provide local re-
wards in ND-POMDPs, we can split the reward component
Rl evenly among agents in group l. This approach is dis-
tributed, results in big storage and computational savings in
the policy space, and does not require communication during
learning and execution. However, this approach lacks coor-
dination and might lead to oscillations or converge to local
optimal policies. For example, in Figure 1, if location1, lo-
cation2, and location3 always have targets with sensing re-
ward 50, 60, and 50, respectively, then, by using indepen-
dent learning approach, sensor2 and sensor3 will learn to
always sense location2, which is locally optimal with aver-
age expected reward 60. However, the optimal policy is that
sensor1 and sensor2 always sense location1 and sensor3 and
sensor4 always sense location3, whose global expected re-
ward is 100. Therefore, some form of coordination is needed
in order to learn the globally optimal policy.

Coordinated Multi-Agent Reinforcement
Learning

As discussed in the previous section, directly learning the
globally joint policy in a centralized way is infeasible from
a practical perspective, while independent learning is a dis-
tributed, scalable approach, but may yield poor global per-
formance. In this section, we present a coordinated multi-
agent learning approach for ND-POMDPs that attempts to
achieve both scalability and optimality (or near-optimality).
This approach distributes the learning by exploiting struc-
tured interactions in ND-POMDPs and coordinates dis-
tributed learning to ensure the global performance.

Our approach optimizes a decomposable Q-function
Q̂(⃗h, a) that is used to approximate the global Q-function

Q(⃗h, a). This Q-function Q̂(⃗h, a) is defined as a sum of
smaller local Q-functions based on hyperlinks in the inter-
action hypergraph of ND-POMDPs, that is,

Q̂(⃗h, a) =
∑
l∈E

Ql(⃗hl, al), (2)

where Ql(⃗hl, al) is the expected reward for agents on hy-
perlink l by doing joint action atl at joint history h⃗t

l and be-
having globally optimally from then on in respect to max-
imizing Q̂(⃗h, a). We will show in the next subsection that
this approximation becomes exact for ND-POMDPs with a
property called groupwise observability, which will lead to
the theoretical result of optimality for our approach. In fact,
this approximation is reasonable for general ND-POMDPs.
This is because the global reward in ND-POMDPs is the
sum of local rewards of groups defined on hyperlinks in the
interaction hypergraph, and, as a result, Q(⃗h, a) and Q̂(⃗h, a)
are strongly positively correlated. Therefore, maximizing
Q̂(⃗h, a) can potentially optimize Q(⃗h, a). Our experimental
results will verify this hypothesis on ND-POMDPs without
the groupwise observability property.

Q-learning is used to learn the optimal Q̂(⃗h, a). With the
decomposition in (2), the global Q-learning update rule in
(1) can be rewritten as

∑
l∈E Ql(⃗h

t
l , a

t
l) = (1− α)

∑
l∈E Ql(⃗h

t
l , a

t
l)

+ α[
∑

l∈E rtl + γmaxa Q̂(⃗ht+1, a)]
(3)

Note that the discounted future reward, maxa Q̂(⃗ht+1, a),
can not be directly written as the sum of local discounted fu-
ture rewards, because it depends on the joint action that max-
imizes the global value. Fortunately, we can accomplish this
by defining the joint action a∗ = argmaxaQ̂(⃗ht+1, a) and
maxa Q̂(⃗ht+1, a) = Q̂(⃗ht+1, a∗) =

∑
l∈E Ql(⃗h

t+1
l , a∗l ).

We are now able to decompose all terms in (3) and write
the update rule for each group l:

Ql(⃗h
t
l , a

t
l) = (1−α)Ql(⃗h

t
l , a

t
l)+α[rtl+γQl(⃗h

t+1
l , a∗l )] (4)

Similar to Sparse Cooperative Q-Learning (Kok and Vlas-
sis 2006), update rule in (4) is based on local reward and
Q-function, except for a∗l . Note that the local contribution
Ql(⃗h

t+1
l , a∗l ) of group l to the global action value might be

lower than maxal
Ql(⃗h

t+1
l , al), the maximizing value of its

local Q-function, because it is unaware of the dependencies
among groups. We will use distributed constraint optimiza-
tion (DCOP) techniques to compute a∗l , which will be dis-
cussed later. Update rule in (4) is different from coordinated
reinforcement learning approach in (Guestrin, Lagoudakis,
and Parr 2002), where local Q-function update depends on
the global reward signal and the global Q-value, which are
not usually specifically tailored to local behaviors, thus re-
sulting in slower learning convergence.

Using update rule in (4), our approach distributes the
learning of the global function Q̂ among groups. Our ap-
proach assumes that each group has a delegate agent (which



can be chosen arbitrarily from a group) that learns Ql on
behalf of the group. The basic learning process is as fol-
lows. During each learning cycle t, after executing actions
atl , agents in group l receive and transmit their observations
to the delegate agent of their group and the delegate agent
receives its group reward signal rtl . Using its updated ob-
servation history h⃗t+1

l , the delegate agent then computes the
next best action al∗ for h⃗t+1

l by using a DCOP technique
and updates its Q-function Ql using rule (4). Finally, it dis-
tributes the next actions to its group members, which will be
al∗ or some exploration actions.

The learned global Q-function is distributedly represented
by local Q-functions of delegate agents. As a result, during
execution, agents’ action selections are computed online in
a distributed manner by a DCOP algorithm from local Q-
fuctions. Note that local Q-function Ql(⃗h

t
l , a

t
l) is defined on

the observation history of group l, which scales exponen-
tially with the horizon. To deal with a large horizon, one ap-
proach is to use a fixed-size window of observations, as we
did in our experiments. Other more sophisticated approaches
(i.e., utile suffix memory (Mccallum 1995)) for dealing with
partial observability can also be used with our approach.

In next two subsections, we will formally analyze the op-
timality of our approach and discuss how to compute joint
action selections for learning or execution.

Optimality Analysis
In this section, we first define a property for ND-POMDPs,
called groupwise observability, and then prove that our ap-
proach can learn an optimal policy for ND-POMDPs with
this property.

Definition 2. An ND-POMDP is said to have groupwise
observability if, for all l ∈ E, the set of observations
ωl = ⟨ωl1, . . . , ωlk⟩ made by agents on hyperlink l to-
gether fully determine the current uncontrolled state, that
is, if ∀l∀ωl∃su : Pr(su|ωl) = 1.

Note that this property does not imply that
agents can observe their local states or states of
other agents. It does imply that, for each agent
i ∈ l, Pi(s

′
i|si, su, ai, ωl) = Pi(s

′
i|si, ai, ωl) and

Oi(ωi|si, su, ai, ωl) = Oi(ωi|si, ai, ωl), which means,
given joint observation ωl, observation and transition of
agent i on l are completely independent of observations
and actions of other agents, and, as a result, its local belief
update only depends on its local action and observation.
This further implies that, in ND-POMDPs with groupwise
observability, the local belief of agent i ∈ l can be fully
determined by its initial local state and the history of joint
observations and actions of agents on l.

The theoretical result of optimality of our approach is as
follows.

Theorem 1. For ND-POMDPs with groupwise observ-
ability, under basic assumption of Q-learning and by us-
ing update rule (4), Ql(⃗hl, al) will converge to the opti-
mal Q∗

l (⃗hl, al), for all l ∈ E, and the policy π∗(⃗h) =

argmaxa
∑

l∈E Q∗
l (⃗hl, al) is globally optimal.

The proof for this theorem can be conducted by show-
ing that Q-function Q̂ defined in Equation (2) is exactly the
same as the objective function Q of ND-POMDPs. This is
because, if the approximation of Q̂ is exact, then our coor-
dinated learning approach described above is essentially a
distributed version of update rule (1) that uses Q-learning,
which leads to the global optimal Q∗(⃗h, a). The exactness
of this approximation for ND-POMDPs with groupwise ob-
servability will be shown by Proposition 2.

Our proof first defines a Q-function with state variables,
then shows it is decomposable, and finally uses this result to
prove the approximation of Q̂ to Q is exact for ND-POMDPs
with groupwise observability.To simplify the equations, we
introduce some abbreviations:

pti ≡ Pi(s
t+1
i |sti, stu, ati) ·Oi(ω

t+1
i |st+1

i , st+1
u , ati)

ptu ≡ Pu(s
t+1
u |stu)

rtl ≡ Rl(sl, su, al)

Qt ≡ Qt(st, h⃗t, at)

Qt∗ ≡ max
a

Qt(st, h⃗t, a)

Qt
l ≡ Qt

l(s
t
l , s

t
u, h⃗l

t
, atl)

The global Q-function Q(st, h⃗t, at) with state will satisfy
the Bellman equation:

Q(st, h⃗t, at) = R(st, at) + γ
∑

st+1,wt+1

ptup
t
1 . . . p

t
nQ

t∗,

where h⃗t+1 is h⃗t appended by ⟨at, ωt+1⟩.
Let bt be the belief state at time t. As bt is fully determined

by the initial belief b and history h⃗t of joint observations and
actions, we have

Q(⃗ht, at) =
∑
s∈S

bt(s)Q(st, h⃗t, at). (5)

Similarly, we define a Q-function for each hyperlink l:

Ql(s
t
l , s

t
u, h⃗l

t
, at) = rtl + γ

∑
st+1
l ,ωt+1

l

ptup
t
l1 . . . p

t
lkQ

t+1∗
l ,

where h⃗l

t+1
is h⃗l

t
appended by ⟨atl , ω

t+1
l ⟩ and Qt+1∗

l de-

notes Ql(s
t+1
l , h⃗l

t+1
, a∗l ), where a∗l is the globally optimal

joint action taken by agents on l in the next global state and
history of joint observations and actions of all agents.

For ND-POMDPs with groupwise observability, as
btu(su) is fully determined by history h⃗l

t
of joint observa-

tions and actions, and, for i ∈ l, bti(si) is fully determined

by the initial belief bi(si) and history h⃗l

t
, we then have

Q(h⃗l

t
, atl) =

∑
sl,su

btl(su, sl)Ql(sl, su, h⃗l

t
, atl). (6)

Proposition 1. In ND-POMDPs, the global function
Qt(st, h⃗t, at) for any finite horizon T is decomposable, that
is,

Qt(st, h⃗t, at) =
∑
l∈E

Qt
l(s

t
l , s

t
u, h⃗l

t
, atl). (7)



Proof. Proof is by mathematical induction. Proposition
holds for t = T − 1 because rt =

∑
l∈E rtl and there is no

future reward. Assume it holds for t where 1 ≤ t ≤ T − 1,
that is, Qt =

∑
l∈E Qt

l .
Now let us show that proposition holds for t− 1.

Qt−1 = R(st−1, at−1) + γ
∑
st,wt

pt−1
u pt−1

1 . . . pt−1
n Qt∗

=
∑
l∈E

rt−1
l + γ

∑
st,wt

pt−1
u pt−1

1 . . . pt−1
n

∑
l∈E

Qt∗
l

=
∑
l∈E

[rt−1
l + γ

∑
stl ,s

t
u,w

t
l

pt−1
u pt−1

11 . . . pt−1
lk Qt∗

l ]

=
∑
l∈E

Qt−1
l

Based on Proposition 1, Equation 5 and 6, we can show
an exact decomposition of the Q-function without state.

Proposition 2. In ND-POMDPs with groupwise obserba-
bility, the global Q-value function Qt(⃗ht, at) for any finite
horizon T is decomposable, that is,

Qt(⃗ht, at) =
∑
l∈E

Qt
l(h⃗l

t
, atl). (8)

Proof.

Q(⃗ht, at) =
∑

su,s1,...,sn

btu(su)b
t
1(s1) . . . b

t
n(sn)·∑

l∈E

Qt
l(sl, su, h⃗l

t
, atl)

=
∑
l∈E

∑
sl,su

btl(su, sl)Q
t
l(sl, su, h⃗l

t
, atl)

=
∑
l∈E

Qt
l(h⃗l

t
, atl).

This proposition completes the proof of Theorem 1.

Optimal Joint Action Selection
Our learning approach requires computing the joint action
that maximizes the global Q-value function for updating lo-
cal Q-functions or for acting during execution. We can for-
mulate this problem as a DCOP, which is defined by a set
of discrete variables a = {a1, . . . , an}, where ai ∈ Ai is
controlled by agent i and represents its action choice, and
a set of functions Q = {Ql|l ∈ E}, where Ql is the Q-
value function for hyperlink l. Note that history h⃗ is fixed
for every computation, so we will ignore it in the follow-
ing discussion and denote Ql(⃗h, al) by Ql(al). The goal
is to find the joint action a∗, such that the global Q-value
function, the sum of all Q-functions, is maximized, that is,
a∗ = argmaxa

∑
l∈E Ql(al). We can represent this DCOP

as a factor graph by creating a node for each variable and for

each function and connecting a function node to a variable
node if the corresponding function is dependent upon that
variable. The resulting graph is bipartite.

A variable elimination algorithm (Guestrin, Koller, and
Parr 2001) can be used to compute an optimal solution for
this DCOP, but it requires extensive communication and
computation (scaling exponentially with the induced width
of the agent interaction graph). In this paper, we investi-
gate the max-sum algorithm (Stranders et al. 2009) for an
approximate solution, which requires much less communi-
cation and computation and can be readily implemented as
an anytime algorithm to trade off the quality and efficiency
of computing joint actions. Unlike the max-plus algorithm
in (Kok and Vlassis 2006), this algorithm can be directly
used for coordinating interactions involving more than two
agents.

The max-sum algorithm operates directly on the factor
graph, and does so by specifying the messages that should
be passed from variable to function nodes, and from function
nodes to variable nodes, which are defined as follows:
- Message from variable node i to function node l:

qi→l(ai) =
∑

g∈Fi\l

rg→i(ai) + cil

where Fi is a vector of function indexes, indicating which
function nodes are connected to variable node i, and cil
is a normalizing constant to prevent the messages from
increasing endlessly in cyclic graphs.

- Message from function node l to variable node i:
rl→i(ai) = max

al\ai

[Ql(al) +
∑

g∈Vl\i

qg→l(ag)]

where Vl is a vector of variable indexes, indicating which
variable nodes are connected to function node l and
al\ai = {ag : g ∈ Vl\i}.
Here variable node i is agent i who needs to select its

action and function node l is the delegate agent of hy-
perlink l that hosts the Q-value function Ql. If the fac-
tor graph is cycle-free, the algorithm is guaranteed to con-
verge to the optimal global solution such that each agent i
can find its optimal action a∗i by locally calculating a∗i =
argmaxai

zi(ai), where zi(ai) =
∑

g∈Fi
rg→i(ai). Other-

wise, there is no guarantee of convergence. However, ex-
tensive empirical results show that, even in this case, the
algorithm frequently provides good solutions. Before con-
vergence, the value zi(ai) of agent i calculated from in-
coming messages is actually an approximation of the exact
value of action ai given other agents act optimally. There-
fore, the max-sum algorithm can be implemented as an any-
time algorithm by controlling the number of rounds of pass-
ing messages, which will trade off the quality and efficiency
(or communication cost) of the action selection. In addition,
the max-sum algorithm is essentially distributed. Its mes-
sages are small (linearly scaling with the maximum num-
ber of actions of agents), the number of messages typically
varies linearly with the number of agents and hyperlinks,
and its computational complexity scales exponentially with
the maximum size of hyperlinks (which typically is much
less than the total number of agents).
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Figure 2: Sensor network configurations

Experiments
To evaluate our coordinated learning (CL) approach in gen-
eral ND-POMDPs, we experimented it in the illustrative sen-
sor network domain, which does not have the groupwise ob-
servability property. We compared CL with the independent
learning (IL) approach (described in the Background Sec-
tion) and CBDP (Kumar and Zilberstein 2009), one of the
most efficient algorithms for ND-POMDPs. We conducted
experiments with configurations shown in Figure 2. The first
three configurations are introduced in (Marecki et al. 2008),
but we changed their initial beliefs to an uniform distribu-
tion over ten states to increase problem difficulty. The 25-
grid sensor network has two targets with the same sensing
rewards as 15-3D, but has a larger state space and longer
target paths.

Since both CL and IL are model-free, we develop a sim-
ulator for ND-POMDPs to learn and evaluate policies. The
evaluation process is as follows: for each ND-POMDP, we
use CBDP to solve it and get its joint policy, then run both
learning approaches in a simulator for that ND-POMDP,
whose learning time is set to some ratio of CBDP’s computa-
tion time, and, finally evaluate learned policies and CBDP’s
policy in the simulator. The solution quality for each horizon
is indicated by the expected global reward for that horizon.
Solution quality is computed over 10000 simulation runs.
Results are then averaged over 10 experiments and the de-
viation is computed, which is very small (under 5) and not
shown properly in the following figures. The learning rate
α is set to 0.001 and discount factor γ = 1. Both learning
approaches learned policies that map fixed-windows of ob-
servations (with size ≤ 4) to an action even for scanarios
with horizon greater than 5. To trade off the speed and so-
lution quality, we restricted the max-sum algorithm passing
messages at most 4 rounds for each joint action computation
(except for experiments of controlling communication).

Figure 3 (a) shows the solution quality of CL and IL with
different learning time on the configuration 15-3D with hori-
zon T = 10. The configuration 15-3D is the most complex
problem instance for CBDP. The x axis represents the ra-
tio of learning time to CBDP’s computation time, which is
plotted with a logarithmic scale. The performance of both
CL and IL generally increases with more training time. We
observe that CL can learn policies, whose performance sur-
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Figure 4: Trade-off of solution quality and communication

passes that of CBDP’s policy, with learning time two orders
of magnitude less than CBDP’s computation time. However,
IL performs much worse than CL and CBDP. One reason is
that, as we have discussed, IL can only converge to local op-
tima, which is far away from the global optimal solution on
the configuration 15-3D. This result actually illustrates the
importance of the coordination during learning and execu-
tion. Another reason is that IL (and CL) uses fixed-window
policy that maps up to 4 observations to an action, while
CBDP’s policies with horizon T = 10 maps up to 9 obser-
vations to an action. We did observe that IL could perform
comparably or better than CBDP on smaller problems with
small horizon (e.g., one the domain 11-Helix with 5 hori-
zon).

Figure 3 (b) shows the solution quality over a range of
horizons on the configuration 15-3D. We can see that the so-
lution quality of CL linearly increases with the horizon size,
whose increase rate is greater than CBDP. This indicates that
CL can potentially scale better than CBDP with the horizon
size. Figure 3 (c) shows the solution quality on other con-
figurations, where 15-Mod is the modified version of 15-3D
with different target paths. Consistent with results on 15-3D,
CL performs best, then CBDP, and finally IL.

By controlling the maximum round of message passing
between agents and their group delegates for computing
joint actions, we can trade off solution quality and cost of
communication and computation. Figure 4 show the solu-
tion quality of CL over different maximum rounds of mes-
sage passing on the domain 15-3D with horizon 10 and
the same learning time as CBDP’s computation time. We
can observe that CL still performs significantly better than
CBDP, even when using only one-round message passing.
Note that when using fixed learning time, more rounds of
message passing do not necessarily yield better learning per-
formance. This is because, although using more rounds of
message passing computes better joint actions, it results in
more communication and computation at each learning cy-
cle and learning with less total cycles.

We also evaluated CL and IL on the 25-grid problem,
where CBDP could not scale even to horizon 2. The learn-
ing time is set to 200 seconds for horizon 5 and linearly in-
creases with the horizon. Figure 5 shows solution quality
over horizons up to 100. The solution quality of CL almost
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Figure 3: Solution quality over (a) different ratios of learning time of IL and CL to CBDP’s policy computation time on 15-3D
with horizon T = 10, (b) over different horizons on 15-3D, and (c) different network configurations with T = 10. Note that IL
and CL in (b) and (c) use the same learning time as CBDP’s policy computation time.
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Figure 5: Solution quality for a range of horizons on 25-grid

doubled that of IL and increases linearly with the horizon.

Summary
We have introduced a model-free, multi-agent learning ap-
proach for ND-POMDPs. This approach decomposes and
distributes the learning of the optimal global joint policy
by exploiting its structured interactions through a decom-
posable reward function and independence among agents.
Distributed learning is coordinated through joint action
selection computed by distributed constraint optimization
(DCOP) techniques, which ensure the optimality of the
learning for ND-POMDPs with groupwise observability. By
exploiting the property of locality of interactions in ND-
POMDPs, the learning complexity potentially scales lin-
early with the number of agents. To trade off solution qual-
ity and communication and computation efficiency, a max-
sum algorithm is used to compute an approximate solution
for our DCOP. Experimental results show that, by exploit-
ing extra communication during learning and execution, this
approach significantly outperforms off-line construction of
nearly-optimal no-communication policies.
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