Integrating Organizational

Control into Multi-Agent

Learning

Chongjie Zhang
Computer Science Dept.
University of Massachusetts
Ambherst, MA 01002, US
chongjie@cs.umass.edu

ABSTRACT

Multi-Agent Reinforcement Learning (MARL) algorithms $erf
from slow convergence and even divergence, especiallyrgela
scale systems. In this work, we develop an organizatioedas
control framework to speed up the convergence of MARL algo-
rithms in a network of agents. Our framework defines a maitel
organizational structure for automated supervision andrancu-
nication protocol for exchanging information between lowayel
agents and higher-level supervising agents. The abstratites of
lower-level agents travel upwards so that higher-leveksuiping
agents generate a broader view of the state of the networls Th
broader view is used in creating supervisory informatioricivtis
passed down the hierarchy. The supervisory policy adaptétien
integrates supervisory information into existing MARL alghms,
guiding agents’ exploration of their state-action spacke gen-
erality of our framework is verified by its applications orffeli-

ent domains (distributed task allocation and network rativith
different MARL algorithms. Experimental results show tloatr
framework improves both the speed and likelihood of MARL-con
vergence.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning; 1.2.11 Prtificial Intelli-
gencé: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords

Multi-Agent Learning, Organization Control, Policy Adatibn,
Coordinated Learning, Supervision

1. INTRODUCTION

A central challenge in multi-agent systems (MAS) reseasch i
to design distributed coordination mechanisms for agéwtishtave
only partial views of the whole system in order to generafieieht
solutions to complex, distributed problems. To effectvebor-
dinate their actions, agents need to estimate the unolusstates
of the system and adapt their actions to the dynamics of thie en

Cite as: Integrating Organizational Control into Multi-Agent Ledmg,
Chongjie Zhang, Sherief Abdallah and Victor Lesdérpc. of 8th Int.

Conf. on Autonomous Agents and Multiagent Systems (AAMAS

2009) Decker, Sichman, Sierra and Castelfranchi (eds.), May130
2009, Budapest, Hungary, pp. XXX-XXX.

Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

Sherief Abdallah
Institute of Informatics
British University in Dubai
Dubai, United Arab Emirates
sherief.abdallah@buid.ac.ae lesser@cs.umass.edu

Victor Lesser
Computer Science Dept.
University of Massachusetts
Amherst, MA 01002, US

ronment. Multi-agent reinforcement learning (MARL) teajures
have been extensively explored in such a setting.

In order to achieve scalability in conventional approade4,

15] to MARL, the learning of each agent has been restricted to
using information received only from its immediate neigtto
update its estimates of the world states (i.e., Q-valuestate-
action pairs). However, this constraint results in longtaly as
state information propagates to agents further away. Satehdy
can result in neighborhood information being outdatedditegto
mutually inconsistent views among agents. As a result, adth-

ited view for each agent and the non-stationarity of theremvhent

(all agents are simultaneously learning their own polictsises
MARL algorithms to converge slowly and even diverge in some
cases. The slowness of MARL convergence is further degraged
the large policy search space of each agent. Each agenity pol
not only includes its local state and actions but also sonagach
teristics of the states and actions of its neighboring agijt or

the state size of each agent may be proportional to the nuaiber
agents in the system [4].

Two paradigms have been studied to speed up the multi-agent
learning process. The first paradigm is to reduce the pobeych
space. For example, the TPOT-RL [11] reduced the state d¢pace
mapping states onto a limited number of action-dependarures.
Another approach is hierarchical multi-agent reinforcetiearn-
ing [5], where the explicit task structure was used to resthie
space of policies. Each agent learned joint abstract agtbres
by communicating with others only the state of high-levditasks.
The second paradigm is to employ heuristics to guide thecyoli
search. Heuristically Accelerated Minimax-Q (HAMMQ) [3}-i
corporated heuristics into the Minimax-Q algorithm to spep
its convergence rate. HAMMQ shared the convergence prppert
with Minimax-Q. However, HAMMQ was intended for use only
in a two-agent configuration. Its authors used hand-codethdo
heuristics, which did not capture the dynamics of otherneay
agents. Another approach [12] used both local and globaigieu
tics to accelerate the learning process in a decentralizgtiraibot
system. The local heuristic was derived from a robot's lanal
formation, while the global heuristic was derived from tHebgl
data obtained from other robots. The global data needed éx-be
actly the same among robots. This consistency was maigtaine
by broadcasting messages among all robots, which incueadyh
communication overhead and did not scale well. In addittbis,
approach was developed specifically for the multirobotqskiig
problem.

In this paper, we present a different approach, called M\gnt
Supervisory Policy Adaptation (MASPA), that employs organ
tional control to guide multi-agent learning and acceleitg con-
vergence. MASPA is composed of three components: a multi-

Supervisors

7/ Supervisors

Workers

Figure 1: An organizational structure for multi-level supervi-
sion

level supervision organization (a meta-organizationttariltop of
the agents’ overlay network), a communication protocol d&f
changing information between lower-level agents and hidgheel
supervising agents, and a policy adaptation mechanismirtteat
grates organizational control information into MARL algbms
(e.g., GIGA [16], WPL [1], etc.) to bias the exploration pess of
each learning agent.

The key idea of MASPA is as follows. Each level in the super-
vision organization is an overlay network in itself. For mye,
Figure 1 shows a three-level supervision organizatiomaksire.
The abstracted states of lower-level agents travel upwasdbat
higher-level supervising agents can generate a broaderofithe
state of the network. This broader view comes from not orfigrin
mation about the states of lower-level agents but also imébion
from neighboring supervising agents. In turn, this broadew
results in creating supervisory information which is pasdewn
the hierarchy. This supervisory information guides theriesy of
agents in collectively exploring their state-action spgacm®re effi-
ciently, and consequently results in faster convergencqrdvide
up-to-date supervisory information, the process aboveeigi-
cally repeated.

In this way, MASPA deals with scalability issues by using ap-
proximate partial global views that can be acquired witatreély
low overhead. The use of these dynamic views does not irereas
the state space of individual agent, but rather are usednerge
ate directives for each agent so that its exploration is Inatie
informed and more coordinated with other agents. To our know
edge, MASPA is the first framework that surrounds and coatdi
multi-agent learning with organizational control. It hasiarar-
chy of control and data abstraction, which is conceptuaitfied
ent from existing hierarchical multi-agent learning altfuns that
uses a hierarchy of task abstraction. In addition, MASPA loan
used together with approaches that reduces the policylsspace
to further speed up the learning.

As other approaches to improving MARL algorithms, the use of
MASPA requires some additional knowledge. This knowledge i
used to decide what organizational structure needs to Ipeefiyr
what abstracted state information is useful, and how to exrtkis
information into supervisory information. However, MASRA
self is a general framework that dynamically guides thenlieay of
agents. We verified the generality of MASPA with its applicas
in different domains (distributed task allocation and retwrout-
ing) with different MARL algorithms. Experimental resuibow
that it not only dramatically speeds up the rate of MARL canve
gence, but also increases its likelihood of convergence.

MASPA assumes agents will voluntarily share their staterinf
mation. It also implicitly assumes the original multi-agegstem

can be formed into a nearly decomposable hierarchy [9] afatt!
one level. This assumption implies that if agents in theinab
MAS are far apart in spatial terms, their behaviors are alsapart

in causal terms. For example, in Figure 1, knowing detaihéolrt
mation about agents in clustewill not significantly affect the be-
haviors of agents in clustdr. Our assumptions hold in many real
cooperative systems. Sensor network is one example, where t
whole system is designed to cooperate and usually decotplposa
according to proximity. Other examples include packagéimgun
the Internet, peer-to-peer file sharing or informationiestl, and
resource sharing in grid computing.

To focus on the essence of MASPA coordinating multiagemblea
ing and isolate its impact on the system performance, thiempa
uses pre-defined supervision organization structureserSigmn
organizations can be dynamically formed during the leayttinough
a bottom-up self-organization approach [14]. For simpficihis
paper limits the discussion to the case where learning agpéns
at the bottom level and supervising agents use pre-spebifigas-
tics to make decisions, but, in principle, MASPA does notriets
supervising agents learning their supervision policies.

The rest of the paper is organized as follows: Section 2 ptese
multi-level organizational structure for automated sufson mech-
anism. Section 3 defines a communication protocol for agants
different levels. Section 4 describe the supervisory padidapta-
tion that integrates supervisory information into MARL alighms.
Section 5 empirically evaluates our framework on distloutask
allocation problem and network routing. Finally, Sectiordh-
cludes this work and discusses some future work.

2. ORGANIZATIONAL SUPERVISION

Supervision mechanisms commonly exist in human organiza-
tions, such as enterprises and governments. The purpobes# t
mechanisms is to run an organization effectively and effityeto
fulfill the organization goals. Supervision involves gathg in-
formation, making decisions, and providing directionsegulate
and coordinate actions of organization members. The ped@i-
fectiveness of supervision mechanisms in human orgaoirgtes-
pecially in large organizations, inspired us to introducgirailar
mechanism into multi-agent systems in order to improve ffie e
ciency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay struc-
ture, MASPA adopts a multi-level, clustered organizatiastaic-
ture. Agents in the original overlay network, called woskeare
clustered based on some measure (e.g., geographicaladist&iach
cluster is supervised by one agent, called the supervisor,ita
member agents are called subordinates (note that subtesiing
the lowest level are workers). The supervisor role can bgeplédy
a dedicated agent or one of the workers. If the number of sisper
sors is large, a group of higher-level supervisors can be@dshd
so on, forming a multi-level supervision structdrén this paper,
our discussion focuses on the situation where each agemmdsel
to only one cluster.

Two supervisors at the same level are adjacent if and only if
at least one subordinate of one supervisor is adjacent teast |
one subordinate of the other. Communication links, whiah loa
physical or logical, exist between adjacent workers, betwedja-
cent supervisors, and between subordinates and theirssier:
Figure 1 shows a three-level organizational structure. Bdteom
level is the overlay network of workers which forms 9 clustef
shaded circle represents a supervisor, which is respenfibla
corresponding cluster. Note that links between subordmand

The top supervision level can have multiple supervisors.

their supervisors are omitted in this figure.

3. COMMUNICATION PROTOCOL

Each agent can demonstrate both fast and slow dynamics in how

its features change. Fast dynamics of an agent are exhlijtéte
changes of such features as those that represent intesetith
other agents, its local state, and its policy (or value fiamjt Slow
dynamics are exhibited by the changes of an agatistracted

state The abstract state is defined by a vector of features, which

can be projected from features with fast dynamics by usirgdp su
techniques as:

allow a supervisor to express its preference for subordg\die-
havior. A supervisor has a more global view but may lack tedai
information about its subordinates’ local policies andoien sur-
rounding environment. Using suggestions, the supervisable
to affect a subordinate’s policy yet allow the subordinatever-
ride its directives when needed. The implicit assumptiotiné a
supervisor’s suggestions will be correct most of the timehsd
the penalty of bad suggestions is outweighed by good suggest
Therefore, a subordinate does not rigidly adopt suggestidme
effect of a suggestion on a subordinate’s local decisionimgakay
vary, depending on its current policy and state. A supervigt
refine or cancel rules and suggestions as new or updateaniafor

e Using partial components of a feature and ignoring other tion becomes available.

components that do not affect slow dynamics

A set of rules are in conflict if they forbid all possible actsoon
some state(s). Two suggestions are in conflict if one is ipesiind

e Using some statistics (e.g., mean, mode, etc.) of a feature the other is negative and they share some state(s) and @}tién

generated over the temporal or spatial scale

e Replacing a fast-changing feature with its distribution pa
rameters if its changes follow some statistical distrituiti

Similarly, each cluster also has fast and slow dynamicst dias
namics of a cluster are exhibited by that of its members. Shpw
namics of a cluster are captured by the changes of its sigoekvi
abstracted state. The abstracted state of a supervisoojectad
either from the abstracted states of its subordinates ecitijrfrom

features with fast dynamics of its subordinates. MASPA @es.
that a supervisor can make rational decisions based on itsaod
neighbors’ abstracted states.

MASPA uses three types of communication messagesort,
suggestionandrule. A report is used by a subordinate to pass its
abstracted state upwards to provide its supervisor withoadsr
view. A supervisor also sends its report to its adjacent istipe
sors at the same level in addition to its immediate super\i§o
any). The supervisor’s view is based on not only the ageiaisith
supervises (directly or indirectly) but also its neighbgrisupervi-
sors. This peer-supervisor communication allows eachrsigoe
to make rational local decisions when directions from itsiediate
supervisor are unavailable.

Based upon this information, a supervisor employs its diqeer
integrates directions from its superordinate supervisod pro-
vides supervisory information to its subordinates. Ruled sug-
gestions are used to transmit supervisory information. &fimd a
rule as a tuplg(c, F'), where

e ¢: a condition specifying a set of satisfied states

e F': aset of forbidden actions for states specified:by
A suggestions defined as a tupl&;, A, d), where

e ¢: a condition specifying a set of satisfied states

e A: aset of actions

e d: the suggestion degree, whose range-is, 1]

A suggestion with a negative degree, callegkgative suggestion
urges a subordinate not to do the specified actions. In &intra
a suggestion with a positive degree, calledasitive suggestign
encourages a subordinate to do the specified action. Théegrea
the absolute value of the suggestion degree, the strongéntiact

of the suggestion on the supervised agent.

Each rule (or suggestion) contains a condition specifyiates
where it can be applied. Subordinates are required to oldeg ru
from their supervisors. Rules are “hard" constraints orostib
nates’ behavior. In contrast, suggestions are “soft" cairgs and

rule conflicts with a suggestion if a state-action pair iidden

by the rule but is encouraged by the suggestion. In our sisperv
sion mechanism, we assume each supervisor is rational dhd wi
not generate rules and suggestions that are in conflict. #awe
in a multi-level supervision structure, a supervisor'sdlogecision
may conflict with its superordinate (the supervisor’s sujzar) di-
rection. Rules have higher priority than suggestions. &lee
several strategies for resolving conflicts between ruldsetween
suggestions, such as always taking its superordinate at tate,
stochastically selecting a rule, or requesting additiamfarmation

to make a decision. The strategy choice depends on the apptic
domain. Note that it may not always be wise to select the super
dinate decision, because, although the superordinate\ssmehas

a broader view, its decision is based on abstracted infaomathe
strategy used here for resolving conflicts picks the mosstraim-
ing rule and combines suggestions by summing the degreée of t
strongest positive suggestion and the strongest negatjgestion.

4. SUPERVISORY POLICY ADAPTATION

Using MARL, each agent gradually improves its action policy
as it interacts with other agents and the environmenpu#e pol-
icy deterministically chooses one action for each statenixed or
stochastigolicy specifies a probability distribution over the avail-
able actions for each state. A policy can be represented @sca f
tion (s, a), which specifies the probability that an agent will exe-
cute actior at states. As argued in [10], mixed policies can work
better than pure policies in partially observable envirents, if
both are limited to act based on the current percept. Duert@pa
observability, most MARL algorithms are designed to leairad
policies. The rest of this section shows how mixed policy MAR
algorithms can take advantage of higher-level informasioecified
by rules and suggestions to speed up convergence.

As shown in Figure 2 (a), a typical MARL algorithm contains
two components: policy (or action-value function) update ac-
tion selection based on the learned policy. One common rdetho
to speed up learning is to supply an agent with additionahrdw
to encourage some particular actions, which is called re\shap-
ing [6]. This use of the special reward affects both policgate
and action selection. In a single-agent setting, there arengial
function forms of reward shaping that leave the optimalgyalialue-
function unchanged [6]. However, due to the non-statiotheayn-
ing environment in a multi-agent setting, reward shaping gen-
erate a policy that is undesirable in that they may distnachfthe
main goal, which is supported by the normal reward.

MASPA directly biases the action selection for exploratiath-
out changing the policy update process. As shown in Figui®,2 (
MASPA supervisory policy adaptation integrates rules sngges-

rules,

A
suggestions report

v
Supervisory @4—
Policy Generator
. Adaptation
Policy policy Action 7y * adapted
Update Selection policy policy
it Action
Update Selection |
feedback action y state A

feedback state

action
v

@ (b)

Figure 2: Unsupervised MARL vs. Supervised MARL with
MASPA

tions into the policy learned by an unsupervised MARL altjori
and then outputs an adapted policy. This adapted policyénded
to control exploration. Our integration assumes polickeshed by
an unsupervised MARL are stochastic. The report generator ¢
putes the abstract state of the agent.

makes a more significant change to its local policy.

To normalizer® such that it sums to 1 for each state, timeit
function from GIGA [16] is applied with minor modification® s
that every action is explored with minimum probability

I limit(ﬂ'A) = argminm,a”d(w)hrA — x|

i.e., limit(7*) returns a valid policy that is closestd'.

Our normalization also implicitly solves the issue of ruleson-
flict. If a set of rules forbids all actions on a state, thengtababil-
ity of each action is set t0. After normalization, the probabilities
of all actions are equal, that is, the action choice becomes ¢
pletely random. This strategy is reasonable when the ageet d
not know the consequence of violating each rule.

5. EXPERIMENTAL RESULTS

We have tested MASPA in two different domains: distributed
task allocation problem (DTAP) and network routing. In tlog f
lowing experiments, we manually cluster agents in the ayankt-
work using Manhattan distance. The agent closest to theceht
each cluster is elected as the supervisor. Supervisorpkigdhe
worker role. We assume there are links that allows directmam

Let R andG be the rule set and suggestion set, respectively, that nication between subordinates and their supervisors atvieba

a worker received and be its learned policy. We defin®(s, a) =
{{c, F) € R| states satisfies the condition anda € F'} and
G(s,a) = {(c, A,d) € G| states satisfies the conditionanda €
A}. As we assume a supervisor is rational, it will not generateem
than one suggestion for a subordinate that satisfies a attite:
pair. Thus,|G(s, a)| < 1. The functiondeg(s, a) that returns the
degree of the satisfied suggestion is defined as following:

deg(s,a) = { 2 if |G(s,a)

and(c, A,d) € G(s,a)
Then the adapted poliey” for the action selection is generated
by the supervisory policy adaptation:

0 if R(s,a)#0

m(s,a) +m(s,a) *n(s)
x deg(s,a)

m(s,a) + (1 — w(s,a))

*1(s) * deg(s, a)

(s, a) = else ifdeg(s,a) <0

else ifdeg(s,a) > 0

The state-dependent functiopis) ranges from0, 1]. As simi-
larly defined in the supervised actor-critic architect8k it deter-
mines the receptivity for suggestions and allows the ageselec-
tively accept suggestions based on its current state. Starioe,
if an agent becomes more confident in the effectiveness d¢b-its

adjacent supervisors.

5.1 Distributed Task Allocation

We evaluated MASPA in a simplified DTAP [2] with Poisson
task arrival and exponential service time. Agents are organn
an overlay network. Each agent receives tasks from the amvir
ment at a certain rate. At each time unit, an agent makes aideci
for each task received during this time unit whether to etesthe
task locally or send it to a neighboring agent for processifAg
task to be executed locally will be added to the local queué wi
unlimited queue length, where tasks are executed on a &ireee
first-serve basis. Agents interact via communication ngessand
communication delay between two agents is proportionddealts-
tance between them, one time unit per distance unit. The guah
of DTAP is to minimize the total service time of all tasks, eaged

by the number of tasksdT'ST = w whereT is
the set of tasks received during a time periog@nd7’ ST (T') is the
total service time that task spends in the system, which includes

the routing time, queuing time, and execution time.

5.1.1 Experimental Setup

We chose one representative MARL algorithm, the Weighted
Policy Learner (WPL) algorithm [1], for each worker to ledask
allocation policies, and compared its performance withwitldout

cal policy on states because it has more experience with it, then MASPA. WPL is a gradient ascent algorithm where the gradient
n(s) decreases as learning progresses. In our experimentstwe seis weighted byr(a) if it is negative; otherwise, it will weighted

n(s) = k/(k + visits(s)) wherek is a constant anaisits(s)
returns the number of visits on the state

With the supervisory policy adaptation, a rule explicithesifies
undesirable actions for some states and is used to prungatiee s
action space. Suggestions, on the other hand, are usedtadsat
exploration. To integrate suggestions into MARL, MASPA sise
the strategy that the lower the probability of a state-acfiair, the
greater the effect a positive suggestion has on the pairtentbss
the effect a negative suggestion has on it. The underlyieg id
intuitive. If the agent’s local policy already agrees witte tsuper-
visor's suggestions, as indicated by the policy having lfaytow)
probabilities for state-action pairs from the positive (@gative)
suggestions, it is going to change its local policy verydifif at
all); otherwise, the agent follows the supervisor’s sutigas and

by (1 — w(a)). So effectively, the probability of choosing a good
action increases by a rate that decreases when the propaipiti
proaches to 1. Similarly, the probability of choosing a batioa
decreases by a rate that decreases when the probabilityaaes
to 0. A worker's state is defined by the current work load (¢alto
work units) in the local queue.

The abstracted state of a worker is projected from its statds
defined by its average work load over a period of timg = 500
in our experiments). The abstracted state of a supervistafised
by the average load of its cluster, which can be computed from
the abstracted states of its subordinates. A subordinatissere-
port, which contains its abstracted state, to its supengsery
time period. Supervisors use simple heuristics to genetaés
and suggestions. With an abstracted stétea supervisor gener-

ates a rule that specifies, for all states whose work loadegbsze

a worker should not add a new task to the local queue. This rule
helps balance load within the cluster. A supervisor alsemges
positive (or negative) suggestions for its subordinatentmurage

(or discourage) them forwarding more tasks to a neighbaring-

ter that has a lower (or higher) average load. The suggedéigree

for each subordinate depends on the difference betweenehage
load of two clusters, the number of agents on the boundadythen
distance of the subordinate to the boundary. Thereforgesigpns

are used to help balance the load across clusters.

Three measurements are evaluated: the average totalestnve
(ATST), the average number of messages (AMSG) per task, and
the time of convergence (TOC). ATST indicates the overaltey
performance, which can reflect the effectiveness of legraid su-
pervision mechanism and can also be used to verify systdsititsta
(convergence) by showing a monotonic decrease in ATST agsage
gain more experiences. AMSG shows the overall communitatio
overhead for finishing one task, which including both foktemsut-
ing and MASPA supervision. To calculate TOC, we take sedalent
ATST values with certain size and then calculate the ratitho$e
values’ deviation to their mean. If the ratio is less thanraghold
(e.0.,0.025), then we consider the system stable. TOC is the start
time of the selected points.

Experiments were conducted using uniform two-dimensiath gr
networks of agents with different sizes: 6x6, 10x10, and2Z7x
all of which show similar results. But as the size of the syste
increases, the MASPA impact on the system performance bexom
greater. For brevity, we only present here the results fer2ifx27
grid (with 729 agents). For simplicity, we assume that akrag
have the same execution rate and that tasks are not decdrigosa
The mean of task service timejis= 10. We tested three patterns
of task arrival rates:

Uneven Center Load where 121 agents in the centric 11x11 grid
receive tasks and other agents receive no tasks from the ex-
ternal environment. In the centric 11x11 grid, the taskvatri
rate of agents on the outermost 6 columns is 0.8 and the
rate of the rest agents ls= 0.2.

Corner Load where only agents in the 12x12 grid at the up-left
corner receive tasks from the external environment. In that
12x12 grid, the agents in the 9x9 grid at the up-left corner
has the task arrive rate = 0.2 and the rest agents has the
rateA = 0.7.

Boundary Load where the 200 outermost agents receive tasks with
rate A = 0.33 and other agents receive no tasks from the ex-
ternal environment.

In each simulation run, ATST and AMSG are computed every
500 time units to measure the progress of the system perfmena
Results are then averaged over 10 simulation runs and tienear
is computed across the runs. All agents use WPL with leanitey
0.001. Our experiments use the paramejés) = 1000/(1000 +
visits(s)).

We compared four structureso supervision, local supervision,
one-level supervision, and two-level supervisidn the local su-
pervision structure, agents are their own supervisors. With this
structure, each agent gains a view only about itself andeigha
bors, which is not much different from its view in the orgaaiz
tion without supervision. We use thecal supervisionstructure
to evaluate whether domain knowledge combined with a lihite
view, which is used to create rules and suggestions, stitaves
the system performance. In contrast, the performance ofibe
following structures with supervision show the benefitsafihg a

2500
1500
1000 —

500 —

None
I Local

One-level
Two-level

ATST

T T
30000 40000 50000

Times

Figure 3: ATST for different structures with uneven center load

2500
1500
1000 —

500 —

None
Local
One-level

Two-level

ATST

T T
30000 40000 50000

Times

T T
10000 20000

Figure 4: ATST for different structures with corner load

None
Local
One-level
Two-level

Figure 5: ATST for different structures with boundary load

broader view combined with domain knowledge. Time-level su-
pervisionstructure has 81 clusters, each of which is a 3x3 grid and
the agent at each cluster center is elected as the superviker
two-level supervisiorstructure forms from thene-level supervi-
sion structure by grouping 81 supervisors into 9 clusters, edch o
which is a 3x3 grid. The supervision structures with threenore
levels did not show further improvement over the two-leveles-
vision in our DTAP experiments. This is because a wide-rdagle
transfer causes a long routing time which offsets the réclcif

the queuing time in each agent.

5.1.2 Results & Discussions

Figure 3, 4 and 5 plot the trend of ATST, as agents learn, for
different organization structures with different taskat patterns.
Note that they axis in the plots is logarithmic. As expected, MASPA
improves both the likelihood and speed of the learning cenve
gence. The broader the view MASPA observes, the greater the
system performance it improves. In addition, several ottser-
vations are also noted.

Under both uneven center load and corner load, the systdm wit
out MASPA does not seem to converge. From Figure 3 and 4,
we see that both simulations ends bef66800 time units. This

happens because, using random exploration, agents inithdar
not learn and propagate quickly enough knowledge aboutevher
light-loaded agents are. As a result, for example, undevame
center load patter, more and more tasks loop and reside tetie
ter 11x11 grid where agents receive external tasks. Thiemtie
system load severely unbalanced and the system capalatityatl
utilized, which causes the system load to monotonicallydase.
Our simulations ran out of all computing resources and teated
before showing any signs of convergence. In contrast, oivger
broader views, MASPA guides and coordinates the explaraifo
agents and allows them to learn quickly to effectively rdakks.
Under both uneven center load and corner ldadal super-

Supervision ATST AMSG TOC
None 29.26 +0.71 | 6.90 +0.21 | 17500
Local 28.21 +0.59 | 7.024+0.09 | 8500

One-level | 27.64 +0.60 | 6.94 +0.16 | 7500
Two-level | 27.49 +£0.60 | 7.14 £0.14 | 6500

Table 3: Performance of different structures with boundary
load

one-level supervisionThis is becauséwvo-level supervisioeads
workers to learn more quickly and effectively to forwardks$o

vision does not prevent system divergence. This is because un-the right workers, which dramatically reduces the numbemnes-

even task arrival rates in both patterns cause many ageuts |
view of the system to become inconsistent with the global sys
tem view. For example, under uneven center load patterny man
overloaded agents at the center columns find their neighiawiag
even higher loads. As a resutical supervisiorgenerates incorrect
directives for them to explore their actions. For similagens, ex-
plained at a cluster level instead of a worker level, theesyswith
one-level supervisiodoesn’t perform well under corner load pat-
tern.

Broader views for MASPA do not necessarily significantly im-

prove the system performance. For example, under unevearcen
load, one-level supervisioand two-level supervisiorshow simi-
lar performance, and, under boundary load pattern, allrsigien
structures demonstrate similar performance. This is tsegaim
both cases, broader views do not provide much additionafrimd-
tion for MASPA. For example, under the boundary load pattern
local work loads in the whole network quickly form some patie
where an agent farther away from the network boundary usha#
a lighter local load. Then, based on their local view, mostrasg
generate suggestions for themselves to forward tasks ghineis
closer to the network center, which are coincidentally Eimio
suggestions generated from a broader view (e.g., one-de\io-
level supervision).

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level | 33.41 +0.66 | 10.21 £+ 0.25 | 7500
Two-level | 34.08 +0.62 | 10.60 4+ 0.22 | 6000

Table 1: Performance of different structures with uneven ce-
ter load

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level | 265.50 = 6.59 | 24.83 = 1.34 | 38500
Two-level 51.37 £ 0.88 | 16.33 £0.26 | 14000

Table 2: Performance of different structures with corner load

sages for routing tasks and offsets the overhead from aticukli
level of supervision.

During the experiments, we observed that supervisory inéer
tion corresponding to coarse-grained control tend to beerhelp-
ful than that corresponding to fine-grained control in inying the
system performance. Moreover, fine-grained may even deerea
system performance. Coarse-grained control consideropead
ates on the whole cluster as one entity, while fine-grainedrob
operates on individual cluster members. “Moving more tdsks
my cluster to one of neighboring clusters" and “balancireyltad
within the cluster" are examples of coarse-grained conttilov-
ing more tasks from a high-loaded agent to a low-loaded agent
along the shortest path" is an example of fine-grained cbrinoe
explanation for this observation is that supervisory infation cor-
responding to coarse-grained control results in more doatidn
among agents’ exploration, speeding up the learning cgevee.
In contrast, in our simulation, due to lack of detailed imiation
of each cluster member, fine-grained control for some indiai
members is not able to fully evaluate the impact on and frdmerot
agents. As a result, the fine-grained control may interfétie the
normal learning process of other agents and the dynamicthef o
agents may degrade the fine-grained control.

We have explored different values of cluster size and fotiad t
system performance decreases with cluster size that &er éito
small (e.g.,< 5) or too large (e.g.> 100). This is because, with
too small a cluster size, supervisors do not collect enonfgiirma-
tion to create correct rules and suggestions. When a clsigieiis
too large, the representation of cluster abstracted shatd3TAP
(i.e. averaging loads of subordinates) ignores the vagiamiong
subordinates. As a result, supervisors are not able toecpgaper
rules and suggestions for every subordinate. Therefoegetis a
trade-off for the cluster size. In addition, cluster siZ®st oroduce
the best performance vary in different environments (eiferent
task arrival patterns).

Similarly, there is a trade-off in the length of the reportipé.
A too short report period causes a large variance of theadistt
state (also increases communication overhead) and rasoisil-
lating suggestions and rules. A too long report period catise
supervisory information received by workers to be out-daad
as a result, decreases the convergence rate.

Table 1, Table 2, and Table 3 show the different measures for 5.2 Network ROUting

each supervision structure at their own convergence tinmé.pio
addition to increasing the convergence rate, MASPA alsosdses

We also evaluated our framework using a network routing sim-
ulator adopted from Boyan and Littman [4]. It is a discretadi

the system ATST. In most cases, the broader the views MASPA ob simulator of communication networks with various topokxyi A

serves, the lower the ATST the system generates. We canlalso o
serve that MASPA does not incur heavy communication ovethea
For example, with the boundary load pattesne-level supervision
has less than 0.6% communication overhead. With the cooaelr |
patterntwo-level supervisioactually produces lower AMSG than

communication network consists of a homogeneous set ofsnode
(or agents) and links between them. Packets are periogioatb-
duced into the network under a Poisson distribution withreloan
origin and destination. No two packets have the same age¢hées
origin and destination. When a packet arrives at an agengdbnt

Figure 6: The 10 x 10 grid topology

puts it into the local FIFO (first in first out) queue. At eaciméi
step, an agent makes its routing decision to forward the aajqt
in the queue to one of its neighbors. Once a packet reachdssits
tination, it is removed from the network. In our experimem=
set the time cost of sending a packet down a link as a unit &ast.
the delivery time of packet consists of its transmissiort eosl its
waiting time in queues. The main goal of a network routingalg
rithm for this problem is to minimize the Average Deliverynié
(ADT) of all packets.

5.2.1 Experimental Setup

Q-Routing

10000 — . .
= = = = PGD without Supervision

"~y — ==~ PGD with Supervision

8000 —

6000 4 |

4000 —

Average Delivery Time

N
Q
=]
=]
L

o

e -1 T
300000 400000 500000

Time

-
0 100000 200000

Figure 7: Performance under network load = 7.0

forwarding packets to clusters with lower (or higher) estieu de-
livery time to some destination cluster. The suggestioratedor
each subordinate depends on the difference between thagaver
estimated delivery time of neighboring clusters and theadise of
the subordinate to the boundary.

We have tested the PGD algorithm with and without MASPA
on several network topologies with various number of noddls,
of which show similar results. For brevity, we concentratetioe
result analysis for the 10 x 10 grid network pictured in Fegyér
The Q-routing [4] algorithm is used as baseline, which lsate-
terministic policies. Two measurements are evaluatedavieeage
delivery time (ADT) and the time of convergence (TOC). TheRD
is computed every 1000 time units. To calculate TOC, we tike
sequential ADT values and then calculate the ratio of thatges’
deviation to their mean. If their mean is less than the marimu
expected ADT (we use 300) and the ratio is less than a thréshol
(we use 0.05), then we consider the system stable. TOC isdte s
time of the selected points.

Results are then averaged over 10 simulation runs. All agent

Each agent uses a Policy Gradient Descent (PGD) algorithm to use the PGD algorithm with a learning rate= 0.1. Workers send

learn its routing policies. The PGD algorithm is a varianttodé
GIGA algorithm [16], which minimizes the total discountedst
and approximates the policy gradient of each state-actmnith

the normalized difference of its Q-value and the expectediQe

on that state. PGD learns stochastic policies, but, unlikétim
agent OLPOMDP [13] and GAPS [7] that were also applied to net-
work routing problem, it does not require a global rewarchalg
The states is defined by the destination of the packet that an agent
is forwarding. We defing). (s, a) as the estimated time that an
agentz takes to deliver a packet to the destinatiothrough its
neighbora, including any time that the packet would have to spend
in the agentc’s queue. The "cost signat(s, a) for forwarding a
packet with destination to its neighbow is g, + w4+ t, wherew is

the waiting time of the packet in's queue and is the transmission
time between agent anda. The Q-learning algorithm is used to
updater’s estimates.

The MASPA implementation in network routing is similar to
that in DTAP. The main difference is the way that MASPA mes-
sages are generated. In the network routing problem, we tlaseo
rules. The abstracted state of a worker (or supervisor)fiaetta
vector(t1, to, . . ., tm), Wheret; is the average estimated time that
the worker (or the supervisor’s cluster) takes to deliveaekpt to
destination agents in clustér So, by using statistimean the ab-
stract state of a worker can be computed from its Q-value tad
a supervisor’s abstracted state can be projected from litsrdi
nates’ abstracted states. A simple heuristic is used foergéing
suggestions. A supervisor always produces positive (oathen
suggestions for its subordinates to encourage (or disgejthem

reports to their supervisors every 500 time units. Our @rpants
use the parametey(s) = 20000/(20000 + visits(s)).

5.2.2 Results & Discussions

Figure 7 shows the performance trend as agents learn unger ne
work load= 7.0. The network load is the average number of pack-
ages entering the network at each time unit. All three algors,
after initial periods of inefficiency during which they radly ex-
plore the environment, gradually improve their performeaaad
stabilize. At the very early period, MASPA does not improkie t
performance much. This is because, due to almost complete ra
dom exploration, subordinates do not provide accurate@mvient
information to their supervisor, which may result in som@ioper
suggestions. As information accuracy increases, MASPAqrp
biases the policy search of the PGD algorithm and speedseup th
convergence. Due to policy oscillation, Q-routing shovesvston-
vergence.

Figure 8 shows the TOC of three algorithms under various net-
work loads. As expected, MASPA consistently speeds up the co
vergence of the PGD algorithm. The higher the network lol€l, t
greater the speed improvement. For example, when load5,
MASPA decreases the TOC by arout@’ or more. Under low
network loads, optimal policies usually follows shorteaths, so
they are deterministic. The PGD algorithms use gradienatgd
and gradually converge to deterministic policies, sloweamt Q-
routing that directly learns deterministic policies. He®e under
high loads, where optimal policies are usually stochastie, Q-
routing policies show oscillation during the learning ahd PGD

500000 —

-O0—=.F Q-Routing
~A——/ pGD without Supervision
§ 400000 4 ~>—< PGD with Supervision
[
=
g 300000 —
c
S
et 200000 —
k]
o
£
= 100000 —
o & ‘
0 1 2 3 4 5 6 7 8 9
Network Load
Figure 8: Time of Convergence at various loads
350 —
-O—LF Q-Routing
o 300 ~A——/ pPGD without Supervision
E ~>——=> PGD with Supervision
= 250 o
el
£ 200
©
O 150 4
o
g
5 100 —
>
< 50 4
0 1

Network Load

Figure 9: Delivery time at various loads

algorithm with MASPA converges faster to stochastic pekci

Figure 9 shows the ADT at the convergence time point under
various network loads. Under low loads, as both PGD algmsth
with and without MASPA, converge to deterministic policidsey
show almost the same performance. Due to random exploration
with some probability, they perform slightly worse than Q#ting.
However, under high loads, MASPA improves the PGD perfor-
mance. For example, when load 6.5, MASPA decreases the
ADT by at least10%, and when load= 8.0, MASPA reduces
the ADT by around30%. As both PGD algorithms converge to
stochastic policies, which allows agents to simultangoasploit
multiple paths to deliver packets to a single destinatibay tper-
form much better than Q-routing under high loads.

6. CONCLUSION

This work presents MASPA, a decentralized supervision &am
work, that enables efficient learning in large-scale madfent sys-
tems. In MASPA, the automated supervision mechanism fuses a
tivity information of lower-level agents and generateseswjsory
information that guides and coordinates agents’ learnioggss.
This supervision mechanism continuously interacts witt ey-
namically controls the learning process. Simulation rssab-
tained in two different domains with different MARL algduins
verify the generality of MASPA and demonstrate that MAS Pk si
nificantly accelerates the learning process with relatilev com-
munication overhead.

As mentioned, the use of MASPA may require some additional
knowledge. Future work includes developing techniquesago-
rithms to relax these requirements. We are developing dllistd
algorithm for dynamically forming supervision organizats (ad-
dressing agent clustering and supervisor election) [14] avé also
interested in developing techniques for automaticallyrize pro-

jection functions to construct abstracted states, andstigating
learning algorithms for supervisors to automate the géioeraf
rules and suggestions.

7.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Abdallah and V. Lesser. Learning the task allocation
game. INAAMAS’06 2006.

S. Abdallah and V. Lesser. Multiagent reinforcement
learning and self-organization in a network of agents. In
AAMAS’07 2007.

R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa.
Heuristic selection of actions in multiagent reinforcerten
learning. INIJCAI'07, Hyderabad, India, 2007.

J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement learning
approach. INIPS’94 volume 6, pages 671-678, 1994.
R. Makar, S. Mahadevan, and M. Ghavamzadeh.
Hierarchical multi-agent reinforcement learning. In
Autonomous Agents’Qpages 246-253, 2001.

A.Y. Ng, D. Harada, and S. Russell. Policy invariance emd
reward transformations: theory and application to reward
shaping. INCML'99, pages 278-287, 1999.

L. Peshkin and V. Savova. Reinforcement learning for
adaptive routing. Iinternational Joint Conference on
Neural Networks (IJCNNR002.

M. T. Rosenstein and A. G. Barto. Supervised actor-criti
reinforcement learning. In J. Si, A. Barto, W. Powell, and
D. Wunsch, editord.earning and Approximate Dynamic
Programming: Scaling Up to the Real Worldages
359-380. John Wiley and Sons, 2004.

H. A. Simon. Nearly-decomposable systemsThe Sciences
of the Atrtificial pages 99-103, 1969.

S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepdsvar
Convergence results for single-step on-policy
reinforcement-learning algorithmslachine Learning
38(3):287-308, 2000.

P. Stone and M. Veloso. Team-partitioned, opaquesttizam
reinforcement learning. lAutonomous Agents'99ages
206-212, 1999.

P. Tangamchit, J. Dolan, and P. Khosla. Learning-baask
allocation in decentralized multirobot systemsDARS’0Q
pages 381-390, 2000.

N. Tao, J. Baxter, and L. Weaver. A multi-agent
policy-gradient approach to network routing.l{®ML '01,
pages 553-560, 2001.

C. Zhang, V. Lesser, and S. Abdallah. Self-organizafar
dynamically supervising distributed learning.Umiversity
of Massachusetts Amherst Computer Science Technical
Report UM-CS-2009-002009.

H. Zhang and V. Lesser. A reinforcement learning based
distributed search algorithm for hierarchical contentistta
systems. IIRAMAS’07 2007.

M. Zinkevich. Online convex programming and generediz
infinitesimal gradient ascent. ICTML'03, pages 928-936,
2003.

