
Integrating Organizational Control into Multi-Agent
Learning

Chongjie Zhang
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US

chongjie@cs.umass.edu

Sherief Abdallah
Institute of Informatics

British University in Dubai
Dubai, United Arab Emirates

sherief.abdallah@buid.ac.ae

Victor Lesser
Computer Science Dept.

University of Massachusetts
Amherst, MA 01002, US

lesser@cs.umass.edu

ABSTRACT
Multi-Agent Reinforcement Learning (MARL) algorithms suffer
from slow convergence and even divergence, especially in large-
scale systems. In this work, we develop an organization-based
control framework to speed up the convergence of MARL algo-
rithms in a network of agents. Our framework defines a multi-level
organizational structure for automated supervision and a commu-
nication protocol for exchanging information between lower-level
agents and higher-level supervising agents. The abstracted states of
lower-level agents travel upwards so that higher-level supervising
agents generate a broader view of the state of the network. This
broader view is used in creating supervisory information which is
passed down the hierarchy. The supervisory policy adaptation then
integrates supervisory information into existing MARL algorithms,
guiding agents’ exploration of their state-action space. The gen-
erality of our framework is verified by its applications on differ-
ent domains (distributed task allocation and network routing) with
different MARL algorithms. Experimental results show thatour
framework improves both the speed and likelihood of MARL con-
vergence.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence

General Terms
Algorithms, Experimentation

Keywords
Multi-Agent Learning, Organization Control, Policy Adaptation,
Coordinated Learning, Supervision

1. INTRODUCTION
A central challenge in multi-agent systems (MAS) research is

to design distributed coordination mechanisms for agents that have
only partial views of the whole system in order to generate efficient
solutions to complex, distributed problems. To effectively coor-
dinate their actions, agents need to estimate the unobserved states
of the system and adapt their actions to the dynamics of the envi-

Cite as: Integrating Organizational Control into Multi-Agent Learning,
Chongjie Zhang, Sherief Abdallah and Victor Lesser,Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15,
2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

ronment. Multi-agent reinforcement learning (MARL) techniques
have been extensively explored in such a setting.

In order to achieve scalability in conventional approaches[2, 4,
15] to MARL, the learning of each agent has been restricted to
using information received only from its immediate neighbors to
update its estimates of the world states (i.e., Q-values forstate-
action pairs). However, this constraint results in long latency as
state information propagates to agents further away. Such latency
can result in neighborhood information being outdated, leading to
mutually inconsistent views among agents. As a result, sucha lim-
ited view for each agent and the non-stationarity of the environment
(all agents are simultaneously learning their own policies) causes
MARL algorithms to converge slowly and even diverge in some
cases. The slowness of MARL convergence is further degradedby
the large policy search space of each agent. Each agent’s policy
not only includes its local state and actions but also some charac-
teristics of the states and actions of its neighboring agents [2], or
the state size of each agent may be proportional to the numberof
agents in the system [4].

Two paradigms have been studied to speed up the multi-agent
learning process. The first paradigm is to reduce the policy search
space. For example, the TPOT-RL [11] reduced the state spaceby
mapping states onto a limited number of action-dependent features.
Another approach is hierarchical multi-agent reinforcement learn-
ing [5], where the explicit task structure was used to restrict the
space of policies. Each agent learned joint abstract action-values
by communicating with others only the state of high-level subtasks.
The second paradigm is to employ heuristics to guide the policy
search. Heuristically Accelerated Minimax-Q (HAMMQ) [3] in-
corporated heuristics into the Minimax-Q algorithm to speed up
its convergence rate. HAMMQ shared the convergence property
with Minimax-Q. However, HAMMQ was intended for use only
in a two-agent configuration. Its authors used hand-coded domain
heuristics, which did not capture the dynamics of other learning
agents. Another approach [12] used both local and global heuris-
tics to accelerate the learning process in a decentralized multirobot
system. The local heuristic was derived from a robot’s localin-
formation, while the global heuristic was derived from the global
data obtained from other robots. The global data needed to beex-
actly the same among robots. This consistency was maintained
by broadcasting messages among all robots, which incurred heavy
communication overhead and did not scale well. In addition,this
approach was developed specifically for the multirobot patrolling
problem.

In this paper, we present a different approach, called Multi-Agent
Supervisory Policy Adaptation (MASPA), that employs organiza-
tional control to guide multi-agent learning and accelerate its con-
vergence. MASPA is composed of three components: a multi-

Figure 1: An organizational structure for multi-level supervi-
sion

level supervision organization (a meta-organization built on top of
the agents’ overlay network), a communication protocol forex-
changing information between lower-level agents and higher-level
supervising agents, and a policy adaptation mechanism thatinte-
grates organizational control information into MARL algorithms
(e.g., GIGA [16], WPL [1], etc.) to bias the exploration process of
each learning agent.

The key idea of MASPA is as follows. Each level in the super-
vision organization is an overlay network in itself. For example,
Figure 1 shows a three-level supervision organizational structure.
The abstracted states of lower-level agents travel upwardsso that
higher-level supervising agents can generate a broader view of the
state of the network. This broader view comes from not only infor-
mation about the states of lower-level agents but also information
from neighboring supervising agents. In turn, this broaderview
results in creating supervisory information which is passed down
the hierarchy. This supervisory information guides the learning of
agents in collectively exploring their state-action spaces more effi-
ciently, and consequently results in faster convergence. To provide
up-to-date supervisory information, the process above is periodi-
cally repeated.

In this way, MASPA deals with scalability issues by using ap-
proximate partial global views that can be acquired with relatively
low overhead. The use of these dynamic views does not increase
the state space of individual agent, but rather are used to gener-
ate directives for each agent so that its exploration is bothmore
informed and more coordinated with other agents. To our knowl-
edge, MASPA is the first framework that surrounds and coordinates
multi-agent learning with organizational control. It has ahierar-
chy of control and data abstraction, which is conceptually differ-
ent from existing hierarchical multi-agent learning algorithms that
uses a hierarchy of task abstraction. In addition, MASPA canbe
used together with approaches that reduces the policy search space
to further speed up the learning.

As other approaches to improving MARL algorithms, the use of
MASPA requires some additional knowledge. This knowledge is
used to decide what organizational structure needs to be formed,
what abstracted state information is useful, and how to convert this
information into supervisory information. However, MASPAit-
self is a general framework that dynamically guides the learning of
agents. We verified the generality of MASPA with its applications
in different domains (distributed task allocation and network rout-
ing) with different MARL algorithms. Experimental resultsshow
that it not only dramatically speeds up the rate of MARL conver-
gence, but also increases its likelihood of convergence.

MASPA assumes agents will voluntarily share their state infor-
mation. It also implicitly assumes the original multi-agent system

can be formed into a nearly decomposable hierarchy [9] of at least
one level. This assumption implies that if agents in the original
MAS are far apart in spatial terms, their behaviors are also far apart
in causal terms. For example, in Figure 1, knowing detailed infor-
mation about agents in cluster6 will not significantly affect the be-
haviors of agents in cluster1. Our assumptions hold in many real
cooperative systems. Sensor network is one example, where the
whole system is designed to cooperate and usually decomposable
according to proximity. Other examples include package routing in
the Internet, peer-to-peer file sharing or information retrieval, and
resource sharing in grid computing.

To focus on the essence of MASPA coordinating multiagent learn-
ing and isolate its impact on the system performance, this paper
uses pre-defined supervision organization structures. Supervision
organizations can be dynamically formed during the learning through
a bottom-up self-organization approach [14]. For simplicity, this
paper limits the discussion to the case where learning only happens
at the bottom level and supervising agents use pre-specifiedheuris-
tics to make decisions, but, in principle, MASPA does not restrict
supervising agents learning their supervision policies.

The rest of the paper is organized as follows: Section 2 presents a
multi-level organizational structure for automated supervision mech-
anism. Section 3 defines a communication protocol for agentsat
different levels. Section 4 describe the supervisory policy adapta-
tion that integrates supervisory information into MARL algorithms.
Section 5 empirically evaluates our framework on distributed task
allocation problem and network routing. Finally, Section 6con-
cludes this work and discusses some future work.

2. ORGANIZATIONAL SUPERVISION
Supervision mechanisms commonly exist in human organiza-

tions, such as enterprises and governments. The purpose of these
mechanisms is to run an organization effectively and efficiently to
fulfill the organization goals. Supervision involves gathering in-
formation, making decisions, and providing directions to regulate
and coordinate actions of organization members. The practical ef-
fectiveness of supervision mechanisms in human organizations, es-
pecially in large organizations, inspired us to introduce asimilar
mechanism into multi-agent systems in order to improve the effi-
ciency of MARL algorithms.

To add a supervision mechanism to a MAS with an overlay struc-
ture, MASPA adopts a multi-level, clustered organizational struc-
ture. Agents in the original overlay network, called workers, are
clustered based on some measure (e.g., geographical distance). Each
cluster is supervised by one agent, called the supervisor, and its
member agents are called subordinates (note that subordinates at
the lowest level are workers). The supervisor role can be played by
a dedicated agent or one of the workers. If the number of supervi-
sors is large, a group of higher-level supervisors can be added, and
so on, forming a multi-level supervision structure.1 In this paper,
our discussion focuses on the situation where each agent belongs
to only one cluster.

Two supervisors at the same level are adjacent if and only if
at least one subordinate of one supervisor is adjacent to at least
one subordinate of the other. Communication links, which can be
physical or logical, exist between adjacent workers, between adja-
cent supervisors, and between subordinates and their supervisors.
Figure 1 shows a three-level organizational structure. Thebottom
level is the overlay network of workers which forms 9 clusters. A
shaded circle represents a supervisor, which is responsible for a
corresponding cluster. Note that links between subordinates and

1The top supervision level can have multiple supervisors.

their supervisors are omitted in this figure.

3. COMMUNICATION PROTOCOL
Each agent can demonstrate both fast and slow dynamics in how

its features change. Fast dynamics of an agent are exhibitedby the
changes of such features as those that represent interactions with
other agents, its local state, and its policy (or value function). Slow
dynamics are exhibited by the changes of an agent’sabstracted
state. The abstract state is defined by a vector of features, which
can be projected from features with fast dynamics by using such
techniques as:

• Using partial components of a feature and ignoring other
components that do not affect slow dynamics

• Using some statistics (e.g., mean, mode, etc.) of a feature
generated over the temporal or spatial scale

• Replacing a fast-changing feature with its distribution pa-
rameters if its changes follow some statistical distribution

Similarly, each cluster also has fast and slow dynamics. Fast dy-
namics of a cluster are exhibited by that of its members. Slowdy-
namics of a cluster are captured by the changes of its supervisor’s
abstracted state. The abstracted state of a supervisor is projected
either from the abstracted states of its subordinates or directly from
features with fast dynamics of its subordinates. MASPA assumes
that a supervisor can make rational decisions based on its own and
neighbors’ abstracted states.

MASPA uses three types of communication messages:report,
suggestion, andrule. A report is used by a subordinate to pass its
abstracted state upwards to provide its supervisor with a broader
view. A supervisor also sends its report to its adjacent supervi-
sors at the same level in addition to its immediate supervisor (if
any). The supervisor’s view is based on not only the agents that it
supervises (directly or indirectly) but also its neighboring supervi-
sors. This peer-supervisor communication allows each supervisor
to make rational local decisions when directions from its immediate
supervisor are unavailable.

Based upon this information, a supervisor employs its expertise,
integrates directions from its superordinate supervisor,and pro-
vides supervisory information to its subordinates. Rules and sug-
gestions are used to transmit supervisory information. We define a
rule as a tuple〈c, F 〉, where

• c: a condition specifying a set of satisfied states

• F : a set of forbidden actions for states specified byc

A suggestionis defined as a tuple〈c, A, d〉, where

• c: a condition specifying a set of satisfied states

• A: a set of actions

• d: the suggestion degree, whose range is[−1, 1]

A suggestion with a negative degree, called anegative suggestion,
urges a subordinate not to do the specified actions. In contrast,
a suggestion with a positive degree, called apositive suggestion,
encourages a subordinate to do the specified action. The greater
the absolute value of the suggestion degree, the stronger the impact
of the suggestion on the supervised agent.

Each rule (or suggestion) contains a condition specifying states
where it can be applied. Subordinates are required to obey rules
from their supervisors. Rules are “hard" constraints on subordi-
nates’ behavior. In contrast, suggestions are “soft" constraints and

allow a supervisor to express its preference for subordinates’ be-
havior. A supervisor has a more global view but may lack detailed
information about its subordinates’ local policies and itsown sur-
rounding environment. Using suggestions, the supervisor is able
to affect a subordinate’s policy yet allow the subordinate to over-
ride its directives when needed. The implicit assumption isthat a
supervisor’s suggestions will be correct most of the time sothat
the penalty of bad suggestions is outweighed by good suggestions.
Therefore, a subordinate does not rigidly adopt suggestions. The
effect of a suggestion on a subordinate’s local decision making may
vary, depending on its current policy and state. A supervisor will
refine or cancel rules and suggestions as new or updated informa-
tion becomes available.

A set of rules are in conflict if they forbid all possible actions on
some state(s). Two suggestions are in conflict if one is positive and
the other is negative and they share some state(s) and action(s). A
rule conflicts with a suggestion if a state-action pair is forbidden
by the rule but is encouraged by the suggestion. In our supervi-
sion mechanism, we assume each supervisor is rational and will
not generate rules and suggestions that are in conflict. However,
in a multi-level supervision structure, a supervisor’s local decision
may conflict with its superordinate (the supervisor’s supervisor) di-
rection. Rules have higher priority than suggestions. There are
several strategies for resolving conflicts between rules orbetween
suggestions, such as always taking its superordinate or local rule,
stochastically selecting a rule, or requesting additionalinformation
to make a decision. The strategy choice depends on the application
domain. Note that it may not always be wise to select the superor-
dinate decision, because, although the superordinate supervisor has
a broader view, its decision is based on abstracted information. The
strategy used here for resolving conflicts picks the most constrain-
ing rule and combines suggestions by summing the degrees of the
strongest positive suggestion and the strongest negative suggestion.

4. SUPERVISORY POLICY ADAPTATION
Using MARL, each agent gradually improves its action policy

as it interacts with other agents and the environment. Apurepol-
icy deterministically chooses one action for each state. Amixed or
stochasticpolicy specifies a probability distribution over the avail-
able actions for each state. A policy can be represented as a func-
tion π(s, a), which specifies the probability that an agent will exe-
cute actiona at states. As argued in [10], mixed policies can work
better than pure policies in partially observable environments, if
both are limited to act based on the current percept. Due to partial
observability, most MARL algorithms are designed to learn mixed
policies. The rest of this section shows how mixed policy MARL
algorithms can take advantage of higher-level informationspecified
by rules and suggestions to speed up convergence.

As shown in Figure 2 (a), a typical MARL algorithm contains
two components: policy (or action-value function) update and ac-
tion selection based on the learned policy. One common method
to speed up learning is to supply an agent with additional reward
to encourage some particular actions, which is called reward shap-
ing [6]. This use of the special reward affects both policy update
and action selection. In a single-agent setting, there are potential
function forms of reward shaping that leave the optimal policy/value-
function unchanged [6]. However, due to the non-stationarylearn-
ing environment in a multi-agent setting, reward shaping may gen-
erate a policy that is undesirable in that they may distract from the
main goal, which is supported by the normal reward.

MASPA directly biases the action selection for explorationwith-
out changing the policy update process. As shown in Figure 2 (b),
MASPA’ supervisory policy adaptation integrates rules andsugges-

Figure 2: Unsupervised MARL vs. Supervised MARL with
MASPA

tions into the policy learned by an unsupervised MARL algorithm
and then outputs an adapted policy. This adapted policy is intended
to control exploration. Our integration assumes policies learned by
an unsupervised MARL are stochastic. The report generator com-
putes the abstract state of the agent.

Let R andG be the rule set and suggestion set, respectively, that
a worker received andπ be its learned policy. We defineR(s, a) =
{〈c, F 〉 ∈ R| states satisfies the conditionc and a ∈ F} and
G(s, a) = {〈c, A, d〉 ∈ G| states satisfies the conditionc anda ∈
A}. As we assume a supervisor is rational, it will not generate more
than one suggestion for a subordinate that satisfies a state-action
pair. Thus,|G(s, a)| ≤ 1. The functiondeg(s, a) that returns the
degree of the satisfied suggestion is defined as following:

deg(s, a) =



0 if |G(s, a)| = 0
d if |G(s, a)| = 1 and〈c, A, d〉 ∈ G(s, a)

Then the adapted policyπA for the action selection is generated
by the supervisory policy adaptation:

πA(s, a) =

8

>

>

>

<

>

>

>

:

0 if R(s, a) 6= ∅
π(s, a) + π(s, a) ∗ η(s)

∗ deg(s, a) else ifdeg(s, a) ≤ 0
π(s, a) + (1 − π(s, a))

∗ η(s) ∗ deg(s, a) else ifdeg(s, a) > 0

The state-dependent functionη(s) ranges from[0, 1]. As simi-
larly defined in the supervised actor-critic architecture [8], it deter-
mines the receptivity for suggestions and allows the agent to selec-
tively accept suggestions based on its current state. For instance,
if an agent becomes more confident in the effectiveness of itslo-
cal policy on states because it has more experience with it, then
η(s) decreases as learning progresses. In our experiments, we set
η(s) = k/(k + visits(s)) wherek is a constant andvisits(s)
returns the number of visits on the states.

With the supervisory policy adaptation, a rule explicitly specifies
undesirable actions for some states and is used to prune the state-
action space. Suggestions, on the other hand, are used to bias agent
exploration. To integrate suggestions into MARL, MASPA uses
the strategy that the lower the probability of a state-action pair, the
greater the effect a positive suggestion has on the pair and the less
the effect a negative suggestion has on it. The underlying idea is
intuitive. If the agent’s local policy already agrees with the super-
visor’s suggestions, as indicated by the policy having high(or low)
probabilities for state-action pairs from the positive (ornegative)
suggestions, it is going to change its local policy very little (if at
all); otherwise, the agent follows the supervisor’s suggestions and

makes a more significant change to its local policy.
To normalizeπA such that it sums to 1 for each state, thelimit

function from GIGA [16] is applied with minor modifications so
that every action is explored with minimum probabilityǫ:

πA = limit(πA) = argminx:valid(x)|π
A − x|

i.e., limit(πA) returns a valid policy that is closest toπA.
Our normalization also implicitly solves the issue of rulesin con-

flict. If a set of rules forbids all actions on a state, then theprobabil-
ity of each action is set to0. After normalization, the probabilities
of all actions are equal, that is, the action choice becomes com-
pletely random. This strategy is reasonable when the agent does
not know the consequence of violating each rule.

5. EXPERIMENTAL RESULTS
We have tested MASPA in two different domains: distributed

task allocation problem (DTAP) and network routing. In the fol-
lowing experiments, we manually cluster agents in the overlay net-
work using Manhattan distance. The agent closest to the center of
each cluster is elected as the supervisor. Supervisors alsoplay the
worker role. We assume there are links that allows direct commu-
nication between subordinates and their supervisors and between
adjacent supervisors.

5.1 Distributed Task Allocation
We evaluated MASPA in a simplified DTAP [2] with Poisson

task arrival and exponential service time. Agents are organized in
an overlay network. Each agent receives tasks from the environ-
ment at a certain rate. At each time unit, an agent makes a decision
for each task received during this time unit whether to execute the
task locally or send it to a neighboring agent for processing. A
task to be executed locally will be added to the local queue with
unlimited queue length, where tasks are executed on a first-come-
first-serve basis. Agents interact via communication messages and
communication delay between two agents is proportional to the dis-
tance between them, one time unit per distance unit. The maingoal
of DTAP is to minimize the total service time of all tasks, averaged

by the number of tasks,ATST =
P

T∈T̄τ
TST (T)

|T̄τ |
, whereT̄τ is

the set of tasks received during a time periodτ andTST (T) is the
total service time that taskT spends in the system, which includes
the routing time, queuing time, and execution time.

5.1.1 Experimental Setup
We chose one representative MARL algorithm, the Weighted

Policy Learner (WPL) algorithm [1], for each worker to learntask
allocation policies, and compared its performance with andwithout
MASPA. WPL is a gradient ascent algorithm where the gradient
is weighted byπ(a) if it is negative; otherwise, it will weighted
by (1 − π(a)). So effectively, the probability of choosing a good
action increases by a rate that decreases when the probability ap-
proaches to 1. Similarly, the probability of choosing a bad action
decreases by a rate that decreases when the probability approaches
to 0. A worker’s state is defined by the current work load (or total
work units) in the local queue.

The abstracted state of a worker is projected from its statesand
defined by its average work load over a period of timeτ (τ = 500
in our experiments). The abstracted state of a supervisor isdefined
by the average load of its cluster, which can be computed from
the abstracted states of its subordinates. A subordinate sends a re-
port, which contains its abstracted state, to its supervisor everyτ
time period. Supervisors use simple heuristics to generaterules
and suggestions. With an abstracted state〈l̄〉, a supervisor gener-

ates a rule that specifies, for all states whose work load exceedsl̄,
a worker should not add a new task to the local queue. This rule
helps balance load within the cluster. A supervisor also generates
positive (or negative) suggestions for its subordinates toencourage
(or discourage) them forwarding more tasks to a neighboringclus-
ter that has a lower (or higher) average load. The suggestiondegree
for each subordinate depends on the difference between the average
load of two clusters, the number of agents on the boundary, and the
distance of the subordinate to the boundary. Therefore, suggestions
are used to help balance the load across clusters.

Three measurements are evaluated: the average total service time
(ATST), the average number of messages (AMSG) per task, and
the time of convergence (TOC). ATST indicates the overall system
performance, which can reflect the effectiveness of learning and su-
pervision mechanism and can also be used to verify system stability
(convergence) by showing a monotonic decrease in ATST as agents
gain more experiences. AMSG shows the overall communication
overhead for finishing one task, which including both for task rout-
ing and MASPA supervision. To calculate TOC, we take sequential
ATST values with certain size and then calculate the ratio ofthose
values’ deviation to their mean. If the ratio is less than a threshold
(e.g.,0.025), then we consider the system stable. TOC is the start
time of the selected points.

Experiments were conducted using uniform two-dimension grid
networks of agents with different sizes: 6x6, 10x10, and 27x27,
all of which show similar results. But as the size of the system
increases, the MASPA impact on the system performance becomes
greater. For brevity, we only present here the results for the 27x27
grid (with 729 agents). For simplicity, we assume that all agents
have the same execution rate and that tasks are not decomposable.
The mean of task service time isµ = 10. We tested three patterns
of task arrival rates:

Uneven Center Load where 121 agents in the centric 11x11 grid
receive tasks and other agents receive no tasks from the ex-
ternal environment. In the centric 11x11 grid, the task arrival
rate of agents on the outermost 6 columns isλ = 0.8 and the
rate of the rest agents isλ = 0.2.

Corner Load where only agents in the 12x12 grid at the up-left
corner receive tasks from the external environment. In that
12x12 grid, the agents in the 9x9 grid at the up-left corner
has the task arrive rateλ = 0.2 and the rest agents has the
rateλ = 0.7.

Boundary Load where the 200 outermost agents receive tasks with
rateλ = 0.33 and other agents receive no tasks from the ex-
ternal environment.

In each simulation run, ATST and AMSG are computed every
500 time units to measure the progress of the system performance.
Results are then averaged over 10 simulation runs and the variance
is computed across the runs. All agents use WPL with learningrate
0.001. Our experiments use the parameterη(s) = 1000/(1000 +
visits(s)).

We compared four structures:no supervision, local supervision,
one-level supervision, and two-level supervision. In the local su-
pervision structure, agents are their own supervisors. With this
structure, each agent gains a view only about itself and its neigh-
bors, which is not much different from its view in the organiza-
tion without supervision. We use thelocal supervisionstructure
to evaluate whether domain knowledge combined with a limited
view, which is used to create rules and suggestions, still improves
the system performance. In contrast, the performance of thetwo
following structures with supervision show the benefits of having a

Times
0 10000 20000 30000 40000 50000

A
T

S
T

500

1000
1500
2500 None

Local

One−level

Two−level

Figure 3: ATST for different structures with uneven center load

Times
0 10000 20000 30000 40000 50000

A
T

S
T

500

1000
1500
2500 None

Local

One−level

Two−level

Figure 4: ATST for different structures with corner load

Times
0 10000 20000 30000 40000 50000

A
T

S
T

10

30

50

70

90

110 None

Local

One−level

Two−level

Figure 5: ATST for different structures with boundary load

broader view combined with domain knowledge. Theone-level su-
pervisionstructure has 81 clusters, each of which is a 3x3 grid and
the agent at each cluster center is elected as the supervisor. The
two-level supervisionstructure forms from theone-level supervi-
sion structure by grouping 81 supervisors into 9 clusters, each of
which is a 3x3 grid. The supervision structures with three ormore
levels did not show further improvement over the two-level super-
vision in our DTAP experiments. This is because a wide-rangetask
transfer causes a long routing time which offsets the reduction of
the queuing time in each agent.

5.1.2 Results & Discussions
Figure 3, 4 and 5 plot the trend of ATST, as agents learn, for

different organization structures with different task arrival patterns.
Note that they axis in the plots is logarithmic. As expected, MASPA
improves both the likelihood and speed of the learning conver-
gence. The broader the view MASPA observes, the greater the
system performance it improves. In addition, several otherobser-
vations are also noted.

Under both uneven center load and corner load, the system with-
out MASPA does not seem to converge. From Figure 3 and 4,
we see that both simulations ends before50000 time units. This

happens because, using random exploration, agents in the grid do
not learn and propagate quickly enough knowledge about where
light-loaded agents are. As a result, for example, under uneven
center load patter, more and more tasks loop and reside in thecen-
ter 11x11 grid where agents receive external tasks. This makes the
system load severely unbalanced and the system capability not well
utilized, which causes the system load to monotonically increase.
Our simulations ran out of all computing resources and terminated
before showing any signs of convergence. In contrast, observing
broader views, MASPA guides and coordinates the exploration of
agents and allows them to learn quickly to effectively routetasks.

Under both uneven center load and corner load,local super-
vision does not prevent system divergence. This is because un-
even task arrival rates in both patterns cause many agent’s local
view of the system to become inconsistent with the global sys-
tem view. For example, under uneven center load pattern, many
overloaded agents at the center columns find their neighborshaving
even higher loads. As a result,local supervisiongenerates incorrect
directives for them to explore their actions. For similar reasons, ex-
plained at a cluster level instead of a worker level, the system with
one-level supervisiondoesn’t perform well under corner load pat-
tern.

Broader views for MASPA do not necessarily significantly im-
prove the system performance. For example, under uneven center
load, one-level supervisionand two-level supervisionshow simi-
lar performance, and, under boundary load pattern, all supervision
structures demonstrate similar performance. This is because, in
both cases, broader views do not provide much additional informa-
tion for MASPA. For example, under the boundary load pattern,
local work loads in the whole network quickly form some pattern,
where an agent farther away from the network boundary usually has
a lighter local load. Then, based on their local view, most agents
generate suggestions for themselves to forward tasks to neighbors
closer to the network center, which are coincidentally similar to
suggestions generated from a broader view (e.g., one-levelor two-
level supervision).

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level 33.41 ± 0.66 10.21 ± 0.25 7500
Two-level 34.08 ± 0.62 10.60 ± 0.22 6000

Table 1: Performance of different structures with uneven cen-
ter load

Supervision ATST AMSG TOC
None N/A N/A N/A
Local N/A N/A N/A

One-level 265.50 ± 6.59 24.83 ± 1.34 38500
Two-level 51.37 ± 0.88 16.33 ± 0.26 14000

Table 2: Performance of different structures with corner load

Table 1, Table 2, and Table 3 show the different measures for
each supervision structure at their own convergence time point. In
addition to increasing the convergence rate, MASPA also decreases
the system ATST. In most cases, the broader the views MASPA ob-
serves, the lower the ATST the system generates. We can also ob-
serve that MASPA does not incur heavy communication overhead.
For example, with the boundary load pattern,one-level supervision
has less than 0.6% communication overhead. With the corner load
pattern,two-level supervisionactually produces lower AMSG than

Supervision ATST AMSG TOC
None 29.26 ± 0.71 6.90 ± 0.21 17500
Local 28.21 ± 0.59 7.02 ± 0.09 8500

One-level 27.64 ± 0.60 6.94 ± 0.16 7500
Two-level 27.49 ± 0.60 7.14 ± 0.14 6500

Table 3: Performance of different structures with boundary
load

one-level supervision. This is becausetwo-level supervisionleads
workers to learn more quickly and effectively to forward tasks to
the right workers, which dramatically reduces the number ofmes-
sages for routing tasks and offsets the overhead from an additional
level of supervision.

During the experiments, we observed that supervisory informa-
tion corresponding to coarse-grained control tend to be more help-
ful than that corresponding to fine-grained control in improving the
system performance. Moreover, fine-grained may even decrease
system performance. Coarse-grained control considers andoper-
ates on the whole cluster as one entity, while fine-grained control
operates on individual cluster members. “Moving more tasksfrom
my cluster to one of neighboring clusters" and “balancing the load
within the cluster" are examples of coarse-grained control. “Mov-
ing more tasks from a high-loaded agent to a low-loaded agent
along the shortest path" is an example of fine-grained control. One
explanation for this observation is that supervisory information cor-
responding to coarse-grained control results in more coordination
among agents’ exploration, speeding up the learning convergence.
In contrast, in our simulation, due to lack of detailed information
of each cluster member, fine-grained control for some individual
members is not able to fully evaluate the impact on and from other
agents. As a result, the fine-grained control may interfere with the
normal learning process of other agents and the dynamics of other
agents may degrade the fine-grained control.

We have explored different values of cluster size and found that
system performance decreases with cluster size that are either too
small (e.g.,≤ 5) or too large (e.g.,≥ 100). This is because, with
too small a cluster size, supervisors do not collect enough informa-
tion to create correct rules and suggestions. When a clustersize is
too large, the representation of cluster abstracted statesfor DTAP
(i.e. averaging loads of subordinates) ignores the variance among
subordinates. As a result, supervisors are not able to create proper
rules and suggestions for every subordinate. Therefore, there is a
trade-off for the cluster size. In addition, cluster sizes that produce
the best performance vary in different environments (e.g.,different
task arrival patterns).

Similarly, there is a trade-off in the length of the report period.
A too short report period causes a large variance of the abstracted
state (also increases communication overhead) and resultsin oscil-
lating suggestions and rules. A too long report period causes the
supervisory information received by workers to be out-dated and
as a result, decreases the convergence rate.

5.2 Network Routing
We also evaluated our framework using a network routing sim-

ulator adopted from Boyan and Littman [4]. It is a discrete time
simulator of communication networks with various topologies. A
communication network consists of a homogeneous set of nodes
(or agents) and links between them. Packets are periodically intro-
duced into the network under a Poisson distribution with a random
origin and destination. No two packets have the same agent astheir
origin and destination. When a packet arrives at an agent, the agent

Figure 6: The 10 x 10 grid topology

puts it into the local FIFO (first in first out) queue. At each time
step, an agent makes its routing decision to forward the top packet
in the queue to one of its neighbors. Once a packet reaches itsdes-
tination, it is removed from the network. In our experiments, we
set the time cost of sending a packet down a link as a unit cost.So
the delivery time of packet consists of its transmission cost and its
waiting time in queues. The main goal of a network routing algo-
rithm for this problem is to minimize the Average Delivery Time
(ADT) of all packets.

5.2.1 Experimental Setup
Each agent uses a Policy Gradient Descent (PGD) algorithm to

learn its routing policies. The PGD algorithm is a variant ofthe
GIGA algorithm [16], which minimizes the total discounted cost
and approximates the policy gradient of each state-action pair with
the normalized difference of its Q-value and the expected Q-value
on that state. PGD learns stochastic policies, but, unlike multi-
agent OLPOMDP [13] and GAPS [7] that were also applied to net-
work routing problem, it does not require a global reward signal.
The states is defined by the destination of the packet that an agent
is forwarding. We defineQx(s, a) as the estimated time that an
agentx takes to deliver a packet to the destinations through its
neighbora, including any time that the packet would have to spend
in the agentx’s queue. The "cost signal"r(s, a) for forwarding a
packet with destinations to its neighbora is qa +w+ t, wherew is
the waiting time of the packet inx’s queue andt is the transmission
time between agentx anda. The Q-learning algorithm is used to
updatex’s estimates.

The MASPA implementation in network routing is similar to
that in DTAP. The main difference is the way that MASPA mes-
sages are generated. In the network routing problem, we do not use
rules. The abstracted state of a worker (or supervisor) is defined a
vector〈t1, t2, . . . , tm〉, whereti is the average estimated time that
the worker (or the supervisor’s cluster) takes to deliver a packet to
destination agents in clusteri. So, by using statisticmean, the ab-
stract state of a worker can be computed from its Q-value table and
a supervisor’s abstracted state can be projected from its subordi-
nates’ abstracted states. A simple heuristic is used for generating
suggestions. A supervisor always produces positive (or negative)
suggestions for its subordinates to encourage (or discourage) them

Time
0 100000 200000 300000 400000 500000

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

2000

4000

6000

8000

10000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 7: Performance under network load = 7.0

forwarding packets to clusters with lower (or higher) estimated de-
livery time to some destination cluster. The suggestion degree for
each subordinate depends on the difference between the average
estimated delivery time of neighboring clusters and the distance of
the subordinate to the boundary.

We have tested the PGD algorithm with and without MASPA
on several network topologies with various number of nodes,all
of which show similar results. For brevity, we concentrate on the
result analysis for the 10 x 10 grid network pictured in Figure 6.
The Q-routing [4] algorithm is used as baseline, which learns de-
terministic policies. Two measurements are evaluated: theaverage
delivery time (ADT) and the time of convergence (TOC). The ADT
is computed every 1000 time units. To calculate TOC, we take50
sequential ADT values and then calculate the ratio of those values’
deviation to their mean. If their mean is less than the maximum
expected ADT (we use 300) and the ratio is less than a threshold
(we use 0.05), then we consider the system stable. TOC is the start
time of the selected points.

Results are then averaged over 10 simulation runs. All agents
use the PGD algorithm with a learning rateζ = 0.1. Workers send
reports to their supervisors every 500 time units. Our experiments
use the parameterη(s) = 20000/(20000 + visits(s)).

5.2.2 Results & Discussions
Figure 7 shows the performance trend as agents learn under net-

work load= 7.0. The network load is the average number of pack-
ages entering the network at each time unit. All three algorithms,
after initial periods of inefficiency during which they randomly ex-
plore the environment, gradually improve their performance and
stabilize. At the very early period, MASPA does not improve the
performance much. This is because, due to almost complete ran-
dom exploration, subordinates do not provide accurate environment
information to their supervisor, which may result in some improper
suggestions. As information accuracy increases, MASPA properly
biases the policy search of the PGD algorithm and speeds up the
convergence. Due to policy oscillation, Q-routing shows slow con-
vergence.

Figure 8 shows the TOC of three algorithms under various net-
work loads. As expected, MASPA consistently speeds up the con-
vergence of the PGD algorithm. The higher the network load, the
greater the speed improvement. For example, when load≥ 5.5,
MASPA decreases the TOC by around40% or more. Under low
network loads, optimal policies usually follows shortest paths, so
they are deterministic. The PGD algorithms use gradient update
and gradually converge to deterministic policies, slower than Q-
routing that directly learns deterministic policies. However, under
high loads, where optimal policies are usually stochastic,the Q-
routing policies show oscillation during the learning and the PGD

Network Load
0 1 2 3 4 5 6 7 8 9

T
im

e
of

 C
on

ve
rg

en
ce

0

100000

200000

300000

400000

500000
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 8: Time of Convergence at various loads

Network Load
0 1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 D
el

iv
er

y
T

im
e

0

50

100

150

200

250

300

350
Q−Routing

PGD without Supervision

PGD with Supervision

Figure 9: Delivery time at various loads

algorithm with MASPA converges faster to stochastic policies.
Figure 9 shows the ADT at the convergence time point under

various network loads. Under low loads, as both PGD algorithms,
with and without MASPA, converge to deterministic policies, they
show almost the same performance. Due to random exploration
with some probability, they perform slightly worse than Q-routing.
However, under high loads, MASPA improves the PGD perfor-
mance. For example, when load≥ 6.5, MASPA decreases the
ADT by at least10%, and when load= 8.0, MASPA reduces
the ADT by around30%. As both PGD algorithms converge to
stochastic policies, which allows agents to simultaneously exploit
multiple paths to deliver packets to a single destination, they per-
form much better than Q-routing under high loads.

6. CONCLUSION
This work presents MASPA, a decentralized supervision frame-

work, that enables efficient learning in large-scale multi-agent sys-
tems. In MASPA, the automated supervision mechanism fuses ac-
tivity information of lower-level agents and generates supervisory
information that guides and coordinates agents’ learning process.
This supervision mechanism continuously interacts with and dy-
namically controls the learning process. Simulation results ob-
tained in two different domains with different MARL algorithms
verify the generality of MASPA and demonstrate that MASPA sig-
nificantly accelerates the learning process with relatively low com-
munication overhead.

As mentioned, the use of MASPA may require some additional
knowledge. Future work includes developing techniques andalgo-
rithms to relax these requirements. We are developing a distributed
algorithm for dynamically forming supervision organizations (ad-
dressing agent clustering and supervisor election) [14]. We are also
interested in developing techniques for automatically learning pro-

jection functions to construct abstracted states, and investigating
learning algorithms for supervisors to automate the generation of
rules and suggestions.

7. REFERENCES
[1] S. Abdallah and V. Lesser. Learning the task allocation

game. InAAMAS’06, 2006.
[2] S. Abdallah and V. Lesser. Multiagent reinforcement

learning and self-organization in a network of agents. In
AAMAS’07, 2007.

[3] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa.
Heuristic selection of actions in multiagent reinforcement
learning. InIJCAI’07, Hyderabad, India, 2007.

[4] J. A. Boyan and M. L. Littman. Packet routing in
dynamically changing networks: A reinforcement learning
approach. InNIPS’94, volume 6, pages 671–678, 1994.

[5] R. Makar, S. Mahadevan, and M. Ghavamzadeh.
Hierarchical multi-agent reinforcement learning. In
Autonomous Agents’01, pages 246–253, 2001.

[6] A. Y. Ng, D. Harada, and S. Russell. Policy invariance under
reward transformations: theory and application to reward
shaping. InICML’99, pages 278–287, 1999.

[7] L. Peshkin and V. Savova. Reinforcement learning for
adaptive routing. InInternational Joint Conference on
Neural Networks (IJCNN), 2002.

[8] M. T. Rosenstein and A. G. Barto. Supervised actor-critic
reinforcement learning. In J. Si, A. Barto, W. Powell, and
D. Wunsch, editors,Learning and Approximate Dynamic
Programming: Scaling Up to the Real World, pages
359–380. John Wiley and Sons, 2004.

[9] H. A. Simon. Nearly-decomposable systems. InThe Sciences
of the Artificial, pages 99–103, 1969.

[10] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari.
Convergence results for single-step on-policy
reinforcement-learning algorithms.Machine Learning,
38(3):287–308, 2000.

[11] P. Stone and M. Veloso. Team-partitioned, opaque-transition
reinforcement learning. InAutonomous Agents’99, pages
206–212, 1999.

[12] P. Tangamchit, J. Dolan, and P. Khosla. Learning-basedtask
allocation in decentralized multirobot systems. InDARS’00,
pages 381–390, 2000.

[13] N. Tao, J. Baxter, and L. Weaver. A multi-agent
policy-gradient approach to network routing. InICML ’01,
pages 553–560, 2001.

[14] C. Zhang, V. Lesser, and S. Abdallah. Self-organization for
dynamically supervising distributed learning. InUniversity
of Massachusetts Amherst Computer Science Technical
Report UM-CS-2009-007, 2009.

[15] H. Zhang and V. Lesser. A reinforcement learning based
distributed search algorithm for hierarchical content sharing
systems. InAAMAS’07, 2007.

[16] M. Zinkevich. Online convex programming and generalized
infinitesimal gradient ascent. InICML’03, pages 928–936,
2003.

