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Abstract

Object classification in far-field video sequences is a chal-
lenging problem because of low resolution imagery and pro-
jective image distortion. Most existing far-field classifica-
tion systems are trained to work well in a constrained set
of scenes, but can fail dramatically when applied to new
scenes, or even different views of the same scene. We iden-
tify discriminative object features for classifying vehicles
and pedestrians and develop a scene-invariant classifica-
tion system that is trained on a small number of labelled
examples from a few scenes, but transfers well to a wide
range of new scenes. Simultaneously, we demonstrate that
use of scene-specific context features (such as image posi-
tion and direction of motion of objects) can greatly improve
classification in any given scene. To combine these ideas,
we propose a new algorithm for adapting a scene-invariant
classifier to scene-specific features by retraining with the
help of unlabelled data in a novel scene. Experimental re-
sults demonstrate the effectiveness of our context features
and scene-transfer/adaptation algorithm for multiple urban
and highway scenes.

1. Introduction

There has been significant interest in the recent past in de-
tection and classification of moving objects (such as vehi-
cles and humans) in far-field video sequences. Examples in-
clude general purpose object tracking and classification sys-
tems [6, 9] as well as specialised systems for vehicle [7, 8]
or pedestrian [16] detection. In contrast to near-field set-
tings, the far-field domain is particularly challenging be-
cause of the low resolution of acquired imagery: objects
are generally less than 100 pixels in height, and may be as
small as 50 pixels in area. Under these conditions, local
appearance-based features (such as body-parts of humans)
cannot be reliably extracted. Further, as many far-field cam-
eras have large fields-of-view, extracted object features may
show significant projective distortion—nearby objects ap-
pear to be larger and to move faster than objects far away.

To achieve reasonable performance given these chal-
lenges, system designers typically train classifiers for opti-
mal performance in a particular situation (i.e. specific posi-

tion and orientation of camera, fixed scale and known distri-
bution of objects). Such systems are restricted to interpret-
ing activity in a fixed environment, and cannot be used in a
new scene, or if the original scene characteristics change
(e.g. due to change in camera position or zoom), with-
out manual retraining. For projects involving hundreds of
cameras deployed throughout a city or a network of high-
ways, manually fixing the parameters of each camera is im-
practical. Also, when dealing with large quantities of data,
low classification error is necessary to avoid overloading the
system operator with false-positive results.

Our goal is to address the conflicting requirements of
transferring classifiers across scenes without repeated man-
ual supervision and of achieving high performance in any
single scene. We show that certain ‘scene-specific’ local
context features (such as image-position and direction of
motion of objects) can help augment classification perfor-
mance in any given scene. The challenge lies in the fact that
these scene-specific features have different distributions in
different scenes, which cannot all be represented by any sin-
gle set of training data. To achieve both our goals simulta-
neously, we first identify ‘scene-invariant’ features and use
them to design a baseline classifier. We then adapt this clas-
sifier to any given scene by learning scene-specific features
with the help of unlabelled data.

In situations where labelled data are limited, semi-
supervised learning methods have been used to improve
classifier performance [12]. In these cases, the same feature
space is populated by a few labelled examples and many un-
labelled examples. In our learning problem, however, some
features are scene-specific—they have completely unrelated
distributions for the labelled and unlabelled data—and can
thus only be learned from unlabelled data in the new scene.
To this end, we propose a novel learning procedure which
involves retraining a baseline scene-invariant classifier af-
ter appropriately weighting the ‘labels’ produced for unla-
belled data by this classifier.

This paper makes three key contributions to object clas-
sification in far-field video sequences. The first is the choice
of suitable features for far-field object classification from a
single, static, uncalibrated camera and the design of a prin-
cipled technique for classifying objects of interest (vehicles
and pedestrians in our case). The second is the introduction
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of scene-specific context features for improving far-field ob-
ject classification performance, and the use of mutual in-
formation estimates to separate such features from scene-
invariant features. The third is a composite learning algo-
rithm that not only produces a scene-invariant baseline clas-
sifier that can be transferred across scenes, but also adapts
this classifier to a specific scene (using context features) by
passive observation of unlabelled data.

2. Related Work

Two complementary approaches are commonly used for ob-
ject localisation and categorisation. One approach is to
use background subtraction or optical flow for detection of
moving objects [6, 9]. Detected objects are then tracked,
and object classification is performed on the tracked ob-
ject regions using simple descriptors of shape or motion.
The other approach, direct image-based detection of ob-
ject classes, does not rely on object motion. Instead, each
video-frame is scanned for regions having the characteristic
appearance of objects of interest, such as vehicles [7, 8] or
pedestrians [10]. These methods typically use combinations
of simple image features such as edges, wavelets, or rectan-
gular filters, and require training on large labelled datasets,
especially for low-resolution far-field images.

Most detection-based methods have severe problems
with false positives, since even a false-positive rate as low as
1 in 50,000 can produce one false positive every frame [16].
To get around this problem, Viola et al. [16] have proposed a
pedestrian detection system that combines appearance and
motion cues by working on a pair of images. To achieve
desired results, they use 4500 labelled training examples
for detecting a single class of objects, and manually fix the
scale to be used for detecting pedestrians.

Methods based on background subtraction followed by
object tracking do not suffer from the problem of false pos-
itives or scale selection, and have been demonstrated to
run in real-time [14]. These methods may also be able
to track robustly through temporary occlusion and clutter.
While these methods are only applicable to static (or pan-
tilt-zoom) cameras, long-term scene analysis (i.e. more than
a few hours) requires precisely such a setup.

Statistical priors on object characteristics in a scene can
greatly help classification. Contextual information (such as
likely scales or positions of objects) may be manually spec-
ified by an operator for a given scene or learnt from ex-
amples [15] and used to prime object detection. However,
to the best of our knowledge, no previous work has been
done on learning local context features (such as position
and direction of motion of objects) solely from long-term
observation of moving object, to improve classification per-
formance in a given scene.

Obtaining hundreds of labelled training examples for
object classifiers is not easy. Methods based on exploit-
ing unlabelled data provide a useful alternative. Levin et
al. [8] use a co-training algorithm [1] to help improve vehi-

cle detection using unlabelled data. Stauffer [13] makes use
of multiple observations of a single object (obtained from
tracking data) to effectively exploit unlabelled data for ob-
ject classification.

Scene transfer is not addressed by any of the above ob-
ject classification methods. Most methods make implicit
assumptions about the distribution of object features in a
scene, as is evident from the training and test sets used
(such as using only side views, only front views or only
top views). Our goal is to develop a completely automated
system that can be trained once on data from a few scenes,
but will work when transferred to any of a wide range of
far-field scenes.

3. Object Classification from Video Se-
quences

We use the background subtraction and tracking system of
Stauffer and Grimson [14] to detect and track moving ob-
jects. Since the objects whose activities are of interest will
move, they will (mostly) be detected by background sub-
traction. After tracking these foreground regions, classifi-
cation is simply a matter of assigning a class label to each
detected sequence of foreground images in a track. Our
object-class detector can be much simpler than those used
in detection-style algorithms, since it only needs to discrim-
inate between foreground objects, not between object and
background. Thus, fewer training examples are sufficient
for good performance. In addition, tracking produces a se-
quence of images of the same object, thus providing a con-
straint that enables more robust classification than that pos-
sible from a single image.

To demonstrate our algorithms for scene-transfer and
scene-adaptation, we consider classification of vehicles and
pedestrians. As a pre-processing step, we automatically fil-
ter the tracking data to remove irrelevant clutter, thus re-
ducing the classification task to a binary decision problem.
Filtering is an important step for long-term surveillance,
since (random sampling shows that) more than 80% of de-
tected moving regions are actually spurious objects. The
features we used for filtering clutter are minimum and max-
imum size of foreground region (to filter abrupt changes in
lighting), minimum duration, minimum distance moved (to
filter shaking trees and fluttering flags) and temporal con-
tinuity (since apparent size and position of objects should
change smoothly). Even after filtering out clutter, there are
certain classes of objects that are neither vehicles nor pedes-
trians, such as groups of people and bicycles. These were
manually removed; including them in the analysis is left for
future work.

3.1. Useful Video Features

Low resolution data in far-field video prevent us from re-
liably detecting parts-based features of objects using edge-
and corner-descriptors. Instead, we use spatial moments of
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object silhouettes (and their time derivatives), which pro-
vide a global description of the projected image of the ob-
ject. The list of object features we consider is given in Ta-
ble 1. Variation in area refers to the second derivative of
number of pixels as a function of time, normalised by the
mean area; it is expected to be higher for humans than for
vehicles. Percentage occupancy is the number of silhou-
ette pixels divided by the area of a bounding-box aligned
with the principal axis of the silhouette. The significance
of the mutual information scores mentioned in this table is
discussed in Section 4.

Video sequences provide us with two kinds of features,
which we call instance features and temporal features. In-
stance features, such as the position of a silhouette’s cen-
troid, are those that can be calculated from a single instance
of an object (that is, from each frame of a tracking se-
quence). Temporal features, on the other hand, are features
that cannot be obtained from a single frame: the mean as-
pect ratio or the Fourier coefficients of image-size variation,
for example. Temporal features can usually be converted
into instance features by calculating them over a small win-
dow of frames in the neighbourhood of a given frame. For
example, apparent velocity of the projected object is calcu-
lated in this way.

3.2. Classifying Sequences of Observations

Tracked objects can be processed in two ways: classifying
individual instances separately (using instance features) and
combining the instance-labels to produce an object label, or
classifying entire object tracks using temporal features. We
chose an instance classifier, since labelling a single object
produces many labelled instances. This helps in learning a
more reliable classifier from a small set of labelled objects.

Each detected object is represented by a sequence of ob-
servations, O = {Oi}, 1 ≤ i ≤ n, where each Oi is a vector
in the object feature space and n is the number of frames for
which the object was tracked. Classification of this object
as a vehicle or pedestrian can be posed as a binary hypoth-
esis testing problem, in which we choose the object class
label lj following the maximum-likelihood (ML) rule [5]
(i.e. choose lj corresponding to the higher class-conditional
density p(O|lj)). We use the ML rule instead of the maxi-
mum a posteriori rule because we found the prior probabil-
ities, p(lj), to be strongly scene-dependent. To develop a
scene-invariant classifier, we assume p(l1) = p(l2).

The likelihood-ratio test involves evaluation of
p(O1, ..., On|lj), the joint probability of all the obser-
vations conditioned on the class label. For images of a
real moving object, this joint distribution depends on many
factors such as object dynamics and imaging parameters.
A simplifying Markovian approximation could be made,
but the parameters of the resulting conditional probabilities
(of each observation given its recent neighbours in the
sequence) vary with the position of the observation due
to projective distortion. Instead, we search for (approxi-

mately) independent observations in the sequence, and use
the fact that the joint probability for independent samples

is simply given by
n∏

i=1

p(Oi|lj). The probabilities p(Oi|lj)

can in turn be obtained from the posterior probabilities of
the labels given the observations, p(lj |Oi), by applying
Bayes’ rule. This means that our classifier can be run
separately on each independent observation in a sequence,
to produce the corresponding posterior probability of
the class label. We approximate independent samples
by looking for observations between which the imaged
centroid of the object moves by a minimum distance. In
our implementation, the minimum distance threshold is
equal to the object-length. This is useful, for example, to
avoid using repeated samples from a stopped object (which
is quite common for both vehicles and persons in urban
scenes).

3.3. Classification with Support Vector Ma-
chines

In choosing a suitable classifier, we considered using a
generative model, but decided against it to avoid estimat-
ing multi-dimensional densities from a small amount of la-
belled data. Instead, we chose a discriminative model—
support vector machine (SVM) with soft margin and Gaus-
sian kernel—as our instance classifier. The use of a
soft margin is necessary since the training data are non-
separable. In terms of the SVM formulation, we are look-
ing for the maximum-margin separating hyperplane for the
N training points xi ∈ <k and corresponding labels yi ∈
{−1, 1}, given the (dual) optimisation problem [3]:

Maximise
N∑

i=1

αi −
1

2

N∑

i,j=1

αiαjyiyjK(xi,xj) (1)

subject to
∑

yiαi = 0 and 0 ≤ αi ≤ B, i = 1, 2, ..., N (2)

where αi are the Lagrange multipliers (with upper-bound
B) and K is the SVM kernel function.

It is useful to distinguish between support vectors for
which αi < B (margin vectors) and those for which αi = B
(mostly either misclassified points or correctly classified
points within the margin). For training the baseline (scene-
invariant) classifier, we fixed B to a large value (= 1,000).
Our scene-adaptation algorithm (Section 5), however, uses
different values of B for different ‘labelled’ examples.

One disadvantage of using SVMs is that the output, di, is
simply the signed distance of the test instance from the sep-
arating hyperplane, and not the posterior probability of the
instance belonging to an object class. Posterior probabili-
ties are needed to correctly combine instance labels using
the ML rule to obtain an object label. Thus, we retrofit a
logistic function g(di) that maps the SVM outputs di into
probabilities [11]:

g(di) =
1

1 + exp(−di)
. (3)
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Figure 1: a. Scatter plot illustrating spatial distribution of vehicles and persons in scene S1 (shown in b.), in which significant projective
foreshortening is evident. c. Using the y-coordinate as a normalising feature for bounding-box size can greatly improve performance, as
demonstrated by the fact that vehicles and pedestrians are clearly distinguishable in the 2D feature space.

The posterior probability P (yi = 1 |di, λ) is then given by
g(λdi), where the parameter λ is chosen such as to max-
imise the associated log-likelihood

l(λ) =
N∑

i=1

log P (yi | di, λ). (4)

The posterior probabilities thus obtained are used both
for classifying sequences of observations and for associat-
ing confidences with the ‘labels’ of the classified objects for
use in adapting the classifier to a specific scene (Section 5).
To clarify, test error corresponds to the fractional number of
incorrect object labels, not instance labels.

4. Identifying and Using Scene-
Specific Features

Broadly speaking, we refer to those features which are use-
ful for classification (i.e. training and testing) in any single
scene, but not for training in one scene and testing in an-
other scene, as scene-specific context features. All other
(useful) features are said to be scene-invariant features.

For some features, such as image-position of an ob-
ject, it is clear that the feature is scene-specific. How-
ever, for others features, such as aspect-ratio or orientation,
it is not obvious whether the feature is scene-specific or
scene-invariant1. Therefore, we estimate mutual informa-
tion scores between features and labels for two data-sets—
data taken from a single scene, and data drawn from multi-
ple scenes—in order to identify scene-specific features. We
formalise our definition of scene-specific features based on
these scores. However, before describing these calculations,
let us gain some insight into how scene-specific context fea-
tures help.

4.1. Benefits of Using Scene-Specific Features

We performed a pair of experiments with and without
scene-specific features, to demonstrate the role played by

1It becomes even harder to decide when more features are added, as
evident from our recent work [2].

them. We chose 500 objects from two scenes (scenes S1 and
S4 in Figure 2) and randomly selected 30 objects from each
scene as training sets T1 and T4 for the respective scenes.
Two SVM classifiers were trained for each scene, with ori-
entation of principal axis and variation in area of silhouette
used in every case. Classifiers Ci1 and Ci4 were trained on
T1 and T4 respectively without using position or direction
of motion as features, and then tested on other objects from
the same scene, giving test errors of 9.4% and 3.2%. Clas-
sifiers Cb1 and Cb4 were trained on T1 and T4 respectively
after including position and direction of motion in the fea-
ture space. The test errors obtained in this case were 0.7%
and 0.8% respectively. Thus, in both scenes, the addition of
context features to the classifier’s feature space led to sig-
nificant improvement in test performance.

Context features capture the inherent regularities in
structured scenes. For instance, different spatial distribu-
tions of object classes in an urban scene are a result of
the scene structure, i.e., roads and footpaths. While de-
tecting roads and footpaths reliably is a hard problem, it
is much easier to learn the spatial class distribution from
labelled data (as shown in Figure 1a), and use this for en-
hancing object classification. In the absence of structural
regularities—in an open field, for example—context fea-
tures would not provide extra information. Fortunately,
most urban/highway scenes do exhibit some degree of struc-
ture.

As a result of the projective distortion introduced by the
camera, area and speed of objects vary with object posi-
tion. Normalisation of image measurements by correcting
for this distortion will help to classify objects reliably. How-
ever, normalisation with a single camera is a difficult prob-
lem unless some constraining assumptions are made. Using
image position as a feature is a non-parametric way of per-
forming normalisation. This is demonstrated in Figure 1c,
where by simply using y-position in the image along with
area of bounding-box as object features, and a linear SVM
kernel, test error of 3% was obtained for scene S1.
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Feature M.I. for a M.I. for
single scene multiple scenes

x-coordinate 0.35 0.05
y-coordinate 0.28 0.04
area in pixels 0.71 0.33

speed 0.42 0.20
direction of motion 0.16 0.08

aspect ratio 0.49 0.07
variation in area 0.35 0.23

orientation 0.47 0.33
percentage occupancy 0.31 0.30

average intensity 0.15 0.08

Table 1: Mutual information (M.I.) between object features
and labels, measured in bits (max. possible score = 1.0)

Feature 1 Feature 2 M.I.

x-coordinate y-coordinate 0.89
y-coordinate area 0.81

percentage occupancy area 0.76
orientation direction of motion 0.73

x-coordinate area 0.72

Table 2: Five highest mutual information (M.I.) values be-
tween pairs of object features and labels in a single scene.

4.2. Feature Selection and Grouping

Feature selection is necessary in order to remove non-
informative features, and thus avoid overfitting when train-
ing using a small labelled data set. Feature grouping is
necessary to separate scene-invariant features from scene-
specific features, so that the former can be used in training
a scene-invariant classifier.We perform both feature selec-
tion and feature grouping by calculating the mutual infor-
mation I(X; Y ) between features and labels. To this end,
we estimate the marginal and conditional probability dis-
tributions, p(x) and p(x | y), of instance features x and
labels y non-parametrically, using Parzen-window density
estimators [5]. Window size is chosen by cross-validation.
The mutual information of the jth feature with the label (af-
ter discretising the continuous probability densities) is then
given by [4]

I(Xj ; Y ) =
∑

xj∈X

∑

y∈{−1,1}

p(xj , y) log
p(xj , y)

p(xj) p(y)
. (5)

Two sets of mutual information (MI) calculations were
performed: the first using examples from a single scene,
and the second using examples collected from a set of seven
scenes. The scenes were chosen so as to adequately repre-
sent common variations in height, viewing angle and zoom
of camera. Equal numbers of vehicle and pedestrian images
from each scene were used.

MI scores for our chosen features in the two cases are
shown in Table 1. We are mainly interested in comparing

relative scores across features and scenes. Unfortunately,
simply calculating MI between individual features and la-
bels and choosing the features with the highest scores is
not guaranteed to give the most informative features for a
classification task. In order to be (theoretically) optimal,
MI scores need to be calculated between all possible sets of
features and labels. To see this, consider a road cutting di-
agonally across a scene and people walking on footpaths be-
side it: the MI of x- and y- image coordinates with the labels
will be low, but the two coordinates taken together can accu-
rately classify the object. In practice, it is unlikely that three
or more features calculated from real-world scenes will con-
spire to give significantly better MI scores than pairs of fea-
tures acting together. Therefore, we repeat our MI calcu-
lations for all possible pairs of features; the most relevant
results (corresponding to the highest scores) are given in
Table 2.

Based on these scores, our features can be grouped into
two categories. Features (or groups of features) whose MI
with labels is high within a scene, but drops significantly—
by a factor of 2 or more—for a group of scenes, are consid-
ered to be scene-specific context features. These clearly in-
clude the x- and y- image coordinates and the area in pixels.
Aspect-ratio, too, depends to a great extent on the eleva-
tion of the camera. Of the remaining features, those that
have reasonably high MI values—greater than 0.2 bits—
both within and across scenes are considered to be scene-
invariant features. Orientation and variation in area are
good examples of such features. Orientation is a useful fea-
ture since the vertical world direction projects to the vertical
axis in the image for most camera setups, so that pedestrians
have an almost constant orientation. Direction of motion
and orientation have significantly higher MI with the object
label when considered jointly rather than singly. This is be-
cause vehicles tend to be oriented in the direction of their
motion in most scenes. However, the angle between these
two features is corrupted by shadows in a different way in
each scene, so that the MI with the labels across scenes is
low (0.35). A third category consists of features which have
low MI—less than 0.2 bits—in both cases, and are not used
as they are likely to lead to over-fitting. Average brightness
of the tracked object falls into this category.

Our final grouping of features is as follows:

• Scene-invariant features: orientation, variation in area,
percentage occupancy

• Scene-specific features: x-, y- image coordinates, area
in pixels, speed, direction of motion, aspect ratio

• Non-informative feature: average object brightness

Most classification methods do not transfer to novel scenes
mainly because they use object area, aspect-ratio or simi-
lar features—features we identify here as scene-specific—
in their classifier’s feature space. Note that even though area
has a reasonable score across a group of scenes, the fact that
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Scene S1 Scene S2 Scene S3 Scene S4 Scene S5

Scene S6 Scene S7 Scene S8 Scene S9 Scene S10

Figure 2: The full set of scenes used in our experiments

this score is much lower than the score in a single scene im-
plies that it is a rather poor feature when transferring to at
least some subset of scenes.

We have shown that scene-specific context features can
be used for reducing classification error when training and
testing in the same scene. While this in itself is useful for
many surveillance applications, we really would like to be
able to transfer classifiers across scenes, while still enjoying
the benefits of using context features. We now propose a
scene transfer and adaptation algorithm to do exactly this.

5. Scene Transfer and Adaptation

Having identified scene-specific and scene-invariant fea-
tures, we now describe the main learning algorithm for
achieving both scene-transfer and scene-adaptation.

5.1. Baseline, scene-invariant classifier design

The design of a scene-invariant classifier is now perhaps ob-
vious: train a classifier using only scene-invariant features
on a labelled set of examples from 2 or 3 scenes (or even
a single scene). The classification accuracy of our base-
line classifier is around 80%. More importantly, the aver-
age posterior probability of the label given an observation
in a new scene is higher for correctly classified test exam-
ples (0.41) than for incorrectly classified ones (0.17). Our
scene-adaptation algorithm is now employed to further im-
prove classification performance by using unlabelled data
to learn scene-specific features.

5.2. Adapting a baseline classifier to a novel
scene

We propose the following novel decision-directed learn-
ing [5] algorithm for scene-adaptation:

1. Apply the baseline classifier, Cbase, to the new scene,
to find ‘labels’, L1, for unlabelled objects, along with
associated posterior probabilities.

2. Convert posterior probabilities (0 to 1) to confidences
(-100% to 100%) by shifting and scaling. (Note that
the sign of the posterior probability of a single obser-
vation given a class may differ from the overall ‘label’
for the unlabelled object. This is indicated by a nega-
tive confidence value.)

3. Train a scene-specific classifier using only the scene-
invariant features on both the original labelled exam-
ples L0 and the ‘labels’ L1 generated for unlabelled
data, after making two changes:

• For each unlabelled object, the 5% least confi-
dent instances are removed from further consid-
eration (to afford some robustness to gross out-
liers). Each remaining instance is then assigned
the same confidence value, equal to the mean
confidence of these instances.

• The bound on the Lagrange multiplier (in the
SVM formulation: see Equation 2) for each train-
ing instance from the ith unlabelled object is set
as Bi = 1000×confidence value.

This step produces a partially-adapted classifier, Cpart,
which does not yet use scene-specific context features.

4. Apply Cpart to the unlabelled data to generate a sec-
ond set of ‘labels’, L2, and associated confidences for
unlabelled data.

5. Repeat step 3, this time using both scene-specific and
scene-invariant features for training, but only the ‘la-
bels’ in L2, to obtain a fully-adapted classifier, Cfull.

Since, by definition, true labels are not available for un-
labelled data, there is a trade-off involved: high-confidence
examples are far from the decision boundary, and thus not
very informative, while low-confidence examples are close
to the boundary and thus more informative, but also more
likely to be incorrect. A balance is obtained by varying
the Lagrange multipliers for these ‘labelled’ instances in
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proportion to the confidences, since a large Lagrange mul-
tiplier heavily penalises an incorrect classification of the
corresponding training example. Thus, our algorithm is
able to allow points near the classification boundary (of the
baseline classifier) to modify the adapted solution slightly,
without letting incorrect (but low-confidence) ‘labels’ sig-
nificantly disrupt the training process. The equalisation of
confidences within a tracking sequence (in step 3) is done
to avoid using high confidence outliers for retraining. Our
underlying assumption is that incorrectly classified objects
will have lower average confidence than correctly classified
ones.

The classifier needs to be adapted in two steps (3 and
5) because the distribution of scene-specific features in the
labelled and unlabelled data may be completely unrelated.
Also, a two-step process gradually removes the information
provided by true labels and increases reliance on the (uncer-
tain) information provided by the new scene.

6. Experimental Results

We used a data set of more than 1000 object tracks from
ten different scenes (Figure 2) for testing our algorithms.
Model selection to fix the bandwidth of the SVM Gaussian
kernel was carried out on a set of 50 objects. The MI calcu-
lations described in Section 4 were performed on a separate
set of 80 objects from 7 scenes. The remaining object tracks
were used for training and testing.

We performed two types of experiments:

• Without scene transfer: training on 30 objects, testing
on 150 objects in the same scene.

• With scene transfer/adaptation: training on 30 objects
from 2-3 scenes, testing on 150 objects in a new scene.

Average classification errors in these cases (averaged over 5
trials) are as follows:

• Without scene transfer, using only scene-invariant fea-
tures: 8.2%

• Without scene transfer, using both scene-specific and
scene independent features: 0.5%

• With scene transfer, using only scene-specific features
(baseline classifier): 17.5%

• With scene transfer and scene adaptation (using both
types of features): 8%

The average reduction in error due to adaptation with the
help of scene-specific context features is thus 9.5%.

We present a detailed analysis of one scene-
transfer/adaptation experiment. The labelled set TL,
used for training the baseline classifier Cbase, consisted
of 30 objects (17 vehicles and 13 persons—300 instances
from each class) from scenes S4 and S5 (see Figure 2).
This baseline classifier was applied to a novel scene, S1.

Of the 150 test objects in this new scene, the assigned
labels L̂1 for 125 objects were correct. Thus, test error
(after scene transfer, but without adaptation) was 16.7%.
This is comparable to some existing classification systems
which are trained and tested on the same scene. The
average confidence for vehicle labels was 47%, while
that for persons was 37% (note that 0% represents no
confidence, as it corresponds to a posterior probability of
0.5). Average confidence for correct labels was 51%, while
that for incorrect labels was 14%. In the scene adaptation
process, bounds on the Lagrange multipliers were varied
according to the average object confidences, as described in
Section 5.2. After partial adaptation, test error (using only
scene-invariant features) decreased to 14.4%. After full
adaptation, the error further decreased to 6.1%. Thus, our
bootstrapping technique resulted in a performance boost of
over 10% for this particular scene.

The above results are summarised in Table 3. For com-
parison, the results of training scene-invariant and scene-
specific classifiers on a labelled set T1 taken from scene S1
itself (Section 4.1) are also repeated there. As expected,
best results are obtained by training on T1 using both scene-
specific and scene-invariant features. The fully-adapted
classifier, working with both types of features, demonstrates
a significant improvement over the baseline classifier, and
even the partially-adapted classifier. This is because of
the significant projective distortion evident in this scene, as
well as the characteristic spatial distribution of vehicles and
pedestrians. The resulting classification performance is bet-
ter than simply using scene-invariant features for training in
scene S1 itself.

In general, cases where the original scene-specific clas-
sifier (before transfer) failed include partial occlusion (as
the object leaves the scene) and objects that are consistently
far away from the camera (and hence have areas of around
10 × 5 pixels, producing very noisy features). Additional
cases where the transferred and adapted classifier fails (but
the original classifier works) include objects that show large
feature variations as they move through the scene, or scenes
with prominent shadows. Note that, in practice, overall
classification error will be higher than that reported above
(by an estimated 5 to 7 percent) because of tracking errors
and the presence of multiple classes of objects.

7. Conclusions and Discussion

We have proposed a far-field object classification system
that addresses some of the significant challenges in the field.
Use of a discriminative (SVM) instance-classifier on sim-
ple object descriptors, along with a probabilistic method
for combining instance confidences into object labels, al-
lows for very low classification error (less than 1%) using
only a small number of objects. Scene-specific context fea-
tures are introduced and shown to provide numerous ben-
efits. Scene-invariant and scene-specific features are iden-
tified using MI estimates in order to design scene-invariant
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a b c d e
Labelled training set scene (S1) (S1) (S4/S5) (S4/S5) None

Unlabelled ‘training set’ scene None None None (S1′) (S1′′)
Test set scene (S1) (S1) (S1) (S1) (S1)

Transfer ? No No Yes Yes Yes
Adaptation ? No No No Yes (Partial) Yes (Full)

Type of features S.I. Both S.I. S.I. Both
% Test error 9.4 0.7 16.7 14.4 6.1

Table 3: Performance evaluation for scene S1 (Figure 2): test errors using various classifiers and features. ‘S.I.’ = scene-
invariant features. ‘Both’ = scene-specific + scene-invariant features. Labels for S1′ are produced in step c, and those for
S1′′ in step d.

classifiers. At the same time, a decision-directed learning
algorithm has been proposed to adapt classifiers to scene-
specific characteristics by carefully using unlabelled data.
Our scene-invariant classifier has over 80% accuracy; fur-
ther improvement of about 10% is obtained by using our
scene-adaptation algorithm.

In future, we would like to extend the classification
framework to other object classes (e.g. groups of people)
or sub-classes (e.g. cars, vans and trucks). More features
for classification have been added and analysed in our re-
cent work [2]. We would also like to evaluate how much
of the improvement in classification when using image po-
sition as a feature is a result of the implicit normalisation
achieved, and how much is due to the structural regularities
in the scene.
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