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Abstract

We present a novel level-set method for representing and detecting open surfaces
embedded in three-dimensional image volumes. Open surfaces are two-dimensional
manifolds with a one-dimensional boundary lying within a three-dimensional volume.
Distinct portions of a closed surface can be modeled as open surfaces, as can very
thin volumes with negligible thickness.

To detect open surfaces, we propose an interface likelihood model that captures
the image appearance along a profile normal to the open surface. This allows sta-
tistical modeling of more complex surface-appearance characteristics than just voxel
intensities or gradients. Appearance models of the surface are used in the level-set
framework in two ways: firstly, to evolve the open surface in the normal direction for
the purpose of detecting the location and shape of the surface, and secondly, to evolve
the boundary of the open surface in a direction tangential to the surface in order to
delineate the extent of the surface. We show that our models are well suited to de-
tecting structures of interest in three-dimensional medical and geological images, and
demonstrate their utility on challenging structural magnetic resonance (MR) datasets
and seismic-reflection volumes.
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Chapter 1

Introduction

We investigate the problem of detecting an open surface of finite extent in a three-

dimensional image volume. An open surface of finite extent is defined as a two-

dimensional manifold with a one-dimensional boundary embedded within a three-

dimensional space such that the boundary of the manifold lies completely within a

bounded volume. Building on methods used for related tasks such as image segmen-

tation and multi-view 3D surface reconstruction, we propose an algorithm for solving

this problem, and analyze its performance. Our solution leads us to develop an ap-

pearance model well-suited to representing open surfaces. We provide examples of

useful applications of our method in medical imaging and seismic imaging.

1.1 Motivation

Understanding volumetric data, such as magnetic resonance (MR) images in bio-

medical studies, or seismic reflection data in geophysical problems, often requires de-

tection and modeling of physical surfaces that have been imaged in a three-dimensional

(3D) volume. Many of these surfaces are open surfaces, which means, intuitively

speaking, that they are more similar in shape to a sheet of paper floating in space

than to the surface of a sphere (which we classify as a closed surface). Unlike closed

surfaces, open surfaces have a boundary, much like the edges of a sheet of paper.

Detecting an open surface requires locating the surface within the volume and de-
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termining the shape and extent of the surface, including the extent of the boundary

of the open surface. More formally, we define an open surface as a co-dimension-1

manifold with boundary embedded in three-dimensional Euclidean space. A closed

surface is a similar manifold, except it does not have a boundary. The open-surface

detection problem has not been studied extensively in the published literature.

We present two examples of recent applications to illustrate how detecting open

surfaces is useful. The first example concerns a medical imaging problem: detection

of the primary visual cortex in the human brain. The visual cortex (Figure 1-2,

left) is a region on the cortical surface of the brain, and is hence well modeled as

an open surface. Identifying this region automatically from radiological images could

significantly speed up the process of diagnosing medical anomalies in patients. The

second example comes from the oil and gas industry. A vertical slice through a 3D

seismic reflection volume of the earth’s subsurface (Figure 1-2, top) shows the layered

structure of sedimentary rock. Geophysicists search for suitable geometries in the

alternating sand and shale rock layers to identify potential petroleum reservoirs. Due

to the nature of the depositional process for these sedimentary rocks, each rock layer

(or horizon) has finite extent, and can be modeled as an open surface in 3D. In the

cross-sectional view seen in the figure, the open surface of the horizon appears as an

open curve.

1.2 Objective

We propose to develop a framework for modeling open surfaces in 3D and an algorithm

for detecting these surfaces starting from a suitable initialization. The basic input

to our system will consist of a 3D intensity volume and an initial open surface. The

output of the system will be a triangle mesh that marks the detected open surface.

In addition, our model requires a training phase, during which the system will be

provided with a few representative intensity volumes with the target open surfaces

labeled1 so that appearance models for surface points can be learned.

1In our experiments, one volume containing labeled surfaces has been sufficient to obtain training
data. More generally, the precise number of volumes needed to learn a model of the surface will

20



Figure 1-1: Top: human brain imaged from the side, with the primary visual cortex
marked in orange. Bottom A slice through a magnetic resonance image of the
brain, showing the visual cortex (marked in orange) and the cortical region around it
(marked in green).
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Figure 1-2: Top: 2D slice through a seismic data volume from the Gulf of Mexico.
A detected horizon surface, seen as an open curve in this cross section, is marked in
pink. Bottom: A 3D view of the detected horizon surface.
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We note here that there are two common uses of the term detection in computer

vision: one concerns determining whether or not an object is present in the image,

while the other concerns localizing the object in the image (given that it is present).

Our work uses the term detection in the latter sense. We could have used the term

localization, but we note that open surface detection includes both localization of

the open surface in space as well as determination of the shape and extent of the

deformable surface.

1.3 Our idea in a nutshell

Our method for detecting a target open surface involves deforming (or evolving) an

initial open surface under suitable data-driven and smoothness forces, till it matches

the target surface. We match the evolving surface to the target in a maximum a

posteriori (MAP) sense within a statistical framework2. The surfaces evolving and

target surfaces are matched in location, shape and extent. The forces driving the

evolution are designed to move the initial surface in a manner that brings it closer

to the target, and to gradually disappear as the target is approached. Such a sur-

face evolution framework is commonly used for closed surfaces [39, 51], but has only

recently been studied in restricted cases for open surfaces [37, 61].

There are three major challenges concerning the open-surface detection problem:

1. Choosing a suitable representation for an open surface. Closed surfaces

are easily and elegantly represented using level-sets, but this representation

does not directly apply to open surfaces. We propose a construction using two

level-set embedding functions to represent open surfaces.

2. Designing a surface evolution algorithm that works for this represen-

tation. Standard level-set-based surface evolution methods were designed for

evolving a closed surface. We provide an algorithm for determining the loca-

tion, shape and extent of an open surface through level-set evolutions of the

depend on the variability of surface appearance from one volume to another.
2As with many similar works, our solution is a local, not global, maximum to the MAP problem.
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two embedding functions used in our representation.

3. Designing appropriate forces to be used for open-surface evolution.

Appearance-based forces used for evolving closed surfaces are typically derived

from the intensity of voxels on the surface or from the voxels in the region

enclosed by the closed surface. Both types of forces have limitations: the former

type may not be distinctive enough and is susceptible to noise, while the latter

is not applicable to open surfaces (which do not enclose a region). We propose

features derived from intensity-profile vectors normal to the surface, to help

capture the appearance of the open surface and its local surroundings.

We discuss these challenges further and compare and contrast our approach with

previous work in Chapter 2.

1.4 Key contributions

As the closed-surface detection problem becomes a mature research topic, there is

increasing interest in open-surface detection. At the same time, higher resolution

imaging techniques are making more open-surfaces of interest directly observable in

3D image volumes. To place our work in context, we state here the three principal

ways in which we advance the state of the art in open-surface detection:

1. Integrated location, shape and extent detection. We provide an open-

surface evolution algorithm that starts from an initial surface and evolves it in

the normal direction (to detect location and shape) and the tangential direction

(to detect extent) relative to the surface. Previous methods mostly focus on

one or the other direction of evolution exclusively.

2. Surface appearance modeling. Our profile-based appearance model allows

for principled statistical modeling of surface appearance within a band sur-

rounding the surface, not just on the surface itself. This is an extension of

previously used local appearance models.
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3. Medical and seismic imaging applications. We consider detection appli-

cations involving three types of open surfaces: Brodmann area detection in MR

data, fault detection in seismic data and horizon detection in seismic data. Of

these, the first two have not been previously attempted directly in 3D imagery.

1.5 Organization of the thesis

We begin by reviewing previous work in Chapter 2, and relating it to our problem.

This provides the necessary technical background for our work. Chapter 3 presents

our representation for open surfaces, as well as our algorithm for detecting open

surfaces by evolving an initial surface. The next chapter discusses the forces used in

our surface evolution, and introduces our appearance model for surfaces. Chapter 5

contains experimental results for our method on data from two sources—medical and

seismic images. It also describes performance analyses of the algorithm, obtained

using synthetic data. The last chapter summarizes the contributions of this thesis.

Appendix A provides an overview of methods for converting between implicit and

explicit representations of surfaces, as this is a core component of our work.
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Chapter 2

Background

We present here a discussion of previous research ideas that form the basis of our work.

Significant among these are methods for evolving curves and surfaces, techniques

for modeling surface appearance, and work on applications in medical and seismic

imaging. On each of these topics, we also compare and contrast our approach with

the methods presented.

Much work has been done on detecting interfaces1 in image data. Typical in-

terfaces of interest include curves in 2D images and surfaces in 3D images. For the

sake of concreteness, we shall refer only to surfaces in what follows, unless otherwise

stated. Many of the ideas discussed here apply to interfaces of arbitrary dimension.

Within the class of surfaces, an important distinction needs to be made between

what we call open surfaces and closed surfaces. An open surface is a surface that is

topologically equivalent to a disk2. In contrast, a closed surface is a surface that is

topologically equivalent to a sphere. In practice, this means that these two kinds of

surfaces are represented somewhat differently. See Figure 2-1 for a 2D illustration of

the different types of interfaces.

We restrict our discussion here to detection of non-rigid or deformable surfaces.

Much early work in computer vision was done on detecting surfaces or outlines of rigid

1By interface, we mean a manifold of co-dimension 1 relative to the space in which it is embedded,
such as a set of points on a line, or a curve in 2D.

2To be precise, an open surface in this context is known as a surface with boundary in mathe-
matical topology.
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Figure 2-1: Three types of curves: closed curves, open curves whose ends lie on
the boundary of the domain, and open curves whose ends lie completely within the
domain. The first two types can be represented similarly, since standard level-set
methods are applicable to both. We develop a level-set representation for the third
type shown. Though this is a 2D example, similar properties hold for surfaces in 3D.

objects, using geometric properties and template matching [33, 35]. Representing and

detecting deformable surfaces is significantly more challenging, as the variability in

shape of the target surface is typically not easy to model. The most common approach

is to start with an initial surface shape and evolve it till it closely matches the target

surface. Our method falls within this class of methods.

In the following, we first discuss representation and detection of closed surfaces,

which have been studied in much greater detail, and then present work on open

surfaces.

2.1 Evolving Closed Surfaces

Closed surfaces can be represented and evolved in either an Eulerian (implicit) or

Lagrangian (explicit) framework. We briefly discuss these two representations here.

In computer vision and computer graphics, explicit representations such as point

sets [23] and polygon meshes [31, 39] were studied extensively first. Polygon meshes

can be deformed/evolved using a front-tracking algorithm, to detect the shape of

interest. For instance, snakes/active contours [19, 39] are widely used in the context

of detecting object boundaries and other nonrigid surfaces.

Later, researchers turned their attention to implicit methods, using level-sets [51]

for representing and evolving closed surfaces [11, 48]. The basic idea behind level-
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set methods is to represent the surface implicitly as the zero level-set of a higher-

dimensional embedding function. Surface deformation is then achieved implicitly by

embedding-function deformation on a fixed grid (by solving a time-dependent PDE

for the implicit surface). Implicit representations have been previously used for static

interfaces in mathematical morphology [58]; however we are particularly interested

in dynamic interfaces (i.e., interfaces that are actively evolved). More details of the

level-set representation are given in Section 2.2.

Eulerian evolution methods, unlike Lagrangian methods, do not require parametriza-

tion of the surface, and can more easily handle sharp corners and cusps that arise

when evolving a surface. Further, these methods allow for seamless changes in sur-

face topology as the surface evolves, and the methods generalize easily to higher

dimensions [50, 59].

Using either representation, the problem of detecting a surface in an image volume

can be posed as one of evolving the surface under the influence of internal and external

forces [11, 70]. Internal forces represent prior knowledge about the likely shapes of

the surface. They range from simple penalties on the magnitude of the first or second

derivatives of the surface to more complex forces derived from trained models of

surface shape. External forces account for image data. These forces tend to move the

surface in a direction that minimizes mismatch between appearance of the current

surface and appearance of the target surface. The target-surface appearance model

may simply be a high intensity-gradient (in case of surfaces defined by edges) or could

be a statistical model of appearance learnt from training data.

We note here that there is a large body of work dealing with detecting objects of

interest in images, that indirectly also detect the boundary of the object [21, 28]. This

boundary is typically a closed curve/surface. We do not elaborate on these methods,

as they make use of the appearance of the object’s interior in detecting the boundary.

In contrast, our work focuses on interfaces for which the appearance away from the

interface does not help significantly in detecting them.
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2.2 Level-set Methods for Evolving Closed Inter-

faces

We present here an overview of level-set methods for implicitly evolving an interface.

To illustrate the methods, we discuss evolution of curves in 2D. However, everything

carries over directly to surfaces in 3D, and to even higher dimensions.

2.2.1 Mathematical Background

A level-set technique represents an evolving curve C(t) that evolves with time t as

the zero level set3 of a real-valued embedding function Φ(x, t), where x ∈ R
2 and

t ∈ [0,∞). Thus, by construction,

C(t) = {x0(t) ∈ R
2 : Φ(x0, t) = 0}. (2.1)

The time-evolution of the curve is typically defined by a force field (or velocity

function) F , a vector function indicating the rate of change of points on the evolving

curve:

F = −
∂C

∂t
. (2.2)

To achieve this evolution in the implicit framework, the embedding function Φ is made

to vary (or evolve) with time t in a way that C(t) moves according to the specified

flow of the curve. Figure 2-2 shows an example of how evolution of the embedding

function leads to evolution of the implicit curve.

Evolution of the curve in R
2 under a force field F can be related to a partial

differential equation (PDE) for Φ as follows:

F = −
∂C

∂t
= −

∂x0

∂t
. (2.3)

Differentiating the constraint equation Φ(x0, t) = 0 for the zero level set, and

3or zero isocontour.
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Figure 2-2: An illustration of the level-set method. The embedding function is shown
in red at three different times from left to right. The plane marking the zero level
for this function is in blue. The corresponding zero level set is the boundary of the
gray region shown above the embedding function. As the function varies with time,
the implicit curve (its zero level set) evolves in the plane. In this case, the function
varies by moving down (i.e., decreasing in value) with time, and the corresponding
curve changes topology from a single-segment curve to two segments.

applying the chain rule, we get

∇Φ(x0, t) ·
∂x0

∂t
+ Φt(x0, t) = 0. (2.4)

Substituting into this from the previous equation, we get the level-set PDE:

Φt(x0, t) = F · ∇Φ(x0, t). (2.5)
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2.2.2 Interpretation of Force Field

The surface evolution problem can be posed as statistical estimation problem [41] or

a variational energy minimization problem [73]. We establish the connection between

the two types of problems here.

In a statistical framework, we are trying to estimate a surface S given a set of

surface measurements Y such that we maximize the posterior probability p(S|Y) of

the surface. The posterior probability can be expressed as the product of likelihood

and prior, divided by the evidence (a normalization constant):

p(S|Y) =
p(Y|S)p(S)

p(Y)
. (2.6)

Since we wish to maximize this expression with respect to S, we can take the loga-

rithm, drop the constant that does not depend on S, and minimize the negative of

the resulting energy E(S):

E(S) = −(log p(S|Y) + log p(Y)) (2.7)

= − log p(Y|S) − log p(S) (2.8)

= Ee(S) + Ei(S). (2.9)

In the energy-minimization framework, E(S) consists of an internal regularization

energy term Ei(S) corresponding to the statistical likelihood and an external data-

fidelity term Ee(S) corresponding to the statistical prior (after taking the negative

logarithms). The internal force field FSi and external force field FSe are represented

respectively by the gradients/first-variations of the terms in the energy functional4.

The force field F in Equation 2.5 is the sum of these internal and external forces.

In this way, the force field can be derived from either a statistical estimation or

an energy minimization problem.

4Not all surface evolutions correspond to energy minimizations resulting in two forces [70].
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2.2.3 Numerical Implementation

The level-set PDE is an initial value problem where the embedding function is the

dependent variable. It is solved numerically on a fixed grid in R
2, using a given

initial curve C(0) as the initial condition. Consequently, the initial curve must be the

zero level-set of a suitably chosen initial embedding function. A common choice of

embedding function is the signed-distance function DC(0)(x) of the initial curve C(0):

this is a function whose magnitude at any point x in R
2 is simply the distance between

x and the point on the curve C(0) that is closest to x. The sign of the signed-distance

function is +1 for points outside the curve and −1 for points inside it. Thus, for a

smooth curve, the corresponding signed-distance function is also smooth at points on

the curve5. Further, ‖∇DC(0)‖ = 1 wherever DC(0) is differentiable.

Note that the velocity function F was originally defined only on the curve, but

the Equation 2.5 is to be solved numerically at points in a 2D grid. Points on the

(continuous) curve may not lie on the grid. To get around this, a velocity function

needs to be defined everywhere in the grid. While there are many ways of doing this,

one popular approach is the so-called velocity extension technique [1], wherein the

velocity at a point x in the domain is set equal to the velocity at the point on the

curve that is closest to x.

Using the signed-distance function of a curve as the implicit function has a number

of benefits. The signed-distance function can be computed quickly using a fast-

marching method [59]. When used in combination with velocity extension, a signed-

distance function tends to stay a signed-distance function as the curve evolves [73].

A fast marching algorithm can be used to do velocity extension, making this

process computationally very efficient [59].

Finally, a suitable numerical scheme needs to be chosen for discretizing the level-

set PDE. Time discretization of Equation 2.5 can be done using a simple forward

Euler method, which involves first-order differences. Spatial discretization needs to be

chosen more carefully, to make sure the method is consistent (i.e., the approximation

5unlike the distance function, which is positive everywhere and hence not differentiable on the
curve.
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error vanishes as the discretization step goes to zero). In general, an upwind difference

scheme can be used, to ensure approximate derivatives are updated using the most

current information about the solution. In addition to consistency, the PDE solution

needs to be stable. Stability can be enforced by the Courant-Friedrichs-Lewy (CFL)

condition [25].

In principle, there is a solution to Equation 2.5 for all time t. However, in practice,

the evolution is performed till the curve C—or equivalently, the embedding function

Φ—changes by less than a fixed threshold between iterations, or till a certain number

of iterations have been performed. An explicit, triangle-mesh representation of the

evolved surface can be obtained from the embedding function by using the marching-

cubes algorithm [46].

2.3 Evolving Open Surfaces

Open surfaces have received much less attention than closed surfaces in the published

literature. While the Lagrangian representation for them is similar to that for closed

surfaces, the Eulerian representation is not as straightforward. This is because a typ-

ical level-set of an embedding function represents a closed surface or an open surface

that reaches the boundaries of the domain6. Nevertheless, it is worth considering

Eulerian representations of open surfaces because of the advantages of using level-set

methods mentioned above.

One representation that has been previously used for modeling an open surface

consists of two intersecting closed surfaces [14, 37, 45, 60, 61, 62]. The open surface

forms part of one closed surface—let’s call this the primary surface—and its boundary

is marked by the curve along which the primary surface intersects the other surface—

let’s call that the secondary surface (see Figure 2-3). Both closed surfaces—primary

and secondary—can then be represented implicitly, using respective embedding func-

tions and level-sets.

6There are exceptional cases where a single level-set can represent an open interface with a
boundary in the interior of the domain [47].
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Figure 2-3: Representing an open surface with two closed surfaces, as seen in a slice
through a 3D volume: (left) an open surface, seen as an open curve in a 2D slice,
and (right) two closed surfaces, in blue and green, whose intersection is the red open
surface.

For closed surfaces, each point on the surface evolves by moving in its local nor-

mal direction. Tangential direction motion is unnecessary, since that would only

reparameterize the surface. However, tangential evolution does make sense for points

on the boundary of an open surface, as this changes the extent of the surface. In fact,

in the two-level-set representation, this can be achieved by normal evolution of the

secondary surface while keeping the primary surface fixed.

The distinction between normal and tangential evolution for open surfaces is sig-

nificant, as much previous work has focused solely on one or the other evolution.

Normal evolution alone will move the open surface in 3D and change its shape, with-

out explicitly altering its extent [60, 61]. This is useful when trying to locate an open

surface of known extent. Tangential evolution alone will keep the location of the

open surface fixed, while changing its extent. An example application of tangential

evolution is detecting a region on a known 2D manifold that is embedded in 3D [62].

This is equivalent to the problem of detecting curves on surfaces in 3D [6, 14, 34].

Our work centers on evolving open surfaces in both normal and tangential direc-

tions. There has been some previous work in this area [37], but only in constrained

settings with simple appearance models. We should mention that the related but

different problem of evolving closed curves in 3D has also been studied [9]: in this
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case, only the boundary of the open surface is of interest, while the rest of the surface

is not modeled.

2.4 Appearance Models for Surfaces

Interface evolution is commonly driven by a combination of external and internal

forces. The external forces depend on the data, while the internal forces reflect

prior knowledge. For curves or surfaces embedded in image volumes, different rep-

resentations of image appearance are used to derive the external force driving the

curve/surface evolution7.

A common choice is to represent the surface appearance using image gradients,

wherein each point on the surface is made to evolve in the direction that maximizes

the underlying gradient [24, 39, 40, 48]. The magnitude of the external force decreases

as the gradient increases. Such a representation is good for detecting interfaces that

show up as intensity edges in the image, which presumably are the locations of highest

gradient. However, even in these situations, if the initial interface is far away from

the target, local gradients may not move it in the correct direction and other forces

need to be added to resolve the problem [19, 70]. Gradient-based representations

are also typical of direct detection methods such as Canny edge detection [10] that

scan the entire image in search of the interface instead of evolving an initial interface.

However, unlike interface evolution methods, direct methods produce a disconnected

set of point detections that need to be stitched together, instead of a continuous

interface.

Alternatively, for closed surfaces, the appearance of the volume enclosed by the

surface can be used to drive the evolution [13, 37, 41, 71, 74]. This is known as region-

based evolution, and is used for segmentation of images into multiple disjoint regions.

The advantages of using regions over using edges alone are that information is gath-

ered from more image points, making the evolution less sensitive to initialization, and

7This is to be contrasted with curve/surface evolution in a volume containing sparse data, such
as point measurements [61], where appearance information is not available.
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image gradients are typically not used as features, thus decreasing sensitivity to noise.

Further, suitable evolutions can be set up so that two regions of interest need not be

separated by an intensity edge, but can still be detected based on different appear-

ance statistics—such as two regions with same mean intensity but different intensity

variance [41, 71], or regions with different texture features [52]. One disadvantage of

region-based methods is that they do not work if the regions enclosed are inhomoge-

neous in appearance. Also, region-based methods are not directly applicable to open

surfaces, since there is no region enclosed by an open surface.

In our work, we introduce a new statistical appearance model where each voxel

on the surface is represented by a vector of voxel intensities extracted from a normal8

profile centered at that voxel. This combines the benefits of locality needed for

representing open surfaces with the added robustness to appearance provided by

region-based methods. Some previous work has tried to combine the benefits of edge-

based and region-based methods in other ways, such as using both local and global

force terms to drive surface evolution [12, 52] or localizing the computation of the

region-based term to points near the surface [42, 44]. We discuss our appearance

model further in Chapter 4.

2.5 Surface detection in medical and seismic imag-

ing

We now turn our attention to applications of open-surface detection.

Open surfaces appear in 3D image volumes of layered structures, such as medical

and seismic images. In each case, the open surface being modeled is actually a

volume (i.e., has some small thickness), but it is more convenient to use a surface

representation because of its ability to capture deformations easily. Open curves

appear as the visible portions of closed curves in images, where part of the closed

curve—an object boundary, for instance—has been occluded. Inter-object occlusion

or self-occlusion occurs when a 3D object is viewed in a 2D image, producing open

8normal to the surface, that is.
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curves. Here, we focus on open surfaces in 3D.

2.5.1 Surfaces in medical imaging

One goal of medical imaging is the extraction of information about anatomical struc-

tures from images. For example, the human cerebral cortex, heart and prostate have

been widely studied in this regard [22, 64, 65]. The cortex is the outermost layer of

the brain, and, due to its minimal thickness relative to its extent, is often modeled

(to a first approximation) by a 2D manifold in 3D9 [26]. Consequently, regions of the

cortex can be treated as open surfaces.

Of particular importance is the parcellation of the cortex into the so-called Brod-

mann areas, which are structurally and functionally distinct cortical regions [8]. Brod-

mann areas are characterized by their distinct cellular structure and organization, as

first observed under the microscope in stained histological sections by Brodmann [8] in

1909. Examples include the somatosensory cortex, the motor cortex and the primary

and secondary visual cortices. Some Brodmann areas, such as the primary visual

cortex, show characteristic lamination patterns due to the concentration of myelin

fibres.

Most work on detecting Brodmann areas has been done in 2D, either in slices of

the brain obtained via histological analysis of post-mortem specimens [3, 4, 57] or in

2D slices through 3D MR data [69]. These detections are used to build a probabilistic

atlas of the cortical regions in a standard coordinate space, which can be used to map

the regions to a new brain. However, the accuracy of this mapping is limited by

the accuracy of transforming to the standard space, as well as by the inter-subject

variability in location of the Brodmann areas relative to brain landmarks derived

from the cortical folding pattern (sulci and gyri). The popularity of histology is

partly because the necessary resolution for analyzing Brodmann areas in MR images

was not available till very recently [4, 5]. Detection of Brodmann areas in-vivo from

MR data is much preferred to histology, as it would lead to more precise localization

of Brodmann areas in living patients, which could then be used in conjunction with

9though there are methods that directly model the volumetric geometry of the cortex [72].
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(a) (b)

Figure 2-4: Two types of hydrocarbon traps: (a) an anticlinal trap produced by
folding of horizons, and (b) a fault trap, produced by rock movement at a geologic
fault.

neurological studies such as functional MRI for studying brain function [17]. Our

method allows for direct 3D detection of Brodmann areas in high-resolution MR

volumes, and is demonstrated for the primary visual cortex (Brodmann area 17) in

Chapter 5.

2.5.2 Surfaces in seismic imaging

Sedimentary rocks, displaying a characteristic layered structure, are extensively an-

alyzed in the oil and gas industry [20] as they are likely to contain reservoirs of

petroleum. Typical sedimentary rocks contain alternating layers of sandstone and

shale, created by repeated sediment deposition near a coastline over millions of years.

3D seismic imaging, based on acoustic reflections from rock interfaces at which rock

properties change, captures this layered structure well. Each sedimentary layer, or

horizon [27], presents itself as an open surface in the 3D seismic volume, bordered by

faults or other geologic structures.

Interpreting seismic volumes from petroleum-bearing basins has traditionally been

done manually by exploration geologists and geophysicists, either using paper and

pencil or using a mouse and a computer screen. Recently, as the amount of data ob-

tained through seismic surveys has grown rapidly, the emphasis in the oil exploration

business has shifted to automating the interpretation of seismic volumes. In particu-
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Figure 2-5: A geological fault (circled in orange) seen in a slice through seismic data
(left), and the corresponding dissemblance volume computed from the seismic data
(right). The green circles highlight regions of the fault where there is not much local
evidence of the fault.

lar, automated highlighting of appearance features (or attributes) is used by geologists

and geophysicists as an aid to manual interpretation of horizons [53]. Such automa-

tion is important for speeding up the process of analyzing large seismic volumes that

cover many miles of the earth’s subsurface.

The geologists and geophysicists are essentially searching for a horizon where all

the conditions necessary for accumulation of a substantial quantity of petroleum seem

to be present. This involves a source rock (the original source of organic matter that

is converted to hydrocarbons) a reservoir rock where the hydrocarbons accumulate

(typically a porous sandstone layer) and a trap that prevents hydrocarbons from

escaping (often an impermeable shale cap, or a geologic fault). Figure 2-4 shows two

illustrative examples of hydrocarbon traps.

The oil company uses the recommendations of the geoscientists in deciding where

to drill exploration wells for oil and gas. Most exploration wells are dry holes, meaning

that they do not contain significant amounts of oil or gas. Once a well hits a reservoir,

further seismic measurements are made in the area to determine the best set of

locations for production wells to be drilled. A single well can cost millions of dollars

to drill, so it is crucial to extract as much information as possible about the probability

of hitting an oil reservoir from all data (including seismic data) available beforehand.
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A related problem is that of detecting geologic faults, which are discontinuities in

the layered structure produced by relative movement of rocks on either side of the

fault. These fault discontinuities have finite extent, and can hence also be modeled

as open surfaces. Of particular interest are dip-slip faults, in which there is a vertical

displacement between the rocks on either side of the fault surface, resulting in a

visible discontinuity in the horizons. In contrast, strike-slip faults, arising from lateral

displacement of rocks, may not provide significant evidence in seismic data.

Figure 2-5 shows a slice through a seismic volume, and an attribute volume called

dissemblance that is computed from it to highlight dip-slip faults. Note that there is

a fault in the region marked in orange, as seen from the vertical misalignment of the

horizon layers on either side of it. Fault detection is not easy, though, and much prior

knowledge is used by geoscientists to detect them. For instance, in the two regions

circled in green, there is little evidence for the fault. This is because the horizon

intensities on either side of the fault happen to match up, or because the horizons are

not very prominent. As a result, there are gaps between the bright edges marking the

fault in the dissemblance volume. Automated fault detection is a relatively recent

but very important problem [18, 32, 36], because of the role faults play in creating

traps for oil reservoirs.

2.6 Summary

As we have seen, there has been much work on detecting closed surfaces. Some work

has been done on open surfaces, but typically for either normal evolution or tangential

evolution alone. We present an integrated method for evolving open surfaces (Chap-

ter 3), along with a statistical likelihood model of appearance from which external

forces driving the evolution are derived (Chapter 4). Medical imaging and seismic

imaging provide many examples of open-surface detection problems, only a few of

which have been previously tackled. We present three applications of our integrated

open-surface detection method to these two domains (Chapter 5).
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Chapter 3

Open-surface Representation and

Evolution

We present here our level-set representation for open surfaces, and our algorithm for

evolving an initial open surface to detect the target surface.

To help refresh the reader’s memory about level-set methods, we provided a primer

on level-set evolution in Section 2.2. We will assume here that the reader is familiar

with level-set representation and evolution for closed surfaces. More details can be

found in a text on level-set methods, such as those by Osher and Fedkiw [50] and

Sethian [59].

3.1 Representing an Open Surface Implicitly

We represent an open surface implicitly using two level-set embedding functions (and

hence two closed surfaces). This is similar to previous implicit representations [37,

61], but we add an additional constraint requiring orthogonality of the two surfaces

where they intersect, as this gives us some nice properties. We choose an implicit

representation for the reasons mentioned in Section 2.1.

We assume that an initial open surface So, with boundary Co, is provided to us

in some form. One such example that we consider in some detail is an open surface

given as a triangle-mesh that does not self-intersect. This initial surface could be
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Figure 3-1: Relationship between primary and secondary surfaces. Note that this is
a 2D example, so open surfaces in 3D are replaced by open curves in 2D, and closed
curves in 3D are replaced by pairs of points in 2D. (a) shows the open surface we
wish to detect in red. (b) shows the arbitrary closure of this open surface in black.
The closed surface (red and black together) form the primary surface Sp. (c) shows
the secondary surface Ss in cyan. This implicitly defines the curve Co, shown using
orange dots, which forms the boundary of the open surface on the primary surface.

a small patch of the surface that was manually identified by an expert, or it could

be the result of an automatic feature detection method that was run on the image

volume. To convert an explicit representation of the open surface to an implicit one,

we first close the open mesh by adding extra vertices and edges. We provide two

algorithms for closing an open surface in Section 3.21. We call the resulting closed

surface the primary surface, Sp. Only a part So ⊂ Sp of the closed surface is relevant,

i.e., represents the open surface. Co is the curve that forms the boundary between the

relevant part So and the remaining, non-relevant, part of Sp. To implicitly represent

Co, we use another closed surface, called the secondary surface, Ss. This surface has

the property that Co = Sp ∩ Ss. Further, by construction, we require that surface

normals to Sp and Ss are orthogonal where the two surfaces intersect. We present our

algorithm for constructing the secondary-surface from the primary surface—a process

we call label extension—in Section 3.3. The orthogonality property is significant as

it leads to a simplified surface evolution algorithm, which we present in Section 3.4.

Figure 3-1 illustrates the relationships among the surfaces we construct2.

1We provide the details of our automatic mesh-closing algorithm for the sake of completeness.
In practice, this is a detail, and there are other ways of finding an initial closed surface (including
interactive initialization)

2Note that this figure uses a 2D example for illustration.
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3.2 Closing an Open Surface to Construct a Pri-

mary Surface

As an input to our surface detection process, we are given a triangle mesh representing

an open surface. Our task is to close it somehow, so that the original open surface lies

on the resulting closed primary surface, which in turn can be represented and evolved

implicitly using level-set methods. The closed mesh should thus have no boundary

edges (and thus be topologically equivalent to the surface of a sphere), or should

extend to the edges of the domain.

Closing an arbitrary open mesh is non-trivial. We present here a few different

methods we have developed for this task, and discuss their pros and cons.

3.2.1 Explicit Construction of Closed Surface

We calculate oriented3 normals at each vertex of the open mesh, and move by an

amount ǫ along each normal to create a new vertex. New edges are added to connect

the new vertices among themselves in a manner paralleling the connection of the old

vertices. Vertices on the original boundary are then connected pairwise to vertices on

the new boundary, using a pair of triangles. This produces a closed mesh. The above

steps are illustrated in Figure 3-2 for a simple, planar mesh.

In order for the closed mesh to be useful for our purposes, we require it to be non-

self-intersecting. This depends on ǫ and the precise choice of vertex normals4. While

it is possible to guarantee this property by construction, the resulting method is quite

complex. Instead, equivalent results can be obtained in practice, by keeping ǫ small

(relative to the typical gap between vertices) and repeatedly sampling vertex normals

till a non-self-intersecting mesh is obtained. In our experiments, we started with

each vertex normal calculated as the average of adjacent face normals, and typically

required 5-10 samples to obtain a suitable closed mesh.

3By oriented, we mean that all the normals must point outwards on one side of the surface.
4Note that while normals for mesh faces are uniquely defined, there is no clear consensus on how

to define normals for mesh vertices.
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Figure 3-2: An illustration of the steps in the explicit construction of a closed surface
from an open one. (Left) The vertices of the open triangle mesh (shown in solid lines)
are moved in their local normal direction, and connected by edges (shown in dashed
lines) in a manner paralleling the structure of the open mesh. (Center) Each vertex
on the boundary of the open mesh is connected to its corresponding vertex by an
edge (shown in dotted lines). (Right) Additional edges (shown in red dashed lines)
are added along the boundary, forming a closed triangle mesh.

Figure 3-3: An illustration of the steps in the implicit construction of a closed curve
from an open one. (Left) The original open curve. (Center left) The d-th level
set of the distance function for the open surface. (Center right) Two open surfaces
approximately equidistant from the original surface, obtained after removing points
within d + 1 of the boundary of the original surface. (Right) Solution to Laplace’s
equation, shown in green as the implicit function that represents the desired closed
surface.

3.2.2 Implicit Construction of Closed Surface

One shortcoming of the explicit construction described above is that the primary

surface so obtained will have very large curvature near the boundaries of the open

surface from which it is derived. This sharp change of orientation can be hard to

smooth out during normal evolution. Hence, we explored an alternative, implicit

closure construction that avoids introducing the unnecessary curvature. The steps in

the construction are also illustrated by a 2D example in Figure 3-3.

To begin with, let us assume we have available two additional open surfaces, one
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on either side of the initial open surface, and both equidistant from the initial surface

and of similar extent to it. We describe later in this section how these two surfaces

may be obtained from our single initial surface. We rasterize the given meshes for

these two additional open surfaces within the volume, labeling the voxels of one mesh

as +1 and those from the other mesh as −1. Then, we solve Laplace’s equation within

the volume, using the labeled voxels as constraints (i.e., boundary conditions). The

solution is a smooth interpolation of the labels within the volume. The zero level set

of the solution is used as our initial closed surface.

Now, to obtain the two additional surfaces from a single initial surface, we use the

following method:

1. Run the closest point transform within the volume to obtain the distance func-

tion from the initial surface

2. Consider the closed surface Sd defined by the d-th level-set of this distance

function. This is the set of all points at distance d from the initial surface.

3. Split Sd into two parts by removing all points that are within distance d + 1 of

the boundary of the initial open surface. Effectively, this removes from Sd those

points whose closest point on the initial surface lay on the boundary of that

surface.

4. Use these two disjoint parts as the two additional open surfaces in the above

procedure.

3.3 Label Extension to Construct a Secondary Sur-

face

The secondary surface is (re)initialized at the start of the evolution and after every few

iterations of normal or tangential evolution. This is done implicitly by (re)initializing

the secondary level-set embedding function. This helps ensure that the secondary
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surface is orthogonal to the primary surface, and that the secondary function remains

a signed-distance function (as typically used in level-set methods).

First, points on the primary surface, Sp, are labeled as relevant or non-relevant

using either the initial open-surface mesh or the sign of the current secondary embed-

ding function, Ψs. Then, we calculate a closest-point transform in the volume. To

do this, a fast-marching method is used to fill the volume with a binary label field L

that indicates at each voxel whether the closest point to that voxel on Sp is labeled

relevant or non-relevant. To get the new secondary embedding function, Ψs, we solve

the eikonal PDE |∇Ψs| = 1 with a fast marching method (Section 11.4.1 of [59]),

using the zero level-set of L as the initial condition.

As a consequence of the closest-point transform being run on labels defined on

the primary surface, the secondary zero level-set, Ss, has the desired orthogonality

property. This can be seen as follows. Consider a point x1 on the secondary surface

Ss that is a small distance δ away from the primary surface. Since x1 lies on Ss, it

belongs to the zero level-set of the label field L. By construction, points in L are

equidistant from the relevant and non-relevant regions. Let us say xa and xb are

relevant and non-relevant points respectively at a small distance ǫ to x1, where ǫ > δ.

Thus, x1, xa and xb form an isosceles triangle. However, the mid-point, x2, of the

line joining xa and xb is also equidistant from them. For small enough ǫ and a smooth

primary surface, x2 lies on the secondary surface. Using the properties of an isosceles

triangle, the line from the apex to the mid-point of the base is orthogonal to the base.

Thus, the primary surface and secondary surface are orthogonal where they intersect.

We use the term label extension to describe the above construction, due to its

similarity to velocity extension [1]. Both processes require computation of a closest-

point transform. In fact, label extension is simply velocity extension with binary

velocities. Like velocity extension, label extension is speeded up in practice by running

it only within a narrow band.

48



3.4 Level-set-based Evolution of an Open Surface

The core of the open-surface evolution process consists of alternating two level-set

evolution tasks:

1. Normal evolution: the primary surface is evolved using a level-set method,

while the secondary surface is held fixed.

2. Tangential evolution: the secondary surface is evolved, while the primary

surface is fixed.

Each task involves multiple iterations of level-set evolution of the corresponding closed

surface. The two tasks could also be alternated after a single iteration of each evo-

lution, but this would be computationally expensive because the secondary surface

needs to be reconstructed when switching tasks. This reconstruction step is required

to restore the orthogonality of the primary and secondary surfaces. The orthogonality

property, in turn, means that small level-set perturbations to either the primary or

secondary surface preserves the properties of the other.

We now discuss these two evolution tasks in detail. Figure 3-4 gives a graphical

summary of our alternating surface evolution process.

3.4.1 Normal evolution

The goal of our normal evolution task is to determine the location and shape—but

not the extent—of the target surface in 3D. Within a statistical framework, this is a

maximum a posteriori (MAP) estimation problem, where we are trying to estimate

a closed surface that contains the target open surface. As we show in Chapter 4,

surface evolution forces can be obtained from the gradient descent procedure for this

MAP optimization problem. Our normal evolution task has been developed within

this framework. Note that we are assuming we have statistical models—likelihoods

and priors—for both the relevant and non-relevant regions of the primary surface; the

corresponding likelihood models will be discussed in more detail in Section 4.1.
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(a) (b) (c)

(d) (e) (f)

Figure 3-4: An illustration of one round of the alternating steps of normal and tan-
gential evolution. (a) Initial open surface (in red) and target ground-truth open
surface (in blue). (b) The initial open surface is closed, forming a primary surface,
Sp, that consists of a relevant (red) and a non-relevant (black) region. Profile vectors
(discussed in Chapter 4) at points on the primary surface are shown in gray. (c)
Normal evolution will cause the primary surface to move in its normal direction. The
secondary surface, Ss, shown in light-blue, is orthogonal to the primary surface. (d)
As a result of normal evolution, the open surface moves closer to the target location.
However, its extent remains unchanged, since the secondary surface has not evolved.
(e) The secondary surface is re-initialized by label extension. Next, tangential evolu-
tion will cause the secondary surface to move in its normal direction. (f) As a result
of tangential evolution, the extent of the relevant region is better aligned with the
ground truth.

At the start of a normal evolution task, we are given a closed primary surface

Sp, and a secondary surface Ss that has been constructed using label extension (Sec-

tion 3.3) to be orthogonal to Sp where the two intersect. The surface Sp is evolved

over time in the local normal direction using standard level-set techniques [50]. We

represent Sp as the zero level-set of a 3D function Ψp, which we call the primary level-

set embedding function. Following [50], evolution of Sp involves solving the nonlinear
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PDE:

(Ψp)t
= Fp · ∇Ψp, (3.1)

where Fp(x) is a force field that specifies the velocity with which point x on the

primary surface moves during surface evolution.

During normal evolution, we mostly ignore the fact that only part of the primary

surface is actually relevant. However, there is a subtlety: during normal evolution,

we modify the force field near the boundary between the relevant and non-relevant

regions. We discuss this modification in Section 3.5. Apart from this, we do not

distinguish between points in relevant and non-relevant regions during normal evo-

lution. Since the non-relevant region results from an arbitrary closure of the open

surface, there is a chance that it will affect the evolution by intersecting the relevant

region (and hence causing topology change). Such intersection is unlikely when using

the implicit construction of the primary surface (Section 3.2.2), since in that case

the non-relevant region moves far away from the relevant region. Even if the explicit

construction is used, such intersection is unlikely if the surface profile appearance (as

discussed in Section 4.1) is not symmetric about the center, as this would prevent

both the relevant and non-relevant regions being attracted to the same point from

opposite sides.

The force field5 we use for normal evolution is a sum of two terms:

Fp = Fpl + Fps, (3.2)

where Fpl is an external data-fidelity (or likelihood, in case of statistical models) force

term, and Fps is an internal regularization (or smoothness prior, in case of statistical

models) force term. Note that only the force in the direction normal to the surface

matters, since ∇Ψp is oriented along the normal to the zero level-set. Any force in

the tangential direction would only lead to reparameterization of the (closed) surface.

This is fine, since tangential evolution will be handled separately later.

We consider the likelihood term in more detail in Chapter 4, where we discuss

5The force field is also known as the velocity function.
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the relative advantages of different likelihood models and propose our own likelihood

model. The smoothness term comes from a statistical smoothness prior p(Sp), which

is an exponential distribution that favors primary surfaces with smaller surface area:

p(Sp) = exp(−

∫∫

Sp

da). (3.3)

The smoothness term in our force field is then the first variation of negative logarithm

of the prior, as discussed in Section 2.2.2:

Fps = −bpκpNp, (3.4)

where bp > 0 is the weight factor, κp is the mean curvature of the surface at this point

and Np is the outward normal. Note that Fps is the 3D analog of the commonly-used

2D curve-shortening flow [15]. We use two different values of the weight bp for different

parts of the surface; we elaborate on this in Section 3.5, after outlining the tangential

evolution process. Both the curvature and the local normal can be calculated directly

from the level-set function Ψp as:

Np =
∇Ψp

|∇Ψp|
, (3.5)

κp = ∇ · Np (3.6)

The effect of the smoothness term is to make the surface more rounded by smoothing

out any ripples.

In principle, only the location of the zero level-set of Ψp matters; the variation of

Ψp away from the zero level-set should not affect the answer. However, in practice, the

choice of the embedding function affects the accuracy of solution [73] and the speed

of computation. We follow the standard approach of setting Ψp to be the signed-

distance function for the closed surface and of using velocity extension of the force

field from the zero-level set into the volume [1] to perform the level-set evolution, as

discussed in Section 2.2.3. Further, we adopt a narrow-band approach for speeding
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Figure 3-5: Narrow-bands used in level-set computation. Shown here is a 2D example
involving an open curve. The primary curve is the black circle here in 2D. The open
curve is a region on the top of the circle, marked in red. The intersection of this
boundary with the primary curve is the pair of points (marked by small red circles). In
theory, the corresponding secondary surface constructed by label extension would be
a wedge, marked by the dashed blue lines. In practice, normal evolution is performed
in the narrow band (marked in blue in this slice) around the primary curve, while
tangential evolution and label extension are performed in the narrow band (marked
in green in this image) around the boundary of the open curve.

up our evolution [59].

Figure 3-5 shows a 2D example of a circular primary curve drawn in black, with

the corresponding narrow band used for normal evolution marked in gray. The other

elements of the figure concern tangential evolution, and are explained in the next

section.

Before a normal evolution task begins, the secondary surface has been designed to

be orthogonal to the primary where they intersect. During the normal evolution task,

points on the primary surface move in their local normal direction. Thus, to a first

approximation, the labeling of points on the primary surface (relevant/non-relevant)

is unchanged by normal evolution. In practice, we choose the number of iterations of

normal evolution so that the deviation from orthogonality at the end of the task is

small.
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3.4.2 Tangential evolution

The goal of our tangential evolution task is to determine the extent of the target

surface in 3D, assuming its location and shape have been estimated by normal evolu-

tion. The estimation of location and shape only need to be accurate near the current

boundaries of the evolving open surface.

Estimating the extent of an open surface is a segmentation problem on the primary

surface, where we are trying to partition the closed surface into its relevant and

non-relevant regions. A segmentation problem can be posed as one of supervised

classification, assuming suitable training samples are available, where the objective is

to determine the partition boundary that minimizes probability of error. Boundary

evolution forces can be obtained from the corresponding gradient-descent solution for

the segmentation boundary.

Our tangential evolution task fits within this framework. Tangential evolution

continues our open-surface detection by evolving the secondary surface, Ss. The

intersection of the primary surface Sp and the secondary surface Ss is a closed curve

that marks the boundary of the relevant region on Sp. We do tangential evolution by

keeping Sp fixed and evolving Ss. This is also done using a level-set method.

We represent Ss as the zero level-set of a 3D secondary level-set embedding func-

tion, Ψs. The embedding function Ψs is negative in the relevant region of the primary

surface Sp, and positive in the non-relevant region. As with normal evolution, evolu-

tion of the secondary surface involves solving a nonlinear PDE:

(Ψs)t = Fs · ∇Ψs, (3.7)

where Fs(x) is a force field specifying the evolution velocity of point x on the secondary

surface.

We reconstruct Ss at the beginning of a tangential evolution task so that it is

orthogonal to Sp where the two surfaces intersect (see Section 3.3 for details). The

orthogonality property ensures that normal evolution of the primary function Ψp will

not change the boundary of the relevant region (to a first-order approximation). At
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the same time, normal evolution of the secondary function Ψs will induce tangential

evolution of the boundary of So along Sp. Therefore, we hold one surface fixed while

performing level-set evolution of the other. This is in contrast to previous open-

surface evolution methods [7, 61], where both level-sets are evolved together, and no

separate tangential evolution is performed. Separating the two evolutions allows us

to more easily control the interaction between them, as discussed in Section 3.5.

Similar to normal evolution, the force field Fs for tangential evolution also consists

of a sum of terms, a likelihood term, Fsl, and a smoothness term, Fss:

Fs = Fsl + Fss. (3.8)

Both these terms are derived from a statistical model. The likelihood term is

derived from a region-based model of curve evolution on the primary surface: we

discuss in more detail in the next chapter. The smoothness term for the secondary

surface comes from a statistical smoothness prior p(Co) on the space curve Co. The

curve Co is the boundary of the open surface, and is defined by the intersection of the

primary and secondary surfaces. The prior on this curve is an exponential distribution

that favors curves with smaller curve length:

p(Co) = exp(−

∮
Co

ds). (3.9)

As discussed by Ambrosio and Soner [2], the negative logarithm of this prior is min-

imized (or equivalently, the prior is maximized) on a surface S containing the curve

by the evolution:

(Co)t = κoN , (3.10)

where κo is the curvature of the curve and N the normal to the curve within the

tangent space of S.

Now, we impose a statistical smoothness prior p(Ss) on the secondary surface,
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which is an exponential distribution that favors surfaces with smaller surface area:

p(Ss) = exp(−

∫∫

Ss

da). (3.11)

The smoothness term in our force field is then the first variation of negative logarithm

of the prior, as discussed in Section 2.2.2:

Fss = −bsκsNs, (3.12)

where bs > 0 is a weight factor, κs is the mean curvature of the secondary surface

at this point and Ns is the outward normal. Since the secondary surface is, by

construction, orthogonal to the primary surface where the two intersect, we have

(with reference to Equation 3.10):

Ns = N , (3.13)

κs = κo. (3.14)

Comparing Equations 3.12 and 3.10, we see that choosing this smoothness prior on

the secondary surface effectively implies a curve length prior on the boundary curve

Co.

In practice, tangential evolution is implemented using the same standard tech-

niques as normal evolution, including velocity extension and narrow-banding. Note

that secondary velocities are only defined on the space curve Co lying on both Sp

and Ss, so velocity extension starts from this curve and fills the volume. Further,

we achieve a significant speed-up by only performing tangential evolution in a nar-

row band around this space curve, i.e., where the narrow band around the primary

surface intersects the band around the secondary surface. The narrow band used for

tangential evolution is marked in green in the 2D slice shown in Figure 3-5. As seen

from the figure, this narrow band is much smaller than the entire domain.

After every few iterations, as well as at the end of the tangential evolution task,
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the secondary surface is re-initialized via label extension (Section 3.3), to guarantee

continued orthogonality to the primary surface. This is done in a narrow-band around

the primary surface, as shown in Figure 3-5, in order to limit the computational

burden. The reconstructed portion of the secondary is shown in solid blue, while the

(hypothetical) location of the rest of it is in dashed blue.

3.5 Interaction between Normal and Tangential Evo-

lution

So far from our description, it might seem that normal evolution and tangential

evolution are independent of each other. However, there is a subtlety that makes

them dependent. In general, we want a strong smoothness term on the primary

surface, to prevent it from becoming too jagged. The standard smoothness term is a

curve length penalty, which tends to shrink the primary surface. Near the boundary of

the open surface, though, we may wish to expand the primary surface during normal

evolution instead of shrinking it, so that the relevant region can grow if necessary

during subsequent tangential evolution.

To mitigate this problem, we use a much weaker smoothness term for normal evo-

lution in the vicinity of the boundary Co. In other words, the weight bp in Equation 3.4

is small near Co, and larger elsewhere. As Co changes due to tangential evolution,

the force field for normal evolution changes accordingly. We show in Chapter 5 that

this change has the desired effect on primary surface evolution.

Another concern involving the two level-set evolutions is the possibility of spurious

intersections between the primary and secondary surfaces away from the open-surface

boundary. Previous works have considered this explicitly, since the forces driving the

evolution are well understood only near the relevant region of the open surface, and

could lead to arbitrary behavior for points on the primary and secondary surfaces far

away from it. However, in our case, we can avoid spurious intersections, simply by

using a narrow-band method for tangential evolution and re-initializing our secondary
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surface through regular label extension. The reasoning behind this is as follows.

Spurious intersections can occur only when a portion of the secondary surface that

is not initially touching the primary surface moves in a manner that brings it to

touch the primary surface. Since we are using velocity extension, the motion of a

secondary surface point not touching the primary surface is identical to the motion

of the corresponding point on the intersection of the zero-level sets from which the

velocity was copied. Further, the narrow-band approach stipulates that the maximum

motion of any point on the surface before surface reinitialization is equal to the width

of the narrow band. Putting these all together, we can avoid spurious intersections

of the secondary with the primary surface if no two points of the primary surface lie

within a box the size of the narrow band such that any path connecting these points

on the primary surface must pass outside the box. In practice, we found that a small

enough narrow-band could always be found after the first round of normal evolution

(as this smooths the initial primary surface).
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Chapter 4

Likelihood Forces for Evolving

Open Surfaces

In the previous chapter, we presented our algorithm for evolving open surfaces without

specifying the form of the data-fidelity terms in the force field. We now turn our

attention to a specific choice of data terms for normal and tangential evolution that

can be used for many applications involving open-surface detection.

Following the widespread adoption of probabilistic methods for detection prob-

lems, we use a statistical model of appearance of our open surface [41, 52, 74]. The

appearance model makes use of a probability density, p(y|θ), based on a measure-

ment y of the underlying appearance, such as voxel intensity or a texture measure,

and model parameters θ. As an example, a simple model could be a one-dimensional

Gaussian, with the measurement y being the brightness of a surface voxel and the

parameters θ being the mean and variance of the Gaussian.

In the following, we propose a more complex statistical model for open-surface

detection (Section 4.1). We use our model to obtain the data-fidelity force terms—

or likelihood force terms—for normal evolution (Section 4.2) and tangential evolution

(Section 4.3). For normal evolution, the likelihood force, Fpl, comes from a maximum-

likelihood estimation problem for the primary surface, which implies moving the sur-

face in the direction where the surface appearance maximizes the likelihood of the

surface under our chosen likelihood model. For tangential evolution, the likelihood
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force, Fsl, results from a maximum-likelihood estimation problem for the boundary

curve of the open surface, which we show is equivalent to a supervised segmentation

problem involving binary classification with minimum probability of error. While

both evolutions have statistical models underlying them, the difference lies in the

fact that normal evolution involves locating a closed surface—the primary surface—

in space while tangential evolution involves labeling a closed surface—the primary

surface again—in a binary manner.

Given that the above likelihood forces are combined with their respective smooth-

ness forces from Section 3.4 to determine the final force fields in our framework, our

solution for each evolution task involves locally maximizing the posterior probability

of a surface or a curve under our chosen statistical model.

4.1 Profile-based Statistical Likelihood Model

Two common types of data terms used for curve/surface-evolution are edge-based [11,

39] and region-based [13, 54, 71] terms. Edge-based terms come from statistical

models that use only appearance measurements on the interface, whereas region-

based terms are calculated from energies that also use the appearance within the

region enclosed by the interface. Region-based terms are more robust to noise and

incorrect initialisation, as discussed in Section 2.4. However, while edge-based terms

can be defined for both open and closed surfaces, region-based terms are only defined

for closed surfaces.

For our normal evolution task, we would like the benefits of region-based terms,

but we are evolving an open surface. Note that even though normal evolution involves

a closed primary surface, we cannot use a region-based evolution since the primary

surface is chosen arbitrarily to pass though the open surface. Hence, appearance

measurements taken from within the region enclosed by the primary surface do not

provide useful information.

The appearance measurements we propose to use are intensity profiles along the

normal direction to the surface, at points centered on the open surface (as illustrated
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by the gray lines in Figure 3-4b). These profiles are vectors whose elements are voxel

intensities. Such profile-based descriptors can also be thought of as a generalization

of edge-based models to include the appearance of regions near the edge. A profile

vector of length three, for example, would essentially capture edge appearance only.

Longer profiles can represent some of the appearance information further away from

the interface as well. Profile vectors are very suitable if there is a distinct layered

appearance around the surface of interest, but significant variability in intensity far

away from it. Use of the profile vector allows us to capture not just the distribution of

intensities on/near the surface, but also the geometric profile structure of the surface

appearance.

In all of our tasks, the statistical likelihood model is over normalized normal

vectors centered on the primary surface. Each observed normal profile vector, yo, is

normalized in intensity by first subtracting the element-wise mean from each element

and then scaling the element intensities of the profile, to obtain a unit vector, y1.

Normalization helps reduce the effects of variation in average intensity from one part

of the data volume to another, such as may be produced by a varying bias-field in a

magnetic resonance (MR) volume, or by varying reflectivity properties in a seismic

volume. In certain cases, normalization removes much of the useful information about

the profiles, and should be avoided. For instance, if the main difference between two

sets of profile vectors is the average intensity, this distinguishing feature will be lost

upon normalization.

We model each normalized profile vector y of length l as being generated inde-

pendently from a latent low-dimensional Gaussian random vector α embedded in the

high-dimensional space, plus an additive Gaussian noise vector n:

y = Φα + n, (4.1)

where Φ is an l × k projection matrix of orthonormal basis vectors that transforms

the k-dimensional intrinsic Gaussian to the l-dimensional vector space of the observed

1Note that this is different from simply scaling the profile to make it a unit vector.
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profile. Thus, we have the Gaussian variables

α ∼ N (0,Q) (4.2)

and

n ∼ N (m,R), (4.3)

which implies that

y ∼ N (m, ΦQΦT + R). (4.4)

Without loss of generality, we restrict Q to be diagonal [55]. Further, we restrict

R to be a multiple of the identity matrix, so as to prevent the noise from trivially

explaining all the structure in the data [55].

The choices of l and k are problem-dependent. We choose l large enough that we

get few local maxima in location estimates during normal evolution, but small enough

that we get good discriminability between the relevant and non-relevant region models

during tangential evolution. We choose k so that the basis vectors explain 90% of the

variance of the normalized profile appearance for a particular application. As shown

in Chapter 5, there is typically a sharp drop-off in variance as we move through the

basis vectors in order of variance, indicating that a low-dimensional likelihood model

is suitable.

The parameter set, θ, of this model, M , are learned via probabilistic principal

component analysis (PPCA) [55, 66] on a training set of profile vectors. The set θ

of a PPCA model consists of the matrix of basis-vectors, Φ, the diagonal covariance

matrix Q of the latent random vector α and the mean m and covariance R of the

noise vector n.

PPCA is similar to the hugely popular principal component analysis (PCA) [38]

in identifying a low-dimensional basis that captures the essence of high-dimensional

data. In fact, both are special cases of factor analysis. PPCA—also known as sensible

PCA or SPCA—has the advantage over PCA of being based on a probabilistic model,

allowing it to be used in statistical techniques [55].
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Figure 4-1: (Left) 2D slices through a 3D MR data volume, with an open surface of
interest—called Brodmann area 17, and indicated by the stria of Gennari—marked in
orange. The non-stria region just outside the boundary of the relevant open surface
is marked in green. (Right) Zoomed-in parts of the stria and non-stria are shown:
note the distinctive dark band of the stria, seen in the middle of any profile vector
centered on the surface and oriented along the normal to the surface.
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Figure 4-2: Sample normal profile vectors (top row) and PPCA model parameters
(mean vector +/- standard-deviation × basis-vector, next 3 rows) for relevant (left)
and non-relevant (right) regions of the primary surface in the MR data of Figure 4-1.
Each profile vector is centered on the primary surface and is of length 13. The vectors
are plotted as functions, with the element indices on the x-axis and the element values
on the y-axis.
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During the training stage, separate PPCA models, M1 and M2, are learnt for

profiles from the relevant and non-relevant regions (as defined in Section 3.1) respec-

tively. Force terms derived from these PPCA models are then used for normal and

tangential evolution, as discussed in the next two sections.

Slices from an example data volume are shown in Figure 4-1, with the relevant

region of a surface marked in orange. On the right side of the figure are zoomed-in

portions of the surface of interest, taken from both the relevant and non-relevant re-

gions. A sample set of normalized profile vectors from these relevant and non-relevant

regions is seen in Figure 4-2 (left). The significant parameters of their corresponding

PPCA likelihood models—mean and basis vectors—are shown in Figure 4-2 (right).

Note that the typical profile obtained from either region varies from high intensity

near one end to low intensity near the other. This characteristic overall shape of the

profiles is used for localization of the surface during normal evolution. The relevant

model M1 shows an additional dip in intensity in the middle, due to the dark band

formed along the open surface of interest. This dip/darkening can be seen both in

the zoomed-in surface pictures (Figure 4-1) and estimated PPCA profile models (Fig-

ure 4-2). It is this statistical difference between the likelihood models that allows us

to discriminate between the two regions during tangential evolution.

4.2 Forces Guiding Normal Evolution

We have two probability distributions, p(y|M1) and p(y|M2), over profile vectors,

corresponding to the relevant and non-relevant regions. For normal evolution, we

calculate a mixture distribution p(y|Mm) from these two, assuming equal prior prob-

ability of the two models:

Mm =
1

2
M1 +

1

2
M2. (4.5)

Ideally, the prior probability would reflect the relative number of samples in the

relevant and non-relevant regions, but in the absence of this knowledge for an arbitrary

primary surface, one can work within a min-max framework to obtain the best possible

worst-case performance irrespective of the priors [56]. This is equivalent to assuming
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equal priors for the two regions.

Given the location x of a voxel on the current primary surface, with profile vector

y, we can calculate its likelihood p(y|Mm) under this mixture model. To estimate

the entire surface, we wish to maximize the likelihood of the set of points on the

surface taken together. Using an independence assumption across points, and taking

the negative logarithm (as discussed in Section 2.2.2), we get the energy function:

Epl(Sp) = −

∫
Sp

log p(y|Mm)da. (4.6)

To estimate the maximum likelihood surface location locally, we should ascend the

gradient of this log likelihood function. We calculate the first variation/gradient and

use it as the likelihood force term Fpl for evolving the primary surface:

Fpl = −∇ log p(y|Mm). (4.7)

4.3 Forces Guiding Tangential Evolution

In simple terms, the tangential evolution forces move the boundary of the open surface

so as to include voxels whose appearance vector matches the relevant-region likelihood

model better than the non-relevant region model, while excluding voxels which do not.

For tangential evolution, we use our two likelihood models in a region-based evo-

lution framework [13, 74] to find a curve on a surface. We assume that there are two

true underlying regions on the primary surface—the true relevant-region R+∗ and the

true non-relevant region R−∗—and that the voxels in these regions are independent

and identically distributed samples from the likelihood models M1 and M2 respec-

tively. Note that the term region here refers to a portion of a surface in 3D, instead of

the interior area of a 2D curve or interior volume of a 3D surface (as in the standard

region-based methods [13, 41]).

We now formulate an estimation problem for the boundary Co of the open surface.

We express the posterior probability of Co given the set Y of all observed profiles y(x)
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from each point x on the primary surface as:

p(Co|Y) ∝ p(Y|Co)p(Co). (4.8)

The prior p(Co) was discussed previously in Section 3.4.2 (Equation 3.9). Here we

focus on the likelihood p(Y|Co). Any given Co divides the set of points on the primary

surface Sp into a relevant region R+ and a non-relevant region R−, so that Sp =

R+ ∪ R−. We can write the likelihood by dividing the primary surface into the two

regions and using the point-wise independence assumption as follows:

p(Y|Co) =
∏

x∈R+

p(y(x)|M1)
∏

x∈R−

p(y(x)|M2). (4.9)

Taking the negative logarithm to convert to an energy function (as discussed in Sec-

tion 2.2.2), we get:

− log p(Y|Co) = −

∫
R+

log p(y(x)|M1)da −

∫
R−

log p(y(x)|M2)da. (4.10)

We need to minimize this expression as part of maximizing the posterior probability

of the boundary curve. To make the minimization simpler, we add a constant Z that

does not affect the location of the optimum:

Z =

∫
R+∪R−

(log p(y(x)|M1) + log p(y(x)|M2))da. (4.11)

Thus, we finally get the likelihood energy El(Co) for the boundary curve:

El(Co) = − log p(Y|Co) + Z (4.12)

=

∫
R+

log p(y|M2)da +

∫
R−

log p(y|M1)da. (4.13)

Finally we move from optimizing over the curve Co to optimizing over the entire
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secondary surface Ss, using the same energy function. Hence:

Esl(Ss) =

∫
R+

log p(y|M2)da +

∫
R−

log p(y|M1)da. (4.14)

We choose this form of energy function since it is both directly related to the

optimal solution of the underlying classification problem and is easy to optimize.

Using the Euler-Lagrange equations for this energy function, as described by Tsai [67],

the force field that minimizes the likelihood energy term for tangential evolution is

given by a log-posterior-ratio:

Fsl = log
p(y|M2)

p(y|M1)
Ns. (4.15)

This force is only defined at points along the boundary curve Co on the secondary

surface Ss. To evolve the entire secondary surface, we use velocity extension (as

discussed in Section 2.2.3), whereby we set the force at each point in the remainder

of Ss as equal to the force at the corresponding closest point on Co.

4.4 Summary

Having defined the level-set forces Fp
l and F s

l , we can plug these into our open-surface

evolution algorithm of Section 3.4. The precise form of the PPCA models used in

computing these forces—i.e., the size of the profile vectors and the number of basis

vectors—will vary by application. We discuss some example applications in the next

chapter.
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Chapter 5

Open-surface Detection

Experiments

In this chapter, we describe experiments where we applied our level-set-based open-

surface detection method to three practical applications. One application is for med-

ical imaging, while the other two address problems in 3D seismic imaging. For each

case, a different, domain-specific, initialization is used, and the likelihood features

are adapted to the data. Given the initial surface, and a suitable training set for the

likelihood models, the surface detection algorithm used in each case is the same, as

discussed in Chapter 3.

After discussing these applications, we present a performance evaluation of mul-

tiple aspects of our algorithm on simulated data. In all our experiments, we used the

C++ open-source image processing toolkit called CImg [16] for level-set evolution.

The remaining algorithms were in Matlab. Code for probabilistic PCA (PPCA) was

taken from the Netlab Toolbox [49].
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Figure 5-1: (Left) 2D slice through a 3D MR data volume, with the open surface of
interest—called Brodmann area 17, and indicated by the stria of Gennari—marked in
orange. The non-stria region just outside the boundary of the relevant open surface
is marked in green. (Right) Zoomed-in parts of the stria and non-stria are shown:
note the distinctive dark band of the stria, seen in the middle of any profile vector
centered on the surface and oriented along the normal to the surface.

5.1 Application: Detecting Primary Visual Cortex

in MR Data

We detect the primary visual cortex or Brodmann area 17 (BA 17) of the brain, by

modeling it as an open surface. The Brodmann areas lie in the grey matter near the

surface of the brain. BA 17 is marked by a bundle of myelinated fibers called the stria

of Gennari, which appear as a dark band in a contrast-inverted magnetic resonance

(MR) image.

We ran our surface detection experiments on 250µm isotropic ex-vivo MR brain

data obtained using a multiecho FLASH pulse sequence at 7T [4]. At this resolution,

the stria appears as a dark band 1-2 voxels thick (see Figure 5-1).

5.1.1 Initialization

For our experiments, we marked an initial open surface mesh So manually about

half-way between the gray-white interface—the boundary between the grey matter

and the white matter—and the pial surface—the membrane covering the outer brain
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surface—with parts of the mesh lying in the relevant region (BA 17) and parts of

it outside. The extent of our initial surface was chosen to be the region around a

predicted open-surface boundary obtained from mapping a probabilistic atlas of the

Brodmann area to this brain [30]. While this does not cover the entire stria region,

it is situated at the place where there is most uncertainty about the extent of the

Brodmann area (since, in the interior of the relevant region far away from the true

boundary, the atlas-based mapping does not affect the extent). Note that such an

initialization could potentially be obtained automatically in future, using techniques

that localize the grey-white and pial surfaces lying on either surface of the stria

(e.g., [29]); however this has not been done at this resolution yet. To obtain the

initial primary surface, the open surface was closed using the explicit construction

algorithm described in Section 3.2, and the resulting primary surface was converted

to an implicit representation following the method given in Appendix A.2.

The accuracy necessary for initialization is described in more detail in Section 5.4.

5.1.2 Training Data

A ground-truth cortical surface for this brain was obtained from a neuro-anatomist.

This surface was provided as a triangle mesh consisting of over 3000 manually labelled

vertices. The mesh consisted of two disconnected components: one component mesh

was marked as stria (i.e., relevant) and the other as non-stria (i.e., non-relevant).

Part of the ground-truth mesh was used for training the relevant and non-relevant

region likelihood models, while a separate part was used for testing and evaluation.

For the training part of the mesh, 500 normal profile vectors of length l = 13 were

obtained at the vertices, and PPCA models of dimensionality k = 3 for stria and non-

stria learnt from them. The localization accuracy of the mesh vertices, as provided

by the expert, was +/- 1 voxel (250µm). In comparison, the main discriminating

feature between stria and non-stria profile vectors is a dark band only 1-2 voxels thick.

Hence, the error in the ground truth would offset the profiles and seriously reduce

our accuracy in differentiating stria from non-stria. Note that such misalignment is

unavoidable, because of the volume of data needed for precisely marking the cortical
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Figure 5-2: Standard deviations along basis vectors in PPCA model. The blue points
were noted before realigning the training set of profile vectors, while the red points
were noted after.

region, and the tedious nature of the manual labeling task.

To reduce the effect of this error, the training profiles were re-aligned with the

learnt PPCA models, by repeatedly shifting (offsetting) each profile vector in the

normal direction by a few voxels and calculating the likelihood under the PPCA

model for each shift. Each profile vector was then replaced by the shifted version at

which maximum likelihood occured, and the PPCA models were re-estimated. The

resulting models had significantly lower variances along the low-dimensional basis

vectors, as shown in Figure 5-2. This in turn implies that the new likelihoods were

higher, since the entropy of the distribution varies with the product of the variances,

and a lower entropy distribution has higher likelihoods for its most probable samples.

5.1.3 Open-surface Evolution

In our experiments, normal and tangential evolution were performed alternately in

rounds. One round of normal evolution consisted of 30 level-set iterations, while

one round of tangential evolution consisted of 50 level-set iterations. The number of

iterations per round was chosen based on experiments on a validation set separate

from the test set, to ensure that at least 50% of the surface voxels had evolved by at

least one voxel before switching evolutions. A round might have had fewer iterations
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than the above if the corresponding evolution had converged, in the sense that all

voxel updates were less than a motion threshold of 0.02 voxels.

In our result, the RMS distance between the detected BA 17 boundary and ground-

truth boundary1 was about 1.75mm. This corresponded to an average classification

rate of 80% for the stria and non-stria regions (i.e. 4 out of 5 voxels in these regions

were correctly classified). On average, the total distance moved by a point on the BA

boundary in both normal and tangential directions, between the initialization and

the final result, was 15mm (60 voxels).

Figure 5-3 shows zoomed-in views of sample 2D slices through our 3D results to

illustrate one round each of normal evolution and tangential evolution. The images

correspond to MR data of size 10mm by 7mm. Only the primary surface, Sp, is shown

in each slice (in blue and yellow). To avoid cluttering, the auxiliary surface is not

shown, except that it implicitly passes through the boundaries of the visible relevant

region.

We note a few salient points. As shown in row (d), if tangential evolution is

performed first, without any normal evolution, it converges to a local minimum. In

contrast, the result of performing both normal and tangential evolution (row (f))

is much more accurate. Note that even though the initial relevant region (row (c))

overlaps significantly with the ground truth non-stria region, the final relevant region

after both normal and tangential evolution (row (f)) does not have any holes in it

(i.e., the topology is correct). This is mainly because of strong smoothing term used

while evolving the auxiliary surface. The apparent discontinuities in the relevant

region shown are due to visualization of a 3D surface in 2D slices. Further, note

that after normal evolution (row (e)), parts of the primary surface (in the relevant

region) actually move away from the ground truth surface. This is not necessarily an

error, since the evolved surface in this region actually matches the typical stria profile

better.

Figure 5-4 illustrates the advantage of alternating normal and tangential evolution.

The original surface is shown in (a), followed by the result of one round of tangential

1taken to be the mid-point of the region where the ground-truth labeling was ambiguous.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5-3: Multiple 2D slices through our (3D) results. The 4 columns are 4 different
slices through the MR data. The first row simply shows the MR intensities. In
row (b), ground truth labeling is shown in orange (striated Brodmann area 17) and
green (non-striated region outside BA 17). Results of surface evolution are shown in
subsequent rows, in blue (BA 17: relevant region) and yellow (non-relevant). The
third row shows the initial surface before normal and tangential evolution. Row (d)
shows the (rather poor) result of performing tangential evolution alone, without any
normal evolution. Row (e) shows the results of normal evolution alone. Row (f) shows
results after one round each of both normal and tangential evolution are performed.
Gap between orange and green curves is due to a region where ground truth labeling
was ambiguous, as determined by the expert labeller.
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(a) (b) (c) (d)

Figure 5-4: A 2D slice through our (3D) results, illustrating the need for alternating
normal and tangential evolution. Shown here are (a) an initial configuration, (b) the
results of one round of tangential evolution, (c) the next round of normal evolution
and (d) the following round of tangential evolution. Color scheme used is the same
as in Figure 5-3.

evolution in (b). Tangential evolution converges early in this case, because the original

primary surfaces deviates from the cortical surface (due to its arbitrary closure).

The next round of normal evolution fits the cortex better, as seen in (c). Finally,

a subsequent round of tangential evolution further extends the relevant region, as

shown in (d).

5.2 Application: Detecting a Horizon in 3D Seis-

mic Data

Our next application consists of detecting horizon surfaces in 3D seismic-reflection

volumes.

5.2.1 Initialization

We asked an expert geophysicist to identify 9 points lying on a portion of a horizon in

a seismic volume obtained from the Gulf of Mexico. The expert was presented with

3 vertical slices through the volume, and asked to label 3 points in each slice that lay

on or near2 the horizon. These 9 points were used to create an initial open surface

using thin-plate spline interpolation in MATLAB, as shown in Figure 5-5. A smaller

2Near here means within 5 voxels, at a resolution where the typical gap between horizons is about
14 voxels.
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(a)

(b)

(c)

Figure 5-5: Multiple 2D slices showing the initialization used for horizon detection in a
seismic volume: (a) three vertical slices through seismic volume (one in each column),
(b) expert-labeled points on a horizon in these three slices, and (c) spline-interpolated
surface fit to the expert-labeled points.
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subvolume was then extracted from the seismic volume (to speed up processing), and

the initial surface was closed within this subvolume using the implicit construction

algorithm described in Section 3.2. This is illustrated in Figure 5-6(a).

5.2.2 Labeled Data

The seismic data volume consists of multiple horizons stacked one above the other. For

training purposes, two such adjacent horizons were manually labeled by a geophysicist,

and 500 profile vectors from these horizons were used for training the relevant-region

likelihood model. The non-relevant region model was trained on a combination of

200 profiles from random locations in the volume and 200 profiles centered on points

lying midway between the two labeled horizons.

In addition, eight horizons (not adjacent to the above two) were also manually

labeled, to provide ground truth for testing our algorithm.

5.2.3 Open-surface Evolution

For each horizon surface, we ran our open-surface detection algorithm for 100 iter-

ations of normal evolution, followed by 100 iterations of tangential evolution. As in

Section 5.1.3, these numbers were chosen to allow at least 50% of the voxels on each

surface to move before switching evolutions. Here, we report average statistics from

these runs.

The mean distance between the open-surface boundaries of our result and the

ground truth was 11 voxels, with a standard deviation of 4 voxels (where 1 voxel =

15 feet). This is to be compared with the mean distance between the boundaries of

our initialization and the ground truth, which was 69 voxels. The improvement in lo-

calization was mostly due to tangential evolution, which led to an average cumulative

motion of 57 voxels for points on the open-surface boundary. The cumulative motion

for points on the primary surface due to normal evolution was, on average, 3 voxels.

However, this normal motion was critical to the success of tangential evolution. We

recalculated the statistics with tangential evolution alone, and found a mean inter-
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(a)

(b)

(c)

(d)

Figure 5-6: We show here a single vertical slice through the seismic volume, illustrat-
ing several stages of the surface evolution algorithm: (a) a sub-volume is specified
around the initial surface, (b) from left to right, we see the sub-volume slice, the
initial primary surface and the primary surface (after normal evolution), (c) from left
to right, we see a slice through the primary implicit level-set function, the secondary
implicit level-set function and a binarization of the secondary function, (d) the open-
surface, from left to right, seen initially, after normal evolution, during tangential
evolution, and after tangential evolution.
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boundary distance of 32 voxels. This is because in the absence of normal evolution,

the profiles used in tangential evolution are not well-aligned, i.e., they are not all

centered on the true horizon. Consequently, more of the relevant-region profiles get

misclassified as non-relevant, and vice versa.

We note that discussion with an expert in geophysics indicates there is some

uncertainty in the ground truth labeling provided to us, of the order of 1 voxel in

location and 3 voxels in extent.

Figures 5-5 and 5-6 show slices from a sample run, at various stages of the algo-

rithm.

5.3 Application: Detecting a Fault in Seismic Data

Our third application aims at detecting geologic faults in 3D seismic data. It is

a little more ambitious than the previous two applications, since fault surfaces are

known within the geophysical community to be notoriously difficult to detect [32].

5.3.1 Fault-surface Appearance Model

Evidence for faults shows up in seismic volumes as discontinuities in horizon layers.

These discontinuities are easily identified by an observer, since to the human eye,

the horizons seem to pop out [63] from the seismic volume after a few seconds of

observation (see Figure 5-7(a) for example, where many such fault-lines can be seen

in each 2D slice). However, for an automatic detection technique, this would require

detecting horizons first, which is in itself non-trivial. Further, there is little evidence

for faults between the sharply-defined horizons, or in regions where the displaced

horizons happen to match in intensity with each other. Hence, even though prior

knowledge indicates that major faults tend to be continuous and typically extend be-

yond 2-3 horizons, it is not easy to detect them using an automated image-processing

technique.

Geophysicists often use attribute volumes calculated from a seismic volume to

further highlight faults. We follow this idea, making use of a pre-computed attribute
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volume called the dissemblance volume as the data for our open-surface detection

task. For each voxel of the original volume, the dissemblance volume is the negative

of the local correlation of vertical profile vectors centered at that voxel and at its 4

neighboring voxels in a horizontal plane. Horizons show high correlation laterally,

and hence low dissemblance. The highest dissemblance is expected along faults, or

at randomly occuring points within a heterogeneous rock structure (such as a salt

body). Sample seismic volume slices, and the corresponding dissemblance slices, are

shown in Figure 5-7(a,b).

To account for the lack of evidence for faults in the gaps between visible horizons,

we changed the likelihood feature used for this task. Instead of considering only a

single normal profile vector y(x) at each surface point y, we consider a set of profile

vectors computed at neighboring surface points in each direction within a radius rf .

We then find the nf profiles y(x1),y(x2), . . . ,y(xnf
) with highest likelihood within

this set, and use the average profile ȳ as the vector representing this point:

ȳ =
1

nf

nf∑
i=1

y(xi). (5.1)

By selecting the best profiles from a set, we essentially make the appearance likelihood

more robust to gaps by averaging within a window. Of course, there is a trade-off,

since the larger the neighborhood radius rf , the greater the robustness on the one

hand, but the lower the accuracy of localization of the surface boundary and the

longer the computation time on the other. In our implementation, we chose rf = 15

and nf = 10, after experimenting with two labeled fault surfaces and making sure

tangential evolution did not stop too early as the initial open-surface grew in size.

The results were quite sensitive to the value of rf , as, for instance, rf = 10 or less

almost always failed to grow the fault surface adequately. We therefore recommend

choosing rf appropriately for each seismic volume being considered, though the same

value can be typically be used for all faults in the volume.
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(a)

(b)

(c)

Figure 5-7: Multiple 2D slices showing the initialization used for fault detection
in a seismic/dissemblance volume. Seen here are (a) vertical slices from the seismic
volume, (b) corresponding slices from the dissemblance volume and (c) expert labeling
of a single fault.
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5.3.2 Initialization

As with the horizons, for each fault in our test set, an expert geophysicist identified

9 points lying on a portion of a the fault in a dissemblance volume. The expert

was presented with three vertical slices through the dissemblance volume and the

corresponding seismic volume, and asked to click on three points in each slice that

lay on or near the fault (see Figure 5-7). These nine points were used to create a

smooth initial open surface using thin-plate spline interpolation [68] in MATLAB

with smoothing parameter value 0.5.

5.3.3 Labeled Data

We experimented with two seismic data volumes from the Gulf of Mexico. Each

seismic volume consisted of multiple faults with different orientations and extents. A

volume 1000 voxels deep, 300 samples long and 300 samples wide contained about

10 large faults (more than 200 voxels in height) and 50 small faults. For training

purposes, 4 large faults in one volume were manually labeled by a geophysicist, and

500 normal profile vectors from these fault meshes, calculated using Equation 5.1,

were used for training the relevant-region PPCA likelihood model. The non-relevant

region model was trained on 300 profiles from random locations in the volume and 300

profiles centered on points obtained by extrapolating the labeled faults beyond their

true extent. As with the MR data (Section 5.1.2), the fault models were re-estimated

after aligning the profile samples with the initially-learned model.

In addition, 7 other large faults from the two volumes were manually labeled,

to provide ground truth for testing, and two more faults were used for parameter

selection.

5.3.4 Open-surface Evolution

For each fault in the test set, we ran our open-surface detection algorithm for 100

iterations of normal evolution, followed by 100 iterations of tangential evolution. The

number of iterations was chosen in the same way as for horizons. The mean distance

82



(a) (b) (c)

Figure 5-8: Dissemblance volume (a), primary surface (b), and final open-surface
result (c) for fault detection, all shown in a 2D slice through the 3D volume.
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between the open-surface boundaries of our result and the ground truth fault surface

was 44 voxels, with a standard deviation of 20 voxels (where 1 voxel = 15 feet). This

is to be compared with the mean distance between the boundaries of our initialization

and the ground truth, which was 105 voxels. Also, to put this in context, the average

linear extent of a fault was 550 voxels. As determined by a geophysical expert, there

is some error even in the manual labeling provided to us as ground truth, of the order

of 8-10 voxels.

As with horizon detection, the improvement in localization was mostly due to

tangential evolution, but once again, the small amount of normal motion played a

crucial role in the success of tangential evolution. With tangential evolution alone,

the re-computed statistics indicated a mean inter-boundary distance of 60 voxels.

The accuracy of fault detection is considerably lower than that of horizon detec-

tion mostly because there is less appearance information characterizing faults. For

instance, the transition from a horizon region to a non-horizon region is marked by

a distinct change in profile vectors, while faults die away much more gradually. An-

other factor affecting the accuracy of fault detection is the neighborhood size we used

for the sake of robustness in computing appearance vectors on the fault surface (as

discussed at the beginning of this section). A third reason is that the signal-to-noise

ratio of the seismic image gets steadily poorer as we go down in the volume, so the

bottom of a fault is very hard to detect.

Nonetheless, our results are likely useful to the practicing geophysicist, since they

can easily be augmented by some manual interaction. Our method saves the geo-

physicist’s time, by allowing him to concentrate on the regions of the fault that most

need his expertise to detect. Based on the typical resolution at which a geophysicist

labels faults in a volume for initial inspection—one sample every 50 voxels or so in

either direction along a fault surface—we estimate a 75% reduction in the number of

samples that need to be manually marked.

Figures 5-7 and 5-8 show slices from a sample run, at various stages of the algo-

rithm.
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Figure 5-9: Plots showing variation of profile likelihood with (a) translation and (b)
rotation. For these data, the plot on the left shows the learned appearance model
localizes the target open surface, on average, from an initialization within +/− 8
voxels in the normal direction, and rotated by up to 40 degrees.

5.4 Performance Analysis

In this section, we characterize the performance of our open-surface detection algo-

rithm using simulated data and a variety of metrics.

5.4.1 Likelihood Variation with Translation

The success of normal evolution depends on how the likelihood-based force terms vary

with translation in the normal direction. Since normal evolution essentially performs

gradient ascent, it finds a local optimum in surface location. This implies that the

maximum distance moved in the normal direction, on average, is the distance to the

nearest local minimum in likelihood.

We simulated multiple sample profiles at different normal offsets from a PPCA

model learnt for the stria in the medical-imaging application. In Figure 5-9(a), we

show the average likelihood as a function of offset, for mis-aligned profiles that have

been translated along the normal direction. There is a local minimum, on average,

at a distance of 4 voxels from the true surface location. This gives us an indication

of what the typical accuracy of the initialization must be in the normal direction for

our method to work. An initial surface whose closest point is more than 4 voxels
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(a)
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(c)

Figure 5-10: Stages in the evolution of an open-surface on a simulated sphere: (a)
initialization, (b) after 25 iterations of tangential evolution, and (c) final state, after
75 iterations.
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away from the target along the normal direction is likely not going to converge to

target surface, due to the nature of the local optimization used. On the other hand,

if a majority of surface points on the initial surface are within 4 voxels, as measured

along the normal direction, convergence is very likely. The smoothness term plays

an important role here, as it allows individual points to move past local minima in

appearance if that is the direction in which neighboring points are moving.

For our applications, this issue has not been a major constraint. With the medical

data, the outer surfaces of the cortical ribbon—the pial surface and the grey-white

interface—are localizable by other methods, and lie 8-12 voxels apart. The stria

of Gennari typically lies halfway between these two cortical surfaces. For horizon

detection, automated trackers exist that scan the seismic volume to directly detect

points on a horizon and then follow the horizon by correlation tracking to provide an

initial surface. Fault detection, on the other hand, typically requires some manual

supervision anyway, so the accuracy constraint described here is unlikely to be a

limitation.

Another feature to note from the plot in Figure 5-9(a) is the width of the peak,

as a sharper peak implies better localization. In this case, an offset of +/ − 1 voxel

is possible, as the likelihood drop in this range may be overcome by the decrease in

smoothness penalty.

5.4.2 Likelihood Variation with Rotation

Normal evolution not only translates the open surface, but also rotates it. It achieves

this by varying the magnitude of the normal force as one moves along the surface.

Hence, it is worth looking at the variation of likelihood-based force terms with rotation

of the normal profile relative to the ground-truth surface.

We simulated multiple sample profiles at different angles relative to a ground-

truth surface from a PPCA model learnt from seismic data. Figure 5-9(b) plots the

variation of average likelihood with angular offset between 0 and 90 degrees. The

likelihood falls off rapidly beyond 40 degrees, and is an order of magnitude lower at

90 degrees. This gives us a sense of how well-aligned the initial surface needs to be
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for the evolution to be successful.

Given the constraint on translation of the surface in the normal direction, as de-

scribed in the previous sub-section, we do not want the initial open surface to be

significantly rotated relative to the ground truth surface. In the examples we pre-

sented, it is relatively easy to come up with an automatic initialization where the

relative rotation of the open surface and the ground truth is small. In the medical

imaging case, such an initialization could be obtained by registering the volume with

another pre-labeled volume [30]. For the seismic data, a well-aligned initial open

surface for horizons can be obtained by edge detection (in case of horizons) or by

plane-fitting (in case of faults). However, large relative rotation is possible for the

remaining, non-relevant part of the primary surface, especially if the explicit construc-

tion algorithm of Section 3.2 is used for closing the open surface. For this reason, we

prefer to use the implicit construction for creating the primary surface.

5.4.3 Testing Tangential Evolution

We tested the accuracy of tangential evolution on two simulated datasets.

The first dataset consists of circular patch on a spherical primary surface. The

initial patch corresponds to a cone centered at the center of the sphere with half-angle

30 degrees. The ground truth patch is for a similar cone with half-angle 60 degrees.

Three stages in the process are shown in Figure 5-10: in this case, the single initial

surface patch successfully grows outwards on the sphere to match the ground truth.

The second dataset is similar, but the primary surface is a box instead of a sphere,

with the patch located on one side of it.

For both datasets, we tested two things:

• the sensitivity of the result to the difference in likelihood between the relevant

and non-relevant regions, and

• the sensitivity of the result to the topology of the initial patch.

Sensitivity to likelihood difference. We varied the PPCA models of the

two regions (relevant and non-relevant) and studied its effect on the accuracy of
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the resulting open surface. The PPCA models for the profiles in the two regions

corresponded to spherical Gaussians with identical covariance matrices. Starting from

parameters for which the evolution occured successfully, two kinds of variation were

employed: reducing the distance between the means, and increasing the variance.

Both of these variations increase the similarity between the relevant and non-relevant

region likelihood models. In fact, one type of variation can be converted to the other

by shifting and scaling the data. Multiple iterations were run with samples from these

PPCA models.

The evolution showed two different behaviors: it either completed successfully

with the initial patch growing to match the true patch, or it failed completely with

the initial patch shrinking and disappearing. As both types of variation were applied,

the time taken for successful evolution increased, till the evolution started breaking

down, after which the time to breakdown decreased. This is because the likelihood

force term steadily decreased, till a point where it was dominated by the smoothness

prior term. Since the smoothness prior favors shorter curve lengths for the boundary

of the open surface, it shrinks the open-surface and makes it disappear.

The results were correct in over 95 percent of cases when the likelihood term was

at least twice as large as the smoothness term. We used this as a benchmark in

choosing the relative weights of likelihood and smoothness forces for the practical

applications described in the previous sections of this chapter.

Sensitivity to topology. We varied the topology of the initialization by varying

the secondary surface, with the spherical primary kept fixed and the two likelihood

models sufficiently distinct. We considered 4 initial cases in which to test the behavior

of the algorithm:

1. Single circular patch in middle of true relevant region: this case works as ex-

pected, as shown in Figure 5-10.

2. Two circular patches within true relevant region: the two patches grow and

merge to give the same result as case 1.

3. Single circular patch completely outside true relevant region: the patch shrinks
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till it disappears, leading to an incorrect result.

4. Two circular patches with one on either side of true relevant-region boundary:

the interior patch grows to match the true open-surface, while the exterior patch

shrinks and disappears.

In each case, the algorithm behaved as expected. The failure in case 3 is due to

the widely-understood limitation of the local optimization framework used in most

level-set methods.

Through the above performance tests, we have established the range of initial

conditions for which our open-surface evolution algorithm is likely to work well in our

chosen applications. Given the significant differences between our three applications,

we also expect the results to be representative of other open-surface detection tasks.
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Chapter 6

Conclusion

We have proposed a novel open-surface evolution algorithm that evolves a surface in

both the normal and tangential directions in 3D. The evolution is done in a level-set

framework, by alternately updating two implicit functions.

We have also proposed a principled statistical model for modelling structured

appearance of surfaces along the normal direction. This model fits naturally within

the level-set framework, and generalizes the traditional edge-based and region-based

appearance models. For normal evolution, a mixture of relevant and non-relevant

profiles is used for learning an appearance model, while for tangential evolution, a

region-based likelihood term is used to solve the classification problem of relevant

versus non-relevant region.

The method has been applied to a medical imaging problem, the automatic de-

tection of the primary visual cortex (Brodmann area 17), and two seismic imaging

problems, horizon detection and fault detection. It looks particularly promising for

detection of the extent of these open surfaces. This opens up possibilities in these

respective fields, including automatic analysis of cortical structure directly from high

resolution MR data—possibly even acquired invivo—without requiring histological

samples, and rapid assisted hydrocarbon-basin interpretation in the petroleum indus-

try. We believe our formulation can also be applied for locating other cortical and

sub-cortical regions.

The primary advantage of our proposed algorithm is that it provides an integrated
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solution for detecting open surfaces in 3D intensity volumes. The use of profile vectors

for the appearance likelihood makes the method applicable to a broad class of interface

detection problems, including closed surface detection problems. For open surfaces,

our process for constructing the secondary surface from the primary surface (using the

orthogonality constraint) implies that, in contrast with previously published methods,

the derivation of forces is significantly simplified and spurious intersections between

the primary and secondary surfaces are automatically avoided for many surfaces of

interest.

There are a number of possible directions in which the present research could

be extended. These include incorporating a global shape prior on the open surface,

improving the appearance model of the non-relevant region, modeling variation in ap-

pearance, geometry and scale (i.e., length) of profile vectors and exploring alternative

smoothing forces. We discuss a couple of these issues here.

Global statistical priors on shape have previously been proposed for closed surfaces

within the level-set framework (see for example, [43]), and we believe these can be

transferred to open surfaces. Such priors would be useful for avoiding many of the

local minima currently present during our first normal evolution task. The priors are

particularly meaningful for fault surfaces, which tend to be very smooth, and cortical

surface regions, which have reasonably consistent geometric folding patterns.

The constant length of the profile vectors along the surface makes appearance

modeling simple—PPCA can be used directly, for example—but may not correctly

model the physical process behind the generation of the surface’s layered appearance.

In the medical example, for instance, cortical thickness varies as one moves along

the folds, and the corresponding profile of intensity variation expands or contracts in

scale. Further, the bending of surface suggests that curved profiles might be more

appropriate than straight profiles. In other words, as we step away from the surface

along the normal vector to get the profile values, the normal vector might change

in direction continually. Finally, the appearance of the profile vectors may show

structured variation from one part of the surface to another, which is not captured by

the current assumption that the vectors are independently and identically distributed
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under a PPCA model.

We believe we have explored a problem of growing practical importance, proposed

a novel approach to solving the problem based on a principled theoretical framework,

and demonstrated interesting results on two very different applications. We hope and

expect to see much further work on the topic of detecting open surfaces in the years

to come.
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Appendix A

Switching Between Implicit and

Explicit Representations

We summarize here methods for converting an implicit surface representation to an

explicit one and vice versa. Even though most of work involves manipulation of

implicit representations, we may be provided an input that is represented explicitly,

or may require an output in an explicit form. To handle these situations, the following

two types of methods can be used.

A.1 Implicit to Explicit

For going from an implicit representation to an explicit one, we first discuss the case

of a closed surface. The conversion for an open surface is a simple extension.

We are given an embedding function in R
3, and we wish to obtain its zero level-set

as a triangle mesh. The standard algorithm for solving this problem is called marching

cubes, and was proposed by Lorensen and Cline [46] in the context of computer

graphics.
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A.2 Explicit to Implicit

We are given a closed surface as a triangle mesh, and we wish to obtain an embedding

function whose zero level-set matches this mesh. While there are many possible

embedding functions that can be constructed to match a mesh, a very common choice

is to create a signed-distance function from the mesh, as discussed in Section 2.2.3.

A simple algorithm for doing this consists of two tasks:

1. binarizing the volume, to mark the interior and exterior of the mesh, and,

2. solving an eikonal equation on the binarized volume to get the distance function

from the triangle mesh.

Binarizing a volume. Having chosen a bounding volume around the triangle

mesh, we run a ray-intersection algorithm along one of the axes of the volume. From

one of the six surfaces of the bounding volume, parallel rays centered at the voxels

on the surface are sent into the volume in a direction normal to the surface. For each

ray, we record all points at which it intersects a triangle of the triangle mesh. After

calculating all ray-triangle intersections, we step along each ray, marking voxels as

−1 or +1 to indicate the interior or exterior of the mesh. Each ray starts with values

of +1, and the sign of the value changes every time we cross a recorded intersection

point.

Creating the distance function for the binarized volume. We first identify

the points that lie closest to the surface, namely the points which have a binary value

different from one of their neighbors. We set the magnitude of the signed-distance

function at these points to be 0.5 voxels, and the sign to match the sign of the binary

volume. Note that this is only accurate to +/− 0.5 voxels. Next, we use these points

as the initial condition for solving the eikonal equation in the entire volume, with the

help of a fast-marching method.

This gives us the required embedding function for a closed surface mesh. For an

open surface mesh, we have two choices:
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1. use the explicit construction of Section 3.2.1 to obtain a closed surface mesh,

and then use the above algorithm, or

2. use the implicit construction of Section 3.2.2 to directly obtain an implicit

representation of a corresponding closed surface.

In either case, the implicit closed surface so obtained is the primary surface. We then

need to construct the secondary surface using the method described in Section 3.3.

These two closed surfaces together provide an implicit representation of the open

surface.
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