Phantom Monitors:

A Simple Foundation for Modular
Proofs of Fine-Grained Concurrent
Programs

Christian J. Bell, Mohsen Lesani, Adam Chlipala,
Stephan Boyer, Gregory Malecha, Peng Wang

MIT CSAIL

Goal: verification of concurrent
client programs...

global stack jobs

fun client (input)

foreach v in input
push jobs (In v)

results = []

while length (results) < length (input)
X = pop Jobs
case x = Some (Out wv): results := v :: results
case x = Some (In v): push jobs (In v)

return results

fun worker (compute)
while true
X = pop Jobs
case x = Some (In v): push jobs (Out (compute v))
case x = Some (Out v): push jobs (Out v)

fun testCase ()
for 1..4 do
fork worker (factorial)
client pid = fork client([1,2,3,4])
results = join client pid
assert (sum results = 33)

Goal: ... and verification o

" fine-

grained concurrent datast

fun push (head, v)

node = alloc 2

write node.item v

while true
oldHead = read head
write node.next oldHead
if cas head oldHead node = 1 then

return

fun pop (head)
while true

oldHead = read head

if oldHead = 0 then
return None

else
newHead = read oldHead.next
if cas head oldHead newHead = 1 then

v = read oldHead.item

return (Some V)

ructures

General Challenges

1. What does the concurrent program logic look like?
 abstraction: high level
* local reasoning: modular/manageable proofs
e generality: can we prove real & interesting programs?

2. End-to-end verification
* what does the machine code actually do?
e can we trust our program logic?

3. Verification framework development
* how do we quickly test new ideas?

Our Focus

e generality: can we prove real programs?

2. End-to-end verification
* what does the machine code actually do?
e can we trust our program logic?

3. Verification framework development
* how do we quickly test new ideas?

Method

* Minimal operational semantics
e Syntax: Imperative commands + Gallina programs
* Erased & Instrumented semantics

* Minimal instrumentation for global state
* “Phantom monitors” vs ghost state

* Verification framework is built on top
* Machine-checked proofs in Coq

user

lib

verification framework

p

[Client programs

Method

Library of verified fine-grained

concurrent datastructures
(Semaphore, Treiber stack, Harris-Michael set, etc.)

~

Hoare doubles (CPs style)

>

Separation Logic

Instrumented semantics
(thread-local heaps & one global,
instrumented heap)

asnq buiandwod paisnii

Trusted Computing Base

veV Value h(a) = v h(a) = v
a€ A Address (h,read a) —, (h,v) (h,cas a vy v2) —n (hla — v2], 1)
a€ O == reada|writeawv|casawvy v
s€S :=: x4 a;s|nil|abort a € dom(h) a € dom(h) h(a) #
(h,write av) =y (hla — v],1) (h,cas awvi v2) = (h,0)
(a) Syntax (h, @) = (W, 0)
(h,PW[i— x ¢+ a;s))7(h', Py i — s[v/x]])
1€l Thread ID (h, P)5 (0", P')
he H =A—V Heap (h, P) — (h', P")

P =1—5S Processes

(a) Semantic domains (b) Erased operational semantics

Vi. P(i) # nil = 3k, P'. (h, P)7(h', P")
vh',P'. (h,P) = (h', P") = safe-program b’ P’

SAFE

safe-program h P

(c) Safety

TCB: Syntax

Inductive action: Set :=
| read: action
| write: address -> value -> action

| cas: address -> value -> value -> action.

CoInductive proc : Set :=
(* safely terminated thread ¥*)
| p nil: proc
(* crashed thread *)
| p_abort: proc
(* perform action, then call the continuation with its result ¥*)

| p_act: action -> (value -> proc) -> proc.

Instrumented Global State
“Phantom Monitors”

 General idea: access to shared data structures is
coordinated by a global policy:

 what can the current thread do?
e what can interfering threads do?

* We write a policy for a shared datastructure as a
monadic [corecursive] Coq function that monitors
every operation acting on the structure, rejecting
any operation that violates the protocol, and
evolving over time.

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

K X4 Y1 X, Y X3 y3/

Instrumented Global State

“Phantom Monitors”

/Queue a[5,3,6]

= - - Q

.
x&\‘ead

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

ﬁ threadj: write y, 0
?

» 6

K X4 Y1

X, Y,

X3 y3j

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

f

K X4 Y1

X, Y,

X3

thread /(re
aq J/2
Y3 j

Phantom Monitors

Is a Coq function that:

1.
2.
3.

Observes all operations on a data structure
Accepts or rejects each operation

May generate an abstract operation (“dequeue”)
or silently accept it

Can change state
Can be composed together

Client Program Policy
(single-value case)

* client thread: ¢
* pushes unfinished value into a shared stack (¢,=2¢;)
* collects the finished value (¢;=2¢5)

e worker thread: w
* checks the stack for (unfinished) values (¢;,2¢,)
* pushes the computed value of each pop (¢,2¢;)

: h (I :
w;;; : push (Out (compute v))

¢ : pop (Inv) w : pop (Inv)
w : pop (Out (compute v))

¢ : pop (Out (compute v)),

©)

Y

Client Program Policy
(general case)

protocol JobsProto (input, client pid, compute) implements StackProtocol
list loading = input // unfinished values to be pushed
map processing = empty // values held by worker threads

onPush (1, x)

case x = (Out v): // ¢, 2 ¢,
assert processingl[i] = (Out wv)
V. 3 v’. processing[i] = (In v') A v = compute (v’)
processing.remove (1)
case x = (In v): // ¢, 2 ¢,
assert 3 1’. loading = v :: 1’
loading := tail (loading)

onPop (i, x)
if 1 = client pid then
case x = (Out v): assert True // ¢, =2 C;
case x = (In v): loading := v :: loading // ¢, =2 ¢,
else // ¢, 2 ¢,
assert i ¢ dom(processing)
processing.add (i, x)

Stack Specification

« ::= push v | pop v and:

pop v ! push v /
a —a» a 7 —1"?’ a

oo =€ lo]| = v o] o'l =v el

g !

£q
stable (Stacky @ o) Stacks a o' % pid i - Stacks, a & * pid i

h
stable W Vo' ﬂw*af =g e
ush v
Vo'. o B 6" =) | {Stacks a o’ x W} s

2i i
V |- i{Stacks a o * W} push a v; s

stable W Vo', Jw*‘jf = (o' =€ vV .o B)

Yo JW*J’ = ||o'|| = € = V |={Stacks a ¢’ x W} s None

Vo', v. o P22 0" = V |={Stacks a ¢’ * W} s (Some v)

V | i{Stacks a o0 * W} z < pop a; s x

Hypotheses

Our minimal TCB, semantically derived framework,
and Coq proofs enable:

- quick(-ish*) development cycle of our logical
framework

- automated proofs (via Ltac)

- exploring general logics

- ex: do not bake in:
- composable global reasoning
- permission accounting

- derive restricted principles as needed
- verifying challenging concurrent programs

* Coq proofs take time, but concurrency is tricky enough that
it is easy to make mistakes with pen & paper proofs of logics

Thanks!

Client Program Policy
(general case)

protocol StackMonitor ¥ (address head, o,) implements Monitor
% 0 = 0, (* abstract client protocol *)

onRead (i, a, h, hAcg, hRel)
assert hAcg = hRel = empty

onWrite(i, a, v, h, hAcg, hRel)
assert False

onCAS (i, a, oldHead, newHead, h, hAcg, hRel)
assert a = head A hRel = empty
if h(head) = oldHead then
if h(oldHead.next) = newHead A oldHead <> 0 then
c.onPop (i, h(oldHead.item))
assert hAcg = empty

else if hAcg(newHead.next) = oldHead then

c.onPush (i, hAcg(newHead.item))

assert newHead 6= 0 A dom(hAcqg) = {newHead.item, newHead.next}
else

assert False
else
assert hAcg = empty

