
Phantom Monitors:
A Simple Foundation for Modular
Proofs of Fine-Grained Concurrent

Programs

Christian J. Bell, Mohsen Lesani, Adam Chlipala,
Stephan Boyer, Gregory Malecha, Peng Wang

MIT CSAIL

Goal: verification of concurrent
client programs...

global stack jobs

fun client(input)

foreach v in input

push jobs (In v)

results = []

while length(results) < length(input)

x = pop jobs

case x = Some (Out v): results := v :: results

case x = Some (In v): push jobs (In v)

return results

fun worker(compute)

while true

x = pop jobs

case x = Some (In v): push jobs (Out (compute v))

case x = Some (Out v): push jobs (Out v)

fun testCase()

for 1..4 do

fork worker(factorial)

client_pid = fork client([1,2,3,4])

results = join client_pid

assert (sum results = 33)

Goal: ... and verification of fine-
grained concurrent datastructures

fun push(head, v)

node = alloc 2

write node.item v

while true

oldHead = read head

write node.next oldHead

if cas head oldHead node = 1 then

return

fun pop(head)

while true

oldHead = read head

if oldHead = 0 then

return None

else

newHead = read oldHead.next

if cas head oldHead newHead = 1 then

v = read oldHead.item

return (Some v)

General Challenges

1. What does the concurrent program logic look like?
• abstraction: high level

• local reasoning: modular/manageable proofs

• generality: can we prove real & interesting programs?

2. End-to-end verification
• what does the machine code actually do?

• can we trust our program logic?

3. Verification framework development
• how do we quickly test new ideas?

Our Focus

1. What does the concurrent program logic look like?
• abstraction: high level

• local reasoning: modular/manageable proofs

• generality: can we prove real programs?

2. End-to-end verification
• what does the machine code actually do?

• can we trust our program logic?

3. Verification framework development
• how do we quickly test new ideas?

Method

• Minimal operational semantics
• Syntax: Imperative commands + Gallina programs

• Erased & Instrumented semantics

• Minimal instrumentation for global state
• “Phantom monitors” vs ghost state

• Verification framework is built on top

• Machine-checked proofs in Coq

Method

Syntax: imperative commands (read, write, cas, abort, exit)
embedded into monadic Gallina (Coq) programs via CPS

Instrumented semantics
(thread-local heaps & one global,

instrumented heap)

Erased semantics
(one shared heap)

Separation Logic

Hoare doubles (CPS style)

Library of verified fine-grained
concurrent datastructures

(Semaphore, Treiber stack, Harris-Michael set, etc.)

Client programs

ve
ri

fi
ca

ti
o

n
 f

ra
m

ew
o

rk
lib

u
se

r
tru

sted
 co

m
p

u
tin

g
 b

a
se

Coq

Trusted Computing Base

(a) Semantic domains (b) Erased operational semantics

(c) Safety

(a) Syntax

TCB: Syntax

Inductive action: Set :=

| read: action

| write: address -> value -> action

| cas: address -> value -> value -> action.

CoInductive proc : Set :=

(* safely terminated thread *)

| p_nil: proc

(* crashed thread *)

| p_abort: proc

(* perform action, then call the continuation with its result *)

| p_act: action -> (value -> proc) -> proc.

Instrumented Global State
“Phantom Monitors”

• General idea: access to shared data structures is
coordinated by a global policy:
• what can the current thread do?

• what can interfering threads do?

• We write a policy for a shared datastructure as a
monadic [corecursive] Coq function that monitors
every operation acting on the structure, rejecting
any operation that violates the protocol, and
evolving over time.

Instrumented Global State
“Phantom Monitors”

Queue a [5,3,6]

a

5 3 6

x1 x2 x3y1 y2 y3

Instrumented Global State
“Phantom Monitors”

Queue a [5,3,6]

a

5 3 6

x1 x2 x3y1 y2 y3

DEQUEUE 5

Instrumented Global State
“Phantom Monitors”

Queue a [5,3,6]

a

5 3 6

thread j: write y2 0

x1 x2 x3y1 y2 y3

HALT!

Instrumented Global State
“Phantom Monitors”

Queue a [5,3,6]

a

5 3 6

x1 x2 x3y1 y2 y3

...

Phantom Monitors

Is a Coq function that:

1. Observes all operations on a data structure

2. Accepts or rejects each operation

3. May generate an abstract operation (“dequeue”)
or silently accept it

4. Can change state

5. Can be composed together

Client Program Policy
(single-value case)

• client thread: c
• pushes unfinished value into a shared stack (ς0ς1)

• collects the finished value (ς1ς3)

• worker thread: w
• checks the stack for (unfinished) values (ς1ς2)

• pushes the computed value of each pop (ς2ς1)

Client Program Policy
(general case)

protocol JobsProto(input, client_pid, compute) implements StackProtocol

list loading = input // unfinished values to be pushed

map processing = empty // values held by worker threads

onPush(i, x)

case x = (Out v): // ς2  ς1
assert processing[i] = (Out v)

∨ ∃ v’. processing[i] = (In v’) ∧ v = compute(v’)

processing.remove(i)

case x = (In v): // ς0  ς1
assert ∃ l’. loading = v :: l’

loading := tail(loading)

onPop(i, x)

if i = client_pid then

case x = (Out v): assert True // ς1  ς3
case x = (In v): loading := v :: loading // ς1  ς0

else // ς1  ς2
assert i ∉ dom(processing)

processing.add(i, x)

Stack Specification

Hypotheses
Our minimal TCB, semantically derived framework,
and Coq proofs enable:

- quick(-ish*) development cycle of our logical
framework

- automated proofs (via Ltac)

- exploring general logics
- ex: do not bake in:

- composable global reasoning
- permission accounting

- derive restricted principles as needed

- verifying challenging concurrent programs

* Coq proofs take time, but concurrency is tricky enough that
it is easy to make mistakes with pen & paper proofs of logics

Thanks!

Client Program Policy
(general case)

protocol StackMonitor Σ (address head, σ0) implements Monitor

Σ σ = σ0 (* abstract client protocol *)

onRead(i, a, h, hAcq, hRel)

assert hAcq = hRel = empty

onWrite(i, a, v, h, hAcq, hRel)

assert False

onCAS(i, a, oldHead, newHead, h, hAcq, hRel)

assert a = head ∧ hRel = empty

if h(head) = oldHead then

if h(oldHead.next) = newHead ∧ oldHead <> 0 then

σ.onPop(i, h(oldHead.item))

assert hAcq = empty

else if hAcq(newHead.next) = oldHead then

σ.onPush(i, hAcq(newHead.item))

assert newHead 6= 0 ∧ dom(hAcq) = {newHead.item, newHead.next}

else

assert False

else

assert hAcq = empty

