Phantom Monitors:

A Simple Foundation for Modular
Proofs of Fine-Grained Concurrent
Programs

Christian J. Bell, Mohsen Lesani, Adam Chlipala,
Stephan Boyer, Gregory Malecha, Peng Wang

MIT CSAIL

cj@csail.mit.edu

Nov 13t 2015

Observes all operations on a
shared data structure and
enforces invariants

M

Phantom Monitor
Rr J
Exists only in the instrumented

semantics and is removed
during “erasure”

Top-level Goals

e verifying fine-grained concurrent data structures

* verifying concurrent clients of shared data
structures

* use a program logic that supports thread-local
reasoning

* but allows global reasoning when necessary

* end-to-end machine-checked proofs

Outline

* Motivation: what does the verification problem
look like?

e Our framework
 Method
e Architecture
* Phantom monitors

Motivation

Goal: verification of fine-grained
concurrent data structures...

fun push (head, v)

node = alloc 2

write node.item v

while true
oldHead = read head
write node.next oldHead
if cas head oldHead node = 1 then

return

fun pop (head)
while true

oldHead = read head

if oldHead = 0 then
return None

else
newHead = read oldHead.next
if cas head oldHead newHead = 1 then

v = read oldHead.item

return (Some V)

Goal: verification of fine-grained
concurrent data structures...

{Stack head o * F}
fun push (head, v)

{Stack head (v:io) * F}

{Stack head (v:io) * F}
fun pop (head)

{Stack head o * F}

Goal: ... and their clients

global stack jobs

fun

fun

fun

client (input)
foreach v in input
push jobs (In v)
results = []
while length (results) < length (input)
X = pop Jobs
case x = Some (Out wv): results := v :: results
case x = Some (In v): push jobs (In v)
return results

worker (compute)
while true
X = pop Jobs

case x = Some (In v): push jobs (Out (compute v))
case x = Some (Out v): push jobs (Out v)
testCase ()

for 1..4 do
fork worker (factorial)
client pid = fork client([1,2,3,4])
results = join client pid
assert (sum results = 33)

Goal: ... and their clients

{Stack jobs o * F}
fun clientf(input)

{Stack jobs ¢’ * results =,, map f input * F}

{Stack jobs o * F}
fun worker (compute)

{False}

fun testCase ()
for 1..4 do
fork worker (factorial)
client pid = fork client([1,2,3,4])
results = join client pid
assert (sum results = 33)

What’s missing?

* The stack specification is insufficient to prove
{...} clientﬂinput) {Stack jobs ¢’ * results =

~ perm

map f input * F}
where

{Stack head o * F} push (head, v) {Stack head (v:io) * F}

{Stack head (v:io) * F} pop(head) {Stack head o * F}

* Some challenges:
 the stack is multiplexed for different uses (In vs Out)
 specialized thread roles (client vs worker)

* the properties we need to enforce are global
 client: how does interference compute f?

General Challenges

1. What does the concurrent program logic look like?
 abstraction: high level
* local reasoning: modular/manageable proofs
e generality: can we prove real & interesting programs?

2. End-to-end verification
* what does the machine code actually do?
e can we trust our program logic?

3. Verification framework development
* how do we quickly test new ideas?

Framework

Method

* Minimal operational semantics
e Syntax: Imperative commands + Gallina programs
* Erased & Instrumented semantics

* Minimal instrumentation for global state
* “Phantom monitors” vs ghost state

* Verification framework is built on top
* Machine-checked proofs in Coq

user

lib

verification framework

Architecture

I Client programs

Library of verified fine-grained

concurrent datastructures
(Semaphore, Treiber stack, Harris-Michael set, etc.)

Hoare doubles (CPs style)

Separation Logic

Instrumented semantics Erased semantics

(thread-local heaps & one global, »
instrumented heap) (one shared heap)
a A
Syntax: imperative commands (read, write, cas, abort, exit)
embedded into monadic Gallina (Coq) programs via CPS
<€ y

Coq

asnqg buizndwod paisnl

Trusted Computing Base

veV Value h(a) = v h(a) = v
ac A Address (h,read a) —, (h,v) (h,cas a vy v2) —n (hla — v2], 1)
a€ O == reada|writeav|casa v vi
s€S :=: x4 a;s|nil|abort a € dom(h) a € dom(h) h(a) #
(h,write av) =y (hla — v],1) (h,cas awvi v2) = (h,0)
(a) Syntax (h, @) = (W, 0)
(h,PW[i— x ¢+ a;s))7(h', Py i — s[v/x]])
1€l Thread ID (h, P)5 (0", P')
he H =A—V Heap (h, P) — (h', P")

P =1—5S Processes

(b) Semantic domains (c) Erased operational semantics

Vi. P(i) #nil = 3h', P'. (h, P)7(Rh', P")
vh',P'. (h,P) = (h', P') = safe-program h' P’

SAFE

safe-program h P
(d) Safety

TCB: Syntax

Inductive action: Set :=
| read: action
| write: address -> value -> action

| cas: address -> value -> value -> action.

CoInductive proc : Set :=
(* safely terminated thread *)
| p nil: proc
(* crashed thread *)
| p_abort: proc

(* perform action, then call the continuation with its result ¥*)

| p_act: action -> (value -> proc) -> proc.
Definition act to proc act:= p act act (fun => p nil).
Coercion act to proc : action >-> proc.
Notation “x <- a ; p" := (a (fun x => p)) (...) : proc.

Notation “a ; p" := (a (fun =>p)) (...) : proc.

Treiber Stack in Cog

Definition try push (head node: address) (kont: value -> proc) : proc :=
oldHead <- read head;
write (a next node) oldHead;
m <- cas head oldHead node;
kont m.

Definition push {h:alloc handler} (head: address) (item: value) (kont: proc) : proc :=
node <- alloc 2;
write (a_item node) item;
cofix loop:=
m <- try push head node;
if m =2 0 then
loop
else
kont.

Definition pop (head: address) (kont: option value->proc) : proc :=
cofix loop:=
oldHead <- read head;
if oldHead =? 0 then
kont None
else
newHead <- read (a_next oldHead);
m <- cas head oldHead newHead;
if m =2 0 then
loop
else
x <- read (a item oldHead);
kont (Some x).

Client in Cog

Fixpoint client load input {h: alloc handler} (input: list value) jobs kont:=
match input with
| nil => kont
| x::input' =>
push jobs (In x);
client load input input' jobs kont
end.

Definition client collect results {h: alloc handler} N jobs kont:=
(cofix loop results :=
if length results =? N then
kont results
else
x <- pop jobs;
match x with
| Some (Out item) =>
loop (item::results)
| Some (In item) =>
push jobs item;
loop results
| None =>
loop results
end
) nil.

Definition client {h: alloc handler} (input: list value) Jjobs kont:=
client load input input jobs;
results <- client collect results (length input) jobs;
kont h results.

Instrumented Global State
“Phantom Monitors”

 General idea: access to shared data structures is
coordinated by a global policy:

 what can the current thread do?
e what can interfering threads do?

* We write a policy for a shared datastructure as a
monadic [corecursive] Coq function that monitors
every operation acting on the structure, rejecting
any operation that violates the protocol, and
evolving over time.

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

K X4 Y1 X, Y X3 y3/

Instrumented Global State

“Phantom Monitors”

/Queue a[5,3,6]

= - - Q

.
x&\‘ead

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

ﬁ threadj: write y, 0
?

» 6

K X4 Y1

X, Y,

X3 y3j

Instrumented Global State
“Phantom Monitors”

/Queue a[5,3,6]

f

K X4 Y1

X, Y,

X3

thread /(re
aq J/2
Y3 j

Phantom Monitors

Is a Coq function that:

1.
2.
3.

Observes all operations on a data structure
Accepts or rejects each operation

May generate an abstract operation (“dequeue”)
or silently accept it

Can change state
Can be composed together

Vertical Composition

Client Protocol

{push, pop}

Stack Monitor

{read, write, cas}

Abstract Client Protocol

e Definition: Z: (S, =, gy, [-1)

* Transition function: > € S X I XA X S

a !
* 00
l

* Interference: o 1»_* o'
l

Stack Specification

«v ::= push v | pop v and:

Fi{Stacks a o’ * W} s

;{Stacks a ¢ * W} push a v; s

F;{Stacks a o * W} s None
;{Stacks a 0’ * W} s (Some v)

;{Stacks a 0 * W} x < popa; sz

Stack Monitor

protocol StackMonitor ¥ (address head, o©,) implements Monitor
% 0 = o)
onRead (i, a, h, hAcg, hRel)
assert hAcg = hRel = empty
onWrite(i, a, v, h, hAcg, hRel)
assert False
onCAS (i, a, oldHead, newHead, h, hAcg, hRel)
assert a = head A hRel = empty
if h(head) = oldHead then
if h(oldHead.next) = newHead A oldHead # 0 then

c.onPop (i, h(oldHead.item))
assert hAcg = empty

else if hAcg(newHead.next) = oldHead then

c.onPush (i, hAcg(newHead.item))

assert newHead # 0 A dom(hAcqg) = {newHead.item, newHead.next}
else

assert False
else
assert hAcq = empty

Stack

Definition Stack head hist s : predicate :=
Ex node: address, Ex 1, Ex s',
pred global
(StackMonitor head s')
(pts head node * ((llist node (model s') * top)
&& (and list (observed nodes hist))))
* pred pid 1

* Il (istep star 1 s s').

Definition Stack head s : predicate := Stack head nil s.

Client Program Policy
(single-value case)

* client thread: ¢
* pushes unfinished value into a shared stack (¢,=2¢;)
* collects the finished value (¢;=2¢5)

e worker thread: w
* checks the stack for (unfinished) values (¢;,2¢,)
* pushes the computed value of each pop (¢,2¢;)

: h (I :
w;;; : push (Out (compute v))

¢ : pop (Inv) w : pop (Inv)
w : pop (Out (compute v))

¢ : pop (Out (compute v)),

©)

Y

Client Program Policy
(general case)

protocol JobsProto (input, client pid, compute) implements StackProtocol
list loading = input // unfinished values to be pushed
map processing = empty // values held by worker threads

onPush (1, x)

case x = (Out v): // ¢, 2 ¢,
assert processingl[i] = (Out wv)
V. 3 v’. processing[i] = (In v') A v = compute (v’)
processing.remove (1)
case x = (In v): // ¢, 2 ¢,
assert 3 1’. loading = v :: 1’
loading := tail (loading)

onPop (i, x)
if 1 = client pid then
case x = (Out v): assert True // ¢, =2 C;
case x = (In v): loading := v :: loading // ¢, =2 ¢,
else // ¢, 2 ¢,
assert i ¢ dom(processing)
processing.add (i, x)

Summary

* Framework: a minimal TCB, semantically derived,
proved in Coq
 use built-in features of Cog when possible

* avoid baking in features
* derive permissions, PCM monitors, etc. as necessary

* Phantom monitors
* global policies are describes by pure (monadic) functions
* lightweight; straightforward erasure

 when we want to see how the policy evolves, we simply
run the function

What else?

* Harris-Michael lazy lock-free set algorithm
* Horizontal composition of monitors

* Coinductive Hoare doubles

* Ltac automation

Horizontal Composition

Client Protocol

{push, pop} {add, remove}

Stack Monitor

{read, write, cas} {read, write, cas}

Horizontal Composition

Top-level Protocol

What else?

* Harris-Michael lazy lock-free set algorithm
* Horizontal composition of monitors

* Logical rule for monitor allocation

e Coinductive Hoare doubles

* Ltac automation

Thanks!

