
Verification of Fine-Grained
Concurrent Programs

Christian J. Bell

Verification of Fine-Grained
Concurrent Programs

• Concurrent programs can be simple

– threads work independently of each other

• Concurrent programs can be complex

– use locks, semaphores, CAS, shared stacks, shared
queues, etc. to communicate

– threads follow some protocol

Verification of Fine-Grained
Concurrent Programs

• Easiest when we can reason about one thread
at a time: local reasoning

• Most powerful when we can reason about all
threads at once: global reasoning

Local Reasoning

• Example: Concurrent Separation Logic

• Advantage: modularity

• Disadvantage: cannot reason about many
kinds of concurrency

Global Reasoning

• Example: Rely-guarantee

• Disadvantage: not very modular

• Can reason about complex protocols between
threads

Examples

{x=v}

acquire(l)

x:= x + n

release(l)

acquire(l)

x:= x + m

release(l)

{x=v+m+n}

parallel increment

Examples

{x>=v}

do

 m:= x

while CAS(x,m,m+n)=0

{x>=v+n}

...

monotonically increasing shared variable

Finding a Balance

• Promising approach is to use a protocol to
govern the shared state between threads

– state machines

– linear logic

– “concurroids”

– concurrent abstract predicates

– ...

Research Questions

• Representing protocols?

Research Questions

• Representing protocols?

• Composition?

Research Questions

• Representing protocols?

• Composition?

• Encapsulation?

Our Approach

• Formalize our proofs and techniques in a
theorem prover from the start

– harness higher-order logic

– automate ugly technical details away

• easy to use in practice vs looking good on paper

Our Approach

• Formalize our proofs and techniques in a
theorem prover from the start
– harness higher-order logic

– automate ugly technical details away
• easy to use in practice vs looking good on paper

• We call our protocols “monitors”:
– they observe the actions of all threads

– detect “bad” actions

– and evolve in response to actions

End

Thanks!

