
Lower Bounds for Randomized Consensus
under a Weak Adversary

Hagit Attiya∗

Department of Computer
Science, Technion

Haifa, Israel
hagit@cs.technion.ac.il

Keren Censor∗†
Department of Computer

Science, Technion
Haifa, Israel

ckeren@cs.technion.ac.il

ABSTRACT
This paper studies the inherent trade-off between termina-
tion probability and total step complexity of randomized
consensus algorithms. It shows that for every integer k,
the probability that an f -resilient randomized consensus al-
gorithm of n processes does not terminate with agreement
within k(n − f) steps is at least 1

ck , for some constant c.
The lower bound holds for asynchronous systems, where

processes communicate either by message passing or through
shared memory, under a very weak adversary that deter-
mines the schedule in advance, without observing the algo-
rithm’s actions. This complements algorithms of Kapron
et al. [22], for message-passing systems, and of Aumann et
al. [6, 7], for shared-memory systems.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
programming ; F.2 [Theory of Computation]: Analysis of
Algorithms and Problem Complexity—Nonnumerical Algo-
rithms and Problems; G.3 [Mathematics of Computing]:
Probability and Statistics

General Terms
Algorithms, Theory

Keywords
distributed computing, shared memory, message passing,
lower bound, randomized algorithms, consensus

1. INTRODUCTION
At the heart of many coordination problems in distributed

systems lies the need to reach consensus among processes,

∗Supported in part by the Israel Science Foundation (grant
number 953/06).
†Supported in part by the Adams Fellowship Program of the
Israel Academy of Sciences and Humanities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’08, August 18–21, 2008, Toronto, Ontario, Canada.
Copyright 2008 ACM 978-1-59593-989-0/08/08 ...$5.00.

despite the possibility of process failures. A (binary) con-
sensus algorithm allows processes starting with input values
in {0, 1} to agree on the same output value (agreement). To
rule out trivial solutions, this common output must be one
of the inputs (validity), and every process must eventually
decide (termination). It is well-known that no determin-
istic algorithm can achieve consensus in an asynchronous
system, if one process may fail [19, 21, 26]. One success-
ful approach for circumventing this impossibility result is to
employ randomization, and relax the termination property
to hold with high probability. In typical randomized algo-
rithms for consensus, the probability of not terminating in
agreement decreases as the execution progresses, becoming
smaller as processes perform more steps.

This paper shows that this behavior is inherent, by prov-
ing lower bounds on the termination probability when the
step complexity is bounded. In order to make the lower
bounds as strong as possible, we assume a very weak adver-
sarial model, which fixes the complete schedule in advance,
without observing the steps of the algorithm. In particular,
the schedule is determined without knowing results of local
coin-flips, contents of messages sent, or memory locations
accessed.

We prove that for every integer k, the probability that an
f -resilient randomized consensus algorithm of n processes
does not terminate after k(n− f) steps is at least 1

ck , where
c is a constant if ⌈n

f
⌉ is a constant. The result holds for asyn-

chronous message-passing systems and asynchronous shared-
memory systems (using reads and writes), albeit with dif-
ferent constants. While the same general proof structure
applies in both cases, it is accomplished differently in the
message-passing and the shared-memory models; the latter
case is further complicated due to the adversary’s weakness.

For the message-passing model, our proof extends and
improves on a result of Chor, Merritt and Shmoys [16] for
synchronous message-passing systems. They show that the
probability that a randomized consensus algorithm does not
terminate after k rounds (and k(n − f) steps) is at least

1
c·kk . (A similar result is attributed to Karlin and Yao [23].)
The proof rests on considering a specific chain of indistin-
guishable executions and showing a correlation between the
termination probability and the length of this chain,1 which
in turn depends on the number of rounds. The chain is
taken from the proof of the rounds lower bound for (deter-
ministic) consensus [17, 18] (cf. [5, Chapter 5]); since the
chain is determined in advance, i.e., regardless of the algo-
rithm’s transitions, the lower bound is derived with a weak

1The length of the chain is the number of executions in it.

adversary. (An overview of the proof strategy appears in
Section 2.2.)

Our first contribution, for the message-passing model,
improves on this lower bound by exploiting the fact that
asynchrony allows to construct “shorter” indistinguishabil-
ity chains. This shows that the probability that an asyn-
chronous randomized consensus algorithm does not termi-
nate after k(n−f) steps is at least 1

ck , where c is a constant
if ⌈n

f
⌉ is a constant. (The lower bound for asynchronous

message-passing systems appears in Section 3.)
Substituting specific values in our lower bound implies

that any randomized consensus algorithm has probability
at least 1

polylog(n)
for not terminating within log log n (asyn-

chronous) rounds, and probability at least 1
poly(n)

for not ter-

minating within log n (asynchronous) rounds. These lower
bounds are tight due to a recent consensus algorithm of
Kapron et al. [22], which terminates in agreement within
a polylogarithmic number of (asynchronous) rounds with
probability 1 − 1

polylog(n)
.

There is an extensive literature on randomized agreement
algorithms for message passing systems. Recent papers in
this area provide algorithms for agreement in the presence
of Byzantine processes in full information models, where the
adversary is computationally unbounded. See [10,20,24] for
a more detailed description and references.

In principle, the lower bound scheme can be extended
to the shared-memory model by focusing on layered execu-
tions [4,27]. However, our severely handicapped adversarial
model poses a couple of technical challenges. First, while
in the message-passing model each step can be assumed to
send messages to all processes, in a shared-memory event,
a process chooses which register to access and whether to
read from it or write to it. A very weak adversary, as we use
for our lower bounds, must find a way to make its schedul-
ing decisions in advance without even knowing what type of
step the process will take. Second, the proof scheme requires
schedules to be determined independently of the coin-flips.
The latter difficulty cannot be alleviated even by assuming a
stronger adaptive adversary that may schedule the processes
according to the execution so far.

We manage to extend the lower bound scheme to the
shared-memory model, by first simplifying the model, as-
suming that processes either write to single-writer registers
or perform a cheap snapshot operation, reading all the reg-
isters at once. By further assuming that an algorithm reg-
ularly alternates between writes and cheap snapshots, we
make processes’ steps predictable, allowing a weak adversary
to construct indistinguishability chains. The lower bound
is extended to hold for multi-writer registers by reduction;
while ordinary simulations of multi-writer registers using
single-writer registers have O(n) overhead (which would nul-
lify the lower bound), cheap snapshots admit a simulation
with constant overhead. (The results for the shared-memory
model appear in Section 4.)

The lower bounds we obtain for the shared-memory model
are the same as for the message-passing model, though with
different constants. (More detailed calculations and com-
parison with related work appear in Section 6.)

To the best of our knowledge, there are no other lower
bounds on randomized consensus in shared-memory systems
under a weak adversary. There are several algorithms as-
suming a value-oblivious adversary, which may determine

the schedule adaptively based on the functional description
of past and pending operations, but cannot observe any
value of any register nor results of local coin-flips. This
model is clearly stronger than the adversary we employ, and
hence our lower bounds apply to it as well.

The algorithms differ by the type of shared registers
they use [6–8, 12]. For single-writer multi-reader registers,
Aumann and Bender [7] give a consensus algorithm that
has probability of at most 1

nc of not terminating within

O(n log2 n) steps. For multi-writer multi-reader registers,
Aumann [6] shows a consensus algorithm in which the prob-
ability of not terminating in k iterations (and O(k ·n) steps)
is at most (3/4)k.

Chandra [12] gives an algorithm with O(log2 n) individual
step complexity, assuming an intermediate adversary that
cannot see the outcome of a coin-flip until it is read by
some process. Aumann and Kapah-Levy [8] give an algo-
rithm with O(n log n exp(2

√
polylogn)) total step complex-

ity, using single-writer single-reader registers, and assuming
a value-oblivious adversary.

An algorithm with O(n log log n) total step complexity
against a weak adversary was given by Cheung [14], which
considers a model with a stronger assumption that a write
operation occurs atomically after a local coin-flip. It im-
proves upon earlier work by Chor, Israeli, and Li [15], who
provide an algorithm with O(n2) total step complexity using
a slightly different atomicity assumption.

Other related work on randomized consensus assumes
strong adversaries, which adapt to the computation,
scheduling processes dynamically, after observing the results
of their local coin-flips. A lot of study was invested, yielding
numerous algorithms (see the survey in [2]). Lower bounds
were given on the expected number of coin-flips [1], on the
expected number of rounds in synchronous systems [9], and
a tight Θ(n2) bound on the total step complexity in asyn-
chronous systems [4].

2. THE LOWER BOUND STRATEGY

2.1 The Model in Brief
We consider a standard model of an asynchronous system

with a set of n processes P = {p1, . . . , pn}. Each step of
a process consists of some local computation, including an
arbitrary number of coin-flips (possibly biased), and a com-
munication operation, which depends on the communication
model.

In a message passing system processes communicate by
sending and receiving messages: the communication opera-
tion of a process is sending messages to some subset of the
processes, and receiving messages from some subset of them.
For the lower bounds, we assume that a process sends a mes-
sage to all the processes in each step. In a shared memory
system processes communicate by reading and writing to
shared registers; each step of a process is either a read or a
write to some register.

The local coin-flips of a process pi are modelled as a string
of (possibly biased) coin-flips ci, which is unavailable to any
other process. All of the randomization of the algorithm is
encompassed within n coin-flip strings c = (c1, · · · , cn).

Additional non-determinism is introduced by the schedul-
ing choices made by an adversary. We assume a weak ad-
versary that is non adaptive and decides on the scheduling
in advance. The adversary does not observe the results of

any local coins a process flips, nor any operation a process
performs.

A schedule σ, together with an initial configuration I and
n coin-flip strings c = (c1, · · · , cn), determine an execution
α(σ, c, I).

2.2 The Lower Bound Approach
Let A be an f -resilient asynchronous randomized consen-

sus algorithm. Let qk denote the maximum probability, over
all weak adversaries and over all initial configurations, that
A does not terminate after a total of k(n−f) steps are taken.

In order to prove a lower bound on qk, we consider a
restricted set of schedules that proceed in layers [4, 27]. An
f-layer is a sequence of at least n − f distinct process id’s.
When executing a layer L, each process p ∈ L takes a step,
in the order specified by the layer.

We will consider only schedules that are f-schedules. A
schedule σ = L1, L2, · · · , Lk is an f -schedule, if it is a finite
sequence of f -layers. A process pi is non-faulty in layer r if
it appears in the layer. A process pi crashes in layer r if it
does not take a step in any layer ℓ ≥ r. A process is faulty
in layer r but does not crash in layer r, if it appears in any
of the following layers.

Definition 1. For a schedule σ, let crash(σ, p, r) be the
schedule that is the same as σ, except that p crashes in layer
r, i.e., does not take a step in any layer ℓ ≥ r. For a set P
of processes, crash(σ, P, r) is defined similarly.

As mentioned in the introduction, our proof will make
use of indistinguishable executions. Intuitively, two finite
executions α and α′ are indistinguishable to a process p if
it cannot tell the difference between them. This implies
that p terminates in α with a decision value v if and only
if it terminates in α′ with a decision value v. The formal
definition of indistinguishability is model-dependent and will
be given separately in Sections 3 and 4, but we proceed
formally to define indistinguishability chains, as follows.

Given two executions α1 and α2 with the same n coin-flip

strings c = (c1, · · · , cn), we denote α1
pi∼ α2 if process pi

does not distinguish between α1 and α2, and does not crash
in them. In this case, pi decides on the same value in α1 and
in α2. We denote α1 ≈m α2 if there is a chain of executions
β1, · · · , βm+1 such that

α1 = β1

pi1∼ β2 · · ·
pim∼ βm+1 = α2 .

We call such a chain an indistinguishability chain. Clearly,
if α ≈m β ≈m′ γ then α ≈m+m′ γ, for every pair of integers
m and m′.

For every pair of consecutive executions in the chain, there
is a process that decides on the same value in both execu-
tions. By the agreement condition, the decision in α1 and
in α2 must be the same. This is the main idea of the lower
bound proof, which is captured in Theorem 1: we take two
executions that must have different agreement values and
construct an indistinguishability chain between them, which
bounds the probability of terminating in terms of the length
of the chain. Two such executions exist by the validity con-
dition, and we formalize them as follows.

We partition the processes into S = max{3, ⌈n
f
⌉} sets

P1, . . . , PS , each with at most f processes. For example,
if n > 2f , Pi = {p(i−1)f+1, · · · , pi·f} for every i, 1 ≤ i < S,
and PS = {p(S−1)f+1, · · · , pn}.

Consider initial configurations C0, . . . , CS , such that in C0

all the inputs are 0, and in Ci, 1 ≤ i ≤ S, all processes in
P1, . . . , Pi have input 1 and all other processes have input
0; in particular, in CS all processes have input 1.

Let σfull be the full synchronous schedule with k layers,
in which no process fails. The following theorem is the main
tool for bounding qk as a function of m, the length of an in-
distinguishability chain. This theorem distills the technique
we borrow from [16].

Theorem 1. Assume there is an integer m such that for
any sequences of coins c, α(σfull, c, C0) ≈m α(σfull, c, CS).
Then the probability that A does not terminate after k(n−f)
steps is qk ≥ 1

m+1
.

Proof. Assume, by way of contradiction, that qk(m +
1) < 1. Since α(σfull, c, C0) ≈m α(σfull, c, CS), there is a
chain of m + 1 executions,

α(σfull, c, C0) = β1

pi1∼ β2 · · ·
pim∼ βm+1 = α(σfull, c, CS) .

The probability that A does not terminate in at least one of
these m+1 executions is at most qk(m+1). By assumption,
qk(m + 1) < 1, and hence, the set B of sequences of coins c
such that A terminates in all m+1 executions has probabil-
ity Pr[c ∈ B] > 0. Since α(σfull, c, C0) ≈m α(σfull, c, Cs),
the agreement condition implies that the decision in all m+1
executions is the same. However, the validity condition im-
plies that the decision in α(σfull, c, C0) is 0, and the decision
in α(σfull, c, Cs) is 1, which is a contradiction.

A slight extension of the above theorem allows us to han-
dle Monte-Carlo algorithms, where processes may terminate
without agreement with some small probability ǫ. This ex-
tension is presented in Section 5.

The statement of Theorem 1 indicates that our goal
is to show the existence of an integer m such that
α(σfull, c, C0) ≈m α(σfull, c, CS); clearly, the smaller m,
the higher the lower bound. The following lemma comes
in handy when we construct these chains.

Lemma 2. Assume there is an integer m such that for
every schedule σ, initial configuration I, sequence of coins
c and set Pi, α(σ, c, I) ≈m α(crash(σ, Pi, 1), c, I). Then
α(σfull, c, C0) ≈S(2m+1) α(σfull, c, CS), for all sequences of
coins c.

Proof. Consider the schedules σ0 = σfull, and σi =
crash(σ0, Pi, 1) for every i, 1 ≤ i ≤ S, and the corresponding
executions αi,j = α(σi, c, Cj) for every i and j, 1 ≤ i ≤ S
and 0 ≤ j ≤ S (the execution αi,j starts from the initial
configuration Cj with a schedule which is almost full, ex-
cept that processes in Pi never take any steps).

By assumption, α0,j ≈m αi,j for every i, 1 ≤ i ≤ S, and
every j, 0 ≤ j ≤ S. Since processes in Pi are crashed in

σi for every i, 1 ≤ i ≤ S, we have that αi,i−1
p∼ αi,i, for

every process p ∈ P \ Pi. This implies that αi,i−1 ≈1 αi,i,
for every i, 1 ≤ i ≤ S. Thus,

α(σfull, c, C0) = α0,0 ≈m α1,0 ≈1 α1,1 ≈m α0,1

≈m α2,1 ≈1 α2,2 · · ·αS,S ≈m α0,S = α(σfull, c, CS) .

Therefore, α(σfull, c, C0) ≈S(2m+1) α(σfull, c, CS).

3. TRADEOFF FOR THE MESSAGE-
PASSING MODEL

In this section we derive the lower bound for the message-
passing model. Notice that in the message-passing model,
since a step consists of both sending and receiving messages,
a layer L is not only a set of processes, but also specifies for
each process p ∈ L the set of processes it receives a message
from (recall that we assumed that it sends messages to all
processes). The reception of messages in a certain layer is
done after all messages of that layer are sent, and therefore
the order of processes in a layer is insignificant.

Formally, an f -layer is a sequence pi1 , . . . , pim of distinct
process id’s, followed by a sequence Mi1 , . . . , Mim of sub-
sets of process id’s, where Mij is the subset of process id’s
appearing in the layer from which pij receives a message in
this layer.

Recall that the processes are partitioned into S =
max{3, ⌈n

f
⌉} sets P1, . . . , PS , each with at most f processes.

We manipulate schedules in order to delay messages, as fol-
lows.

Definition 2. Let σ be a schedule. Let delay(σ, Pi, Pj , r)
be the schedule that is the same as σ, except that the mes-
sages sent by processes in Pi in layer r are received by pro-
cesses in Pj only after the k-th layer (the messages are ef-
fectively “erased” from the execution). More formally, if Mp

is the subset of processes that a process p receives a message
from in layer r in σ, then for every process p ∈ Pj the sub-
set of processes that it receives a message from in layer r in
delay(σ, Pi, Pj , r) is Mp \ Pi.

We define indistinguishability of executions in the
message-passing model as follows: two executions are in-
distinguishable to process p if it has the same local states
throughout both executions. More specifically, in both exe-
cutions p sends and receives the same messages, in the same
order.

Clearly, at the end of layer r, any process not in Pj does
not distinguish between the execution so far of a schedule σ
and an execution so far of delay(σ, Pi, Pj , r). Therefore we
have:

Lemma 3. Let σ be a schedule with k layers. For any
sequences of coins c, and initial configuration I, at the end
of layer r only processes in Pj distinguish between α(σ, c, I)
and α(delay(σ, Pi, Pj , r), c, I).

Recall that S = max{3, ⌈n
f
⌉} is the number of sets Pi.

We define the following recursive function for every r and k,
1 ≤ r ≤ k:

mr,k =



S if r = k
(2(S − 1) + 1)mr+1,k + S if 1 ≤ r < k

A simple induction shows that mr,k ≤ (2S)k−r+1.
The following lemma proves that m1,k is the integer re-

quired in Lemma 2 for the message-passing model, by induc-
tively constructing indistinguishability chains between exe-
cutions where a set of processes may crash from a certain
layer r.

Lemma 4. Let σ be a schedule with k layers such that
for some r, 1 ≤ r ≤ k, no process is faulty in layers
r, r + 1, . . . , k. Then α(σ, c, I) ≈mr,k

α(crash(σ, Pi, r), c, I)
for every sequences of coins c, every initial configuration I,
and every i ∈ {1, . . . , S}.

Proof. Let σ = σ0. Throughout the proof we denote
αi = α(σi, c, I) for any schedule σi. The proof is by back-
wards induction on r.

Base case: r = k. We construct the following schedules.
Let σ1 be the same as σ0 except that the messages sent
by processes in Pi in the k-th layer are received by pro-
cesses in P(i+1) mod S only after the k-th layer, i.e., σ1 =

delay(σ, Pi, P(i+1) mod S , k). By Lemma 3 we have α0
p∼ α1,

for every process p ∈ P \ P(i+1) mod S . We continue induc-
tively to define schedules as above in the following way,
for every h, 0 ≤ h ≤ S − 1: σh+1 is the same as σh ex-
cept that the messages sent by processes in Pi in the k-th
layer are received by processes in P(i+h+1) mod S only after
the k-th layer, i.e., σh+1 = delay(σh, Pi, P(i+h+1) mod S , k).

By Lemma 3 we have αh
p∼ αh+1, for every process p ∈

P \ P(i+h+1) mod S .
Since in σS no messages sent by processes in Pi in layer k

are ever received, then effectively processes in Pi are crashed
in this layer:

αS = α(crash(σ, Pi, k), c, I),

which implies that

α(σ, c, I) = α0 ≈1 α1 ≈1 · · · ≈1 αS

= α(crash(σ, Pi, k), c, I) .

Therefore, α(σ, c, I) ≈S α(crash(σ, Pi, k), c, I).
Induction step: In general, we do the same as in the base

case, except that we crash Pj in layer r + 1 before “erasing”
messages from Pi to Pj in layer r, and afterwards revive Pj

in layer r + 1.
Formally, we assume that the lemma holds for layer r +1,

1 ≤ r < k, and prove that it holds for layer r. Let σ1 =
crash(σ0, P(i+1) mod S , r + 1); by the induction hypothesis,
α0 ≈mr+1,k

α1.
Let σ2 be the same as σ1 except that the messages re-

ceived by processes in P(i+1) mod S from processes in Pi in
layer r are received only after the k-th layer, i.e., σ2 =
delay(σ1, Pi, P(i+1) mod S , r). By Lemma 3, at the end of
layer r only processes in P(i+1) mod S distinguish between
the executions, but since they are crashed in layer r + 1

we have α1
p∼ α2, for every process p ∈ P \ P(i+1) mod S ,

implying that α1 ≈1 α2.
Let σ3 be the same as σ2, except that the processes in

P(i+1) mod S do not crash in layer r + 1. This implies that

σ2 = crash(σ3, P(i+1) mod S , r + 1).

By the induction hypothesis, we have α2 ≈mr+1,k
α3.

We continue inductively to define schedules as above in
the following way for every h, 0 ≤ h ≤ S − 1. We de-
fine σ3h+1 = crash(σ3h, P(i+h+1) mod S , r + 1), and there-
fore by the induction hypothesis α3h ≈mr+1,k

α3h+1. Let
σ3h+2 be the same as σ3h+1 except that the messages re-
ceived by processes in P(i+h+1) mod S from processes in Pi in
layer r are received only after the k-th layer, i.e., σ3h+2 =
delay(σ3h+1, Pi, P(i+h+1) mod S , r). By Lemma 3, at the end
of layer r only processes in P(i+h+1) mod S distinguish be-
tween the executions, but since they are crashed in layer

r + 1 we have α3h+1
p∼ α3h+2, for every process p ∈ P \

P(i+h+1) mod S , implying that α3h+1 ≈1 α3h+2.
Finally, we define σ3h+3 to be the same as σ3h+2, except

that processes in P(i+h+1) mod S do not crash. This implies

that σ3h+2 = crash(σ3h+3, P(i+h+1) mod S , r + 1). By the
induction hypothesis we have α3h+2 ≈mr+1,k

α3h+3.
The construction implies that in σ3(S−1)+2 the processes

in Pi are effectively crashed from layer r, therefore

α(σ3(S−1)+2, c, I) = α(crash(σ0, Pi, r), c, I),

and hence

α0 ≈mr+1,k
α1 ≈1 α2 ≈mr+1,k

α3 ≈mr+1,k
· · ·

≈mr+1,k
α3(S−1)+1 ≈1 α3(S−1)+2 .

Since mr,k = (2(S − 1) + 1)mr+1,k + S, this implies that
α0 ≈mr,k

α(crash(σ0, Pi, r), c, I).

At least n − f processes take a step in every layer, and
hence every execution in the construction contains at least
k(n − f) steps.

Lemmas 2 and 4 imply that for any sequence of coins
C, α(σfull, c, C0) ≈S(2m1,k+1) α(σfull, c, CS). Since m1,k ≤
(2S)k, substituting S(2m1,k +1) in the parameter m of The-
orem 1 yields that qk ≥ 1

(2S)k+1+S+1
.

Recall that S = max{3, ⌈n
f
⌉}. Taking ⌈n

f
⌉ to be a con-

stant, we obtain the main result of this section:

Theorem 5. Let A be a randomized consensus algorithm
in the asynchronous message passing model. There is a weak
adversary and an initial configuration, such that the proba-
bility that A does not terminate after k(n − f) steps is at
least 1

ck , where c is a constant if ⌈n
f
⌉ is a constant.

4. TRADEOFF FOR THE SHARED-
MEMORY MODEL

We now derive a similar lower bound for two shared-
memory models, where processes communicate through
shared read/write registers. The first model consists of
single-writer registers and a snapshot operation that costs
one step, described formally in Subsection 4.1. In Subsec-
tion 4.2 we consider multi-writer registers.

Notice that in the shared-memory model, the definition of
indistinguishability is slightly different than in the message-
passing model – for two executions α and α′ to be indistin-
guishable to a process p, we not only require p to have the
same local states throughout both, but also that the values
of the shared registers are the same throughout both (oth-
erwise, for example, having p perform a read operation after
α and α′ might result in different executions). This implies
that in both executions p performs the same shared-memory
operations, including reading the same values from registers.

4.1 Single-Writer Cheap-Snapshot
We first consider a shared-memory model where processes

communicate through single-writer registers. The lower
bound is proved under a simplifying assumption that each
read step accesses the registers of all processes. We call this
the single-writer cheap-snapshot model, since each register
is written to by one specific process, and all registers are
read by any process in a single snapshot. This snapshot is
charged one step, hence the term “cheap”.

As in a standard shared-memory model, a step of a process
consists of accessing the shared memory, and performing lo-
cal computations. We further assume that in the algorithm,
the steps of every process alternate between a write and a
cheap-snapshot, starting with a write. Any algorithm can

be transformed to satisfy this requirement by having a pro-
cess rewrite the same value to its register if it is forced to
take a write operation, or read all of the registers and ignore
some of their values if it is forced to take a cheap-snapshot
operation. This only doubles the step complexity.

Recall that the processes are partitioned into S =
max{3, ⌈n

f
⌉} sets P1, . . . , PS , each with at most f processes.

We consider a restricted set of layered schedules.

Definition 3. A schedule σ is regular if for every layer
L and every i, 1 ≤ i ≤ S, either all processes p ∈ Pi take a
step in L consecutively, or none of the processes p ∈ Pi take
a step in L. We denote by π the permutation of the sets Pi

that take steps in L, i.e., if processes p ∈ Pi take a step in
L, then π−1(i) is their index in the layer. We denote by |π|
the number of sets Pi that take steps in the layer.

Regular schedules are useful in our proofs since in every
layer, all the processes in some set Pi perform the same
operation, as argued in the next lemma.

Lemma 6. Let σ be a regular schedule with k layers. Then
in every layer L in σ, for every i, 1 ≤ i ≤ S, either all
process p ∈ Pi do not take a step in L, or all processes
p ∈ Pi perform a write operation in L, or all processes p ∈ Pi

perform a cheap-snapshot operation in L.

Proof. The proof is by induction on the layer number r.
Base case: Let r = 1, i.e., L is the first layer of σ. Since

σ is regular, either all process p ∈ Pi take a step in L, or
none of the processes p ∈ Pi take a step in L. If all take a
step then by our assumption on the algorithm, it is a write
operation. Otherwise, none take a step, which proves the
base case.

Induction step: Assume the lemma holds for layer ℓ, 1 ≤
ℓ ≤ r. We prove the lemma for layer r+1. By the induction
hypothesis, in every layer ℓ, 1 ≤ ℓ ≤ r, either all processes
p ∈ Pi perform a cheap-snapshot operation, or all perform a
write operation, or none perform an operation. If none pre-
form any operation in any layer ℓ ≤ r, then at the beginning
of layer r + 1 the pending operation of all processes p ∈ Pi

is a write operation by our assumption on the algorithm.
Otherwise, let ℓ be the maximal layer in which all processes
p ∈ Pi took a step. If they are cheap-snapshot operations
then at the beginning of layer r+1 the pending operation of
all processes p ∈ Pi is a write operation by our assumption
on the algorithm. If they are write operations then at the
beginning of layer r+1 the pending operation of all processes
p ∈ Pi is a cheap-snapshot operation by our assumption on
the algorithm. In any case, at the beginning of layer r + 1
either all processes p ∈ Pi have a pending cheap-snapshot
operation, or all have a pending write operation. Since σ is
regular, either none of the processes p ∈ Pi take a step in
layer r + 1, or all take a step in layer r + 1, in which case it
would either be a cheap-snapshot operation for all processes,
or a write operation for all processes.

In the proof, we apply certain manipulations to regular
schedules, allowing us to delay and crash sets of processes,
as follows.

Definition 4. Let σ be a schedule such that every p ∈ Pi

is non-faulty in layer r, and such that Pi is not the last set of
processes in the layer. Let swap(σ, Pi, r) be the schedule that
is the same as σ, except that the steps of processes in Pi are

swapped with steps of the next set of processes in that layer.
Formally, if π is the permutation of layer r in σ and π′ is the
permutation of layer r in swap(σ, Pi, r), and if j = π−1(i),
then we have π′(j) = π(j + 1) and π′(j + 1) = π(j).

Inductively, we define

swapj(σ, Pi, r) = swap(swapj−1(σ, Pi, r), Pi, r),

that is, Pi is swapped j times and moved j sets later in the
layer.

Definition 5. Let σ be a schedule. Let delay(σ, Pi, r) be
the schedule that is the same as σ, except that the steps of Pi

starting from layer r are delayed by one layer. Thus, there is
no step of p ∈ Pi in layer r, the step of p ∈ Pi in layer r +1
is the step that was in layer r, and so on. The permutations
of the layers ℓ ≥ r + 1 do not change.

Delaying a set Pi from layer r can be seen as delaying Pi

from layer r + 1, swapping Pi in round r until it reaches the
end of the layer, accounting for Pi as the first set in layer
r +1 instead of the last set in layer r, and then swapping Pi

in round r + 1 until it reaches its original place in the layer.
Although accounting for Pi as the first set in layer r + 1

instead of the last set in layer r does not change the order of
steps taken, it is technically a different schedule (recall that
a schedule is defined as a sequence of layers, which in this
case are different in layers r and r+1). Therefore we define:

Definition 6. Let σ be a schedule where the last set of
processes in layer r is Pi, and this set does not appear in
layer r + 1. Let rollover(σ, Pi, r) be the schedule that is the
same as σ, except that Pi is the first set in layer r+1 instead
of the last set in layer r.

Effectively, such two schedules σ and rollover(σ, Pi, r) have
the same order of steps, which implies that the executions
of these schedules is the same:

α(σ, c, I) = α(rollover(σ, Pi, r), c, I).

Definitions 4, 5, and 6 imply:

Corollary 7. Let σ be a regular schedule with k layers.
For every r, 1 ≤ r ≤ k, and πr the permutation of layer r
in σ,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(

delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Figure 1 shows an example of the schedules we go through
when delaying a set Pi in layer r of a schedule σ.

Recall that crash(σ, Pi, r) is the schedule that is the same
as σ, except that processes in Pi crash in layer r. Crashing
a set Pi in layer r can be seen as delaying it from layer r,
and then crashing it from layer r + 1. Definitions 1 and 5
imply that:

Corollary 8. For every regular schedule σ,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

An important property of regular schedules is that swap-
ping, delaying, or crashing a set of processes Pi yields a
regular schedule as well, because the sets are manipulated
together.

Lemma 9. Let σ be a regular schedule with k layers. Then
for every i, 1 ≤ i ≤ S, and every r, 1 ≤ r ≤ k, the
schedules swap(σ, Pi, r), delay(σ, Pi, r), rollover(σ, Pi, r),
and crash(σ, Pi, r) are regular.

Proof. Every layer ℓ 6= r in swap(σ, Pi, r) is the same
as in σ and therefore satisfies the requirement of a regular
schedule. In layer r, all processes that took steps in σ also
take steps in swap(σ, Pi, r), and each set remains consecu-
tive. Therefore, swap(σ, Pi, r) is regular. It is also easy to
see that rollover(σ, Pi, r) is regular.

The proof for delay(σ, Pi, r) and crash(σ, Pi, r) is by back-
wards induction on the layer number r.

Base case: For r = k, delaying a set Pi in the last layer,
is the same as crashing Pi. Denote σ′ = delay(σ, Pi, k) =
crash(σ, Pi, k). Every layer ℓ < k in σ′ is the same as in
σ, and the last layer k is the same in σ′ except that the
processes in Pi do not take a step. Hence, σ′ is also regular.

Induction step: We assume the lemma holds for every
layer ℓ, r + 1 ≤ ℓ ≤ k, and prove it for layer r. By Corol-
lary 7, the induction hypothesis and since swapping results
in a regular schedule, delay(σ, Pi, r) is regular. By Corol-
lary 8, the induction hypothesis and since delaying results
in a regular schedule, crash(σ, Pi, r) is regular.

We next construct an indistinguishability chain of sched-
ules between any regular schedule and a schedule in which
some set of processes is delayed or crashed. The construc-
tion relies on Corollary 7 and Corollary 8 to delay or crash
a set of processes through a sequence of swaps. The elemen-
tary step in this construction, where a set is swapped with
the following one, is provided by the next lemma.

Lemma 10. Let σ be a regular schedule with k layers. For
any sequences of coins c, and initial configuration I, if Pi is
not the last set of processes in layer r, 1 ≤ r ≤ k, then there
is a set Pj such that at the end of layer r only processes in
Pj distinguish between α(σ, c, I) and α(swap(σ, Pi, r), c, I).

Proof. Consider swap(σ, Pi, r) and let π be the permu-
tation corresponding to layer r. Since Pi is not the last set in
the layer, we have π−1(i) 6= |π|. Let i′ = π(π−1(i) + 1), i.e.,
Pi is swapped with Pi′ . By Lemma 6 either all the processes
in Pi perform a cheap-snapshot operation or all processes in
Pi perform a write operation. The same applies for Pi′ .

If both types of operations are cheap-snapshot operations
or both types are write operations (necessarily to different

registers), then α(σ, c, I)
p∼ α(swap(σ, Pi, r), c, I) for every

process p in the layer.
If one type of operations is cheap-snapshot and the other

is writing, then only the processes in the set performing
cheap-snapshot observe a difference. Denote this set by Pj

(where j is either i or i′).

Notice that the set Pj (the value of the index j) depends
only on the types of operations performed, i.e, only on σ, and
not on the sequences of coins c or the initial configuration
I. This is necessary for claiming that the adversary is non-
adaptive.

σ : · · · Pi . . .
| {z }

layer r

. Pi . . .
| {z }

layer r + 1

· · ·

delay(σ, Pi, r + 1) : · · · Pi . . .
| {z }

layer r

.
| {z }

layer r + 1

· · ·

swap(delay(σ, Pi, r + 1), Pi, r) : · · · Pi
| {z }

layer r

.
| {z }

layer r + 1

· · ·

rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r) : · · ·
| {z }

layer r

Pi
| {z }

layer r + 1

· · ·

swap(swap(rollover(swap(delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1), Pi, r + 1) : · · ·
| {z }

layer r

. Pi . . .
| {z }

layer r + 1

· · ·

= delay(σ, Pi, r) : · · ·
| {z }

layer r

. Pi . . .
| {z }

layer r + 1

· · ·

Figure 1: An example showing how swap operators are applied to delay a set of processes Pi; assume Pi is
the penultimate set in layer r and the third set in layer r + 1. Note that the third transition does not modify
the execution, and only accounts the steps of Pi to layer r + 1 instead of layer r; the last transition just notes
that we have obtained delay(σ, Pi, r).

For every r and k, 1 ≤ r ≤ k, we define:

sr,k =



1 if r = k
2 · cr+1,k + 1 if 1 ≤ r < k

dr,k =



S if r = k
dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k

cr,k =



S if r = k
dr,k + cr+1,k if 1 ≤ r < k

where S = max{3, ⌈n
f
⌉} is the number of sets Pi. These

recursive functions will be used for bounding the lengths of
the indistinguishability chains in our construction.

The next proposition shows a bound on these functions,
and a complete proof appears in the appendix.

Proposition 11. cr,k ≤ (2S + 4)k−r+1.

The main technical result of this section is the following
lemma, which will be used to show an indistinguishability
chain between the executions that result from schedules σ
and crash(σ, Pi, 1), in order to apply Lemma 2. Additional
claims, regarding swap and delay, are proved in order to
carry through with the proof.

Lemma 12. Let σ be a regular schedule with k layers such
that no process is faulty at any layer ℓ ≥ r, for some r,
1 ≤ r ≤ k. For any sequences of coins c, and initial con-
figuration I, and for every i, 1 ≤ i ≤ S, the following all
hold:

α(σ, c, I) ≈sr,k
α(swap(σ, Pi, r), c, I),

α(σ, c, I) ≈dr,k
α(delay(σ, Pi, r), c, I),

α(σ, c, I) ≈cr,k
α(crash(σ, Pi, r), c, I).

Proof. Let σ0 = σ. Throughout the proof, we denote
αi = α(σi, c, I) for every schedule σi, and α′

i = α(σ′
i, c, I)

for every schedule σ′
i.

The proof is by backwards induction on r.
Base case: r = k. Consider swap(σ, Pi, k) where Pi is

not the last set in the layer (otherwise swapping is unde-
fined). By Lemma 10 there is a set Pj , which does not de-

pend on c or I, such that α(σ, c, I)
p∼ α(swap(σ, Pi, r), c, I),

for every process p 6∈ Pj . Therefore, α(σ, c, I) ≈sk,k

α(swap(σ, Pi, k), c, I).
Delaying Pi in the last layer is equivalent to failing it,

therefore delay(σ, Pi, k) = crash(σ, Pi, k). Denote this
schedule by σ′. We crash Pi by swapping it until it reaches
the end of the layer and then removing it. In more detail,
let π be the permutation of the last layer of σ, and define:

σ′′ = swap|π|−π−1(i)(σ, Pi, k).

The proof of the base case for swap(σ, Pi, k) implies that
there is a chain of length sk,k ·(|πr|−π−1

r (i)) ≤ (S−1)·sk,k =
S − 1 between the executions, i.e., α0 ≈S−1 α(σ′′, c, I).

Clearly, α(σ′′, c, I)
p∼ α(σ′, c, I), for every process p 6∈ Pi,

and therefore, α(σ, c, I) ≈dk,k
α(delay(σ, Pi, r), c, I) and

α(σ, c, I) ≈ck,k
α(crash(σ, Pi, r), c, I).

Induction step: Assume the lemma holds for layer r+1 ≤
k. We prove that it holds for layer r.

We first deal with swapping; assume that Pi is not the last
set in the layer and consider swap(σ, Pi, r). By Lemma 10,
there is a set Pj , which does not depend on c or I, such that
at the end of layer r only process in Pj distinguish between
α(σ, c, I) and α(swap(σ, Pi, r), c, I). We define σ1 to be the
same as σ except that processes in Pj are crashed in layer r+
1, i.e., σ1 = crash(σ, Pj , r+1). By the induction hypothesis,
α0 ≈cr+1,k

α1. Let σ2 be the same as σ1 except that Pi

and Pj are swapped in layer r, i.e., σ2 = swap(σ1, Pi, r).
Since only processes in Pj observe the swapping, but are all

crashed in the next layer, we have that α1
p∼ α2 for every

process p 6∈ Pj . Finally, let σ3 be the same as σ2, except
that processes in Pj are not crashed in layer r +1, i.e., σ2 =

crash(σ3, Pj , r+1). By the induction hypothesis, α2 ≈cr+1,k

α3. Notice that σ3 = swap(σ, Pi, r), and 2cr+1,k + 1 = sr,k,
which implies that α(σ, c, I) ≈sr,k

α(swap(σ, Pi, r), c, I).
Next, we consider the case of delaying a process, i.e.,

delay(σ, Pi, r)). (Recall Figure 1.) By Corollary 7,

delay(σ, Pi, r) = swapπ−1
r+1(i)−1(rollover(swap|πr|−π−1

r (i)(

delay(σ, Pi, r + 1), Pi, r), Pi, r), Pi, r + 1).

Recall that applying rollover does not change the execution.
Hence, by the proof for swapping, the induction hypothesis,
and since

dr+1,k + sr,k · (|πr| − π−1
r (i)) + sr+1,k · (π−1

r+1(i) − 1)

≤ dr+1,k + S · sr,k + S · sr+1,k = dr,k

it follows that α(σ, c, I) ≈dr,k
α(delay(σ, Pi, r), c, I).

Finally, we consider the case of crashing a process, i.e.,
crash(σ, Pi, r). By Corollary 8,

crash(σ, Pi, r) = crash(delay(σ, Pi, r), Pi, r + 1).

By the proof for delaying, the induction hypothesis, and
since dr,k + cr+1,k = cr,k, it follows that

α(σ, c, I) ≈cr,k
α(crash(σ, Pi, r), c, I).

In every layer, at most n/S ≤ f processes do not take
a step. That is, at least n − f processes take a step in
every layer, and hence, every execution in the construction
contains at least k(n − f) steps.

Lemmas 2 and 12 imply that for every sequence of coins
c, α(σfull, c, C0) ≈S(2c1,k+1)+1 α(σfull, c, CS), Since c1,k ≤
(2S + 4)k, we have that S(2c1,k + 1) + 1 ≤ (2S + 4)k+1.
Substituting in Theorem 1 yields that qk ≥ 1

(2S+4)k+1+1
.

Since S can be taken to be a constant when ⌈n
f
⌉ is a constant,

we get the next theorem:

Theorem 13. Let A be a randomized consensus algorithm
in the asynchronous shared-memory model, with single-writer
registers and cheap snapshots. There is a weak adversary
and an initial configuration, such that the probability that A
does not terminate after k(n− f) steps is at least 1

ck , where
c is a constant if ⌈n

f
⌉ is a constant.

4.2 Multi-Writer Cheap-Snapshot
We derive the lower bound for multi-writer registers by

reduction to single-writer registers. We use Algorithm 28
from [5, Section 10.2.3] to simulate multi-writer registers
from single-writer registers. In this algorithm, performing a
high-level read or write operation (to a multi-writer regis-
ter) involves n low-level read operations (of all single-writer
registers) and possibly one low-level write operation (to the
process’ own single-writer register). Thus, the original sim-
ulation multiplies the total step complexity by O(n).

However, with cheap-snapshots, we can read all single-
writer registers in one step, yielding a simulation that only
doubles the total step complexity (since writing includes
a cheap-snapshot operation). Combining this with Theo-
rem 13 yields the following theorem.

Theorem 14. Let A be a randomized consensus algorithm
in the asynchronous shared-memory model, with single-writer
registers and cheap snapshots. There is a weak adversary

and an initial configuration, such that the probability that A
does not terminate after k(n− f) steps is at least 1

ck , where
c is a constant if ⌈n

f
⌉ is a constant.

5. MONTE-CARLO ALGORITHMS
Another way to overcome the impossibility of asynchronous

consensus, is to allow Monte-Carlo algorithms. This requires
us to relax the agreement property and allow the algorithm
to decide on conflicting values, with small probability. Let
ǫk be the probability that processes decide on conflicting val-
ues after k(n − f) steps. The following is a theorem similar
to Theorem 1, for bounding the probability of terminating
after k(n − f) steps.

Theorem 15. Assume there is an integer m such that for
any sequences of coins c, α(σfull, c, C0) ≈m α(σfull, c, CS).
Then qk ≥ 1−ǫk

m+1
.

Proof. Assume, by way of contradiction, that (m+1)qk

< 1 − ǫk. Consider the m + 1 executions in the sequence
implied by the fact that α(σfull, c, C0) ≈m α(σfull, c, CS).
The probability that A does not terminate in at least one of
these m+1 executions is at most (m+1)qk. By assumption,
qk(m + 1) < 1 − ǫk, and hence, the set B of sequences of
coins c such that A terminates in all m + 1 executions has
probability Pr[c ∈ B] > ǫk.

If the agreement property is satisfied in all m + 1 exe-
cutions, then by the validity condition, as in the proof of
Theorem 1, we get that the decision in α(σfull, c, C0) is the
same as the decision in α(σfull, c, Cs), which is a contra-
diction. Hence, for every c ∈ B, the agreement condition
does not hold in at least one of these executions. But this
means that A satisfies agreement with probability smaller
than 1 − ǫk, which is a contradiction.

For example, the algorithms for the message-passing model
given by Kapron et al. [22] are Monte-Carlo, i.e., have a small
probability for terminating without agreement. The bound
we obtain in Theorem 15 on the probability qk of not termi-
nating increases as the allowed probability ǫk of terminating
without agreement decreases, and coincides with Theorem 1
in case the agreement property must always be satisfied.

6. DISCUSSION
We presented lower bounds for the termination proba-

bility achievable by randomized consensus algorithms with
bounded running time, under a very weak adversary. Our
results are particulary relevant in light of the recent surge of
interest in providing Byzantine fault-tolerance in practical,
asynchronous distributed systems (e.g., [11, 25]). The ad-
versarial behavior in these applications is better captured by
non-adaptive adversaries as used in our lower bounds, rather
than the adaptive adversary, which can observe the results of
local coin-flips, used in most previous lower bounds [1, 4, 9].

For all models we have shown that the probability qk that
the algorithm fails to complete in k(n−f) steps is at least 1

ck ,
for a model-dependent value c which is a constant if ⌈n

f
⌉ is a

constant. Table 1 shows the bounds for specific values of k.
The previous lower bound for the synchronous message-

passing model [16] is qk ≥ 1
(ck)k , for some constant c. From

the perspective of the expected total step complexity, given
a non-termination probability δ, the lower bound of [16] im-

Model k = log log n k = log n k = log2 n

lower bound asynchronous MP, SWCS, MWCS 1
logΩ(1) n

1
nΩ(1)

1
nΩ(log n)

synchronous MP [16] 1
(log n)Ω(log log log n)

1
nΩ(log log n)

MP [22] 1
logO(1) n

1
nO(1)

upper bound SWMR [7] 1
nO(1)

MWMR [6] 1
nO(1)

Table 1: Bounds on qk in different models. MP is the message-passing model, while SW/MW stands for
single/multi-writer registers, SR/MR for single/multi-reader registers, and CS for cheap snapshots.

plies Ω
“

(n − f) log 1/δ
log log 1/δ

”

steps, which is improved by our

bound to Ω ((n − f) log 1/δ) steps.
For the asynchronous message passing model, Kapron et

al. [22] show algorithms with probability 1− 1
poly(n)

for termi-

nating in 2Θ(log7 n) (asynchronous) rounds, and probability
1 − 1

polylog(n)
for terminating in polylogarithmic number of

(asynchronous) rounds.
In the shared-memory model with single-writer multi-

reader registers, Aumann and Bender [7] show a consen-
sus algorithm with probability 1 − 1

nO(1) for terminating in

O(n log2 n) steps. For multi-writer multi-reader registers,
Aumann [6] presents an iterative consensus algorithm, with
constant probability to terminate at each iteration, inde-
pendently of the previous iterations. This implies that the
probability of terminating after k iterations is 1 − 1

ck , for
some constant c.

Tightening the bounds, especially for the synchronous
model and for large values of k, is the main technical open
question we leave for further research. Our lower bounds
can be used to estimate the error distribution and bound
the variance of the running time of randomized consensus
algorithms. They do not yield significant lower bounds for
the expected step complexity—there is still a large gap be-
tween the (trivial) lower bounds and upper bounds for the
shared-memory model, with a weak adversary.

Another, broader research direction is to explore complex-
ity bounds on randomized algorithms for other coordination
problems, most notably renaming [3] and set consensus [13].

Acknowledgements. We would like to thank Valerie King
for drawing our attention to [16] and for interesting discus-
sions, James Aspnes for coining the term cheap-snapshot,
and David Hay and Rotem Oshman for helpful comments.

7. REFERENCES
[1] J. Aspnes. Lower bounds for distributed coin-flipping

and randomized consensus. J. ACM, 45(3):415–450,
May 1998.

[2] J. Aspnes. Randomized protocols for asynchronous
consensus. Distributed Computing, 16(2-3):165–176,
Sept. 2003.

[3] H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and
R. Reischuk. Renaming in an asynchronous
environment. J. ACM, 37(3):524–548, July 1990.

[4] H. Attiya and K. Censor. Tight bounds for
asynchronous randomized consensus. In Proceedings of
the 39th annual ACM symposium on Theory of
computing (STOC), pages 155–164, 2007.

[5] H. Attiya and J. Welch. Distributed Computing:
Fundamentals, Simulations and Advanced Topics (2nd
edition). McGraw-Hill, 1st edition, 1998.

[6] Y. Aumann. Efficient asynchronous consensus with
the weak adversary scheduler. In Proceedings of the
16th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 209–218, 1997.

[7] Y. Aumann and M. A. Bender. Efficient
low-contention asynchronous consensus with the
value-oblivious adversary scheduler. Distributed
Computing, 17(3):191–207, Mar. 2005.

[8] Y. Aumann and A. Kapah-Levy. Cooperative sharing
and asynchronous consensus using single-reader
single-writer registers. In Proceedings of the 10th
annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 61–70, 1999.

[9] Z. Bar-Joseph and M. Ben-Or. A tight lower bound
for randomized synchronous consensus. In Proceedings
of the 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 193–199, 1998.

[10] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan.
Byzantine agreement in the full-information model in
o(log n) rounds. In Proceedings of the 38th annual
ACM symposium on Theory of computing (STOC),
pages 179–186, 2006.

[11] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

[12] T. D. Chandra. Polylog randomized wait-free
consensus. In Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 166–175, 1996.

[13] S. Chaudhuri. More choices allow more faults: Set
consensus problems in totally asynchronous systems.
Information and Computation, 105(1):132–158, 1993.

[14] L. Cheung. Randomized wait-free consensus using an
atomicity assumption. In Proceedings of the 9th
International Conference on Principles of Distributed
Systems (OPODIS), pages 47–60, 2005.

[15] B. Chor, A. Israeli, and M. Li. On processor coor-
dination using asynchronous hardware. In Proceedings
of the 6th Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 86–97, 1987.

[16] B. Chor, M. Merritt, and D. B. Shmoys. Simple
constant-time consensus protocols in realistic failure
models. J. ACM, 36(3):591–614, July 1989.

[17] D. Dolev and H. R. Strong. Authenticated algorithms
for byzantine agreement. SIAM J. Comput.,
12(4):656–666, 1983.

[18] M. J. Fischer and N. A. Lynch. A lower bound for the
time to assure interactive consistency. Inf. Process.
Lett., 14(4):183–186, 1982.

[19] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[20] S. Goldwasser, E. Pavlov, and V. Vaikuntanathan.
Fault-tolerant distributed computing in
full-information networks. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 15–26, 2006.

[21] M. Herlihy. Wait-free synchronization. ACM Trans.
Prog. Lang. Syst., 13(1):124–149, January 1991.

[22] B. Kapron, D. Kempe, V. King, J. Saia, and
V. Sanwalani. Fast asynchronous byzantine agreement
and leader election with full information. In
Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms (SODA), pages
1038–1047, 2008.

[23] A. Karlin and A. C.-C. Yao. Probabilistic lower
bounds for byzantine agreement and clock
synchronization. Unpublished manuscript.

[24] V. King, J. Saia, V. Sanwalani, and E. Vee. Scalable
leader election. In Proceedings of the 17th annual
ACM-SIAM symposium on Discrete algorithm
(SODA), pages 990–999, 2006.

[25] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault
tolerance. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages
45–58, 2007.

[26] M. C. Loui and H. H. Abu-Amara. Memory
requirements for agreement among unreliable
asynchronous processes. Advances in Computing
Research, pages 163–183, 1987.

[27] Y. Moses and S. Rajsbaum. A layered analysis of
consensus. SIAM J. Comput., 31(4):989–1021, 2002.

APPENDIX
Recall the definition of the following recursive functions of
r and k, for 1 ≤ r ≤ k.

sr,k =



1 if r = k
2 · cr+1,k + 1 if 1 ≤ r < k

dr,k =



S if r = k
dr+1,k + S · sr,k + S · sr+1,k if 1 ≤ r < k

cr,k =



S if r = k
dr,k + cr+1,k if 1 ≤ r < k

We bound these functions as follows.

Proposition 11 cr,k ≤ (2S + 4)k−r+1.

Proof. By definition of sr,k we have sr,k = 2cr+1,k + 1
which implies that

dr,k = dr+1,k + S · sr,k + S · sr+1,k

= dr+1,k + S · (2cr+1,k + 1) + S · (2cr+2,k + 1)

= dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S.

Substituting this in the definition of cr,k gives

cr,k = cr+1,k + dr,k

= cr+1,k + dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S.

Since dr+1,k = cr+1,k − cr+2,k, we have

cr,k = cr+1,k + dr+1,k + 2Scr+1,k + 2Scr+2,k + 2S

= cr+1,k + (cr+1,k − cr+2,k)

+2Scr+1,k + 2Scr+2,k + 2S

= (2S + 2)cr+1,k + (2S − 1)cr+2,k + 2S,

where the initial values are ck,k = S, and

ck−1,k = ck,k + dk−1,k

= ck,k + (dk,k + S · sk−1,k + S · sk,k)

= ck,k + (dk,k + S · (2ck,k + 1) + S · sk,k)

= S + S + S · (2S + 1) + S · 1 = S(2S + 4).

We now prove the claim by backwards induction on r.
Base case: For r = k we have ck,k = S ≤ (2S + 4), and

for r = k − 1 we have ck−1,k = S(2S + 4) ≤ (2S + 4)2.
Induction step: We assume the lemma holds for every ℓ

such that r + 1 ≤ ℓ ≤ k, and prove it for r.
Substituting the induction hypothesis on cr+1,k and cr+2,k

gives:

cr,k = (2S + 2)cr+1,k + (2S − 1)cr+2,k + 2S

≤ (2S + 2)(2S + 4)k−r

+(2S − 1)(2S + 4)k−r−1 + 2S

≤ (2S + 2)(2S + 4)k−r + (2S + 4)k−r + (2S + 4)k−r

= (2S + 2 + 1 + 1)(2S + 4)k−r

= (2S + 4)k−r+1,

which completes the proof.

