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ABSTRACT
This paper addressespartial information spreadingamongn nodes
of a network. As opposed to traditional information spreading,
where each node has a message that must be received by all nodes,
we propose a relaxed requirement, where onlyn/c nodes need to
receive each message, and every node should receiven/c mes-
sages, for somec ≥ 1.

As a key tool in our study we introduce the novel concept ofweak
conductance, a generalization of classic graph conductance which
allows to analyze the time required for partial information spread-
ing. We show the power of weak conductance as a measure of how
well-knit the components of a graph are, by giving an example of a
graph family for which the conductance isO(n−2), while the weak
conductance is as large as1/2. For such graphs, weak conductance
can be used to show that partial information spreading requires time
complexity ofO(log n).

Finally, we demonstrate the usefulness of partial information
spreading in solving themaximum coverageproblem, which nat-
urally arises in circuit layout, job scheduling and facility location,
as well as in distributed resource allocation with a global budget
constraint. Our algorithm yields a constant approximation factor
and a constant deviation from the given budget. For graphs with a
constant weak conductance, this implies a scalable time complexity
for solving a problem with a global constraint.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols; F.2 [Theory
of Computation]: Analysis of Algorithms and Problem Complex-
ity—Nonnumerical Algorithms and Problems; G.3 [Mathematics
of Computing]: Probability and Statistics—Probabilistic algo-
rithms
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1. INTRODUCTION
Many distributed applications require the nodes in a network to

spread information throughout the network in order to perform a
global task. The problem ofinformation spreadingis to distribute
the messages sent by each of the nodes in a network to all other
nodes. Information spreading algorithms have been extensively
studied (see, e.g., [11, 21, 22, 9]). We consider the synchronous
push/pull model of communication, where each node chooses in
each round a randomneighborto exchange information with.

The time required for achieving information spreading depends
on the structure of the communication graph, or more precisely,
on how well-connected it is. The notion of graphconductance,
defined by Sinclair [32], gives a measure of the connectivity of a
graph. Roughly speaking, the conductance of a graphG, denoted
by Φ(G), is a value in[0, 1]: This value is large for graphs that
are well-connected (e.g., cliques), and small for graphs that are not
(i.e., graphs which have many communication bottlenecks). Graph
conductance plays a pivotal role in analyzing algorithms for such
NP-hard optimization problems as clustering and graph partition-
ing, as well as in recent studies of social networks (e.g. [9]). In
distributed computing, it has been shown that the time required for
information spreading crucially depends on the conductance of the
underlying communication graph [6, 8, 9, 28]. In particular, Mosk-
Aoyama and Shah [28] show that, for anyδ ∈ (0, 1), information

spreading can be achieved inO( log n+log δ−1

Φ(G)
) rounds with proba-

bility at least1 − δ. This implies that information spreading may
be faster on graphs with large conductance.

Some graphs have a small conductance, implying that they are
not well-connected and therefore may require many rounds of com-
munication for information spreading. Nevertheless, for some of
these graphs we can do better if we do not require the information
of every node to reach every other node in the network. This is the
focus of our paper.

We definepartial information spreading, where the condition
that each node receives the information of all other nodes (to
which we refer asfull information spreading) is relaxed to smaller
amounts of information. Formally, for some valuesc ≥ 1 and
δ ∈ (0, 1), we require that with probability at least1 − δ every
message reaches at leastn/c nodes, and every node receives at least



n/c messages. We call an algorithm that fulfills this requirement
(δ, c)-spreading. Indeed, the special case wherec = 1 corresponds
to full information spreading.

As a key tool in our study we introduce the novel concept of
weak conductance, a generalization of graph conductance which
allows to analyze the time required for partial information spread-
ing. We show the power of weak conductance as a measure of how
well-knit the components of a graph are, by giving an example of a
graph family for which the conductance isO(n−2), while the weak
conductance is as large as1/2. For such graphs, weak conductance
can be used to show that partial information spreading requires time
complexity ofO(log n).

We demonstrate the usefulness of partial information spreading
in solving the classicmaximum coverageproblem defined as fol-
lows. Given is a universe ofm elements, each having some non-
negative weight, andn subsets of the elements; also, given is an
integerK ≥ 1. We need to select a collection ofK subsets so as
to maximize the total weight of the covered elements. Coverage
problems are at the heart of resource allocation problems in com-
munication networks and information systems (see, e.g., [33, 34]).
In particular, the maximum coverage problem and its variants nat-
urally arise in circuit layout, job scheduling and facility location
(see, e.g., [23, 2] and a comprehensive survey in [18]). We give an
algorithm for the special case of the problem where each element
belongs to exactly two subsets. In a distributed network, this is the
problem of selectingK nodes with the goal of maximizing the to-
tal number of covered edges. Consider, for example, a monitoring
system for the traffic flow on the links of the network. The system
can handle in each phase the data collected from at mostK nodes
on the status of their neighboring links, for someK ≥ 1. Then the
objective is to select in each phase a subset ofK nodes which cover
the maximum number of (unmonitored) links (See, e.g.,[33]). Our
algorithm yields a constant approximation factor and a constant de-
viation from the given budget. For graphs with a constant weak
conductance, this implies a scalable time complexity for solving a
problem with a global constraint. The same algorithm can be ap-
plied to more general instances of maximum coverage, where each
element has a weight and can appear in arbitrary number of sub-
sets, as well as for approximating thebudgeted maximum coverage
problem (see in Section 3).

Main Contributions:.Our first main contribution is in gen-
eralizing the definition of conductance toweak conductance.
Roughly speaking, rather than measuring connectivity of the whole
graph, weak conductance is the minimal conductance among the
bestsubsets of at leastn/c nodes containing each node (we give
the precise definition in Section 2).

We prove that partial information spreading is fast on graphs
which have a large weak conductance, although they may have
small conductance and therefore may not enable fast full infor-
mation spreading. Specifically, we prove that for anyδ ∈ (0, 1),

partial information spreading can be achieved inO( log n+log δ−1

Φc(G)
)

rounds, whereΦc(G) is the weak conductance of the graph. More-
over, we give examples of families of graphs for which partial infor-
mation spreading is significantly faster than the current guarantees
known for full information spreading.

Our second main contribution is in showing that for solving max-
imum coverage, we can do well enough with only partial informa-
tion spreading. In Section 3 we show how to solve the maximum
coverage problem in a distributed manner with aconstantapproxi-
mation factor, given a partial information spreading algorithm. Our
result implies that for graphs with a large weak conductance (of

Ω(1/ log n)) our algorithm has a scalable time complexity, in spite
of the need to address a global constraint.

Finally, in Section 4 we extend our results to networks without
node identities. This model, which has been widely studied (see,
e.g., [4, 36, 14, 3]), captures well ad-hoc and mobile networks,
which lack infrastructure such as IP addresses, limiting the knowl-
edge a node can gain on the structure of the network. We borrow the
technique of [28], which allows the nodes to estimate sums of val-
ues of other nodes despite the possibility of duplicated messages,
and show how it can be embedded in our algorithm for maximum
coverage, in order to obtain a constant approximation, while using
only partial information spreading.

Related Work:.Communication models vary in different stud-
ies. For example, Karp et al. [21] consider therandom phone-call
model, where in each round every node chooses a random node
to communicate with, assuming that the communication graph is
complete. Our results hold for arbitrary communication graphs.

Feige et al. [13] study rumor spreading in arbitrary graphs, where
initially one node has information that needs to be spread across the
graph. Their work also provides examples of graphs that allow fast
information spreading despite having a small conductance. Thus,
the conductance itself is insufficient as a lower bound for informa-
tion spreading.

Previously, Avin and Brito [5] and Avin and Ercal [6] analyzed
the partial cover time of a random walk, namely, the time required
for a random walk to visit a large fraction of the nodes. A ran-
dom walk is related to our model, since the process of relaying a
message in the graph corresponds to a random walk, however, as
opposed to the single random walk considered in [5, 6], our model
consists of many parallel random walks for every message, as a
new random walk begins in each round.

Dolev et al. [31] considered gossip in multi-channel radio net-
works, where in each round a node chooses a channel on which to
participate. The paper introduces theǫ-gossip problem in which
(1 − ǫ)n of the messages need to be fully spread in the network.
This differs from our definition of partial information spreading,
since we requireall messages to bepartially spread in the network.

Georgiou et al. [16] investigatedmajority gossipfor solving con-
sensus. The requirement of majority gossip is that each node re-
ceives the message of a majority of the nodes, guaranteeing some
overlap of received messages. This is strictly stronger than our def-
inition of partial spreading, in which a node may receive onlyn/2
messages (or less, for a largerc).

Some modifications to the definition of graph conductance have
been proposed in the past (see, e.g., [27, 20, 29]), but all are differ-
ent than the concept of weak conductance presented in this work.

The maximum coverage problem, which is known to be NP-hard
[15], has been widely studied in the sequential setting. For the case
of unit costs, a(1/αk)-approximation algorithm follows from the
works of [30, 10, 35, 18, 19], whereαk = 1 − (1 − 1/k)k, which
decreases ask increases, and tends to1−1/e ask → ∞. Budgeted
maximum coverage can be approximated within factore/(e − 1)
(see, e.g., [23]), and this is the best possible, unlessP = NP [12].
In the distributed setting, Subhadrabandhu et al. [33] developed a
constant factor approximation algorithm which uses network-wide
broadcasts. In contrast, our algorithm avoids spreading information
network-wide, because of the large number of rounds that may be
required.

Finally, we note that there is a long line of research on approx-
imating other graph problems in a distributed setting, and in par-
ticular minimum vertex cover(see, e.g., [17, 24, 25, 26]), where
the goal is to cover all edges with the smallest possible number



of nodes. A main difference between minimum vertex cover and
maximum coverage, is in the local nature of the former in a dis-
tributed setting. Indeed, a feasible (though not necessarily good)
solution can be found by little communication of each node with
its neighbors. This is not the case for maximum coverage. Conse-
quently, the quality of approximation is measured by two criteria:
the amount of covered edges and the deviation from the given bud-
get.

2. PARTIAL INFORMATION
SPREADING

The time required for an information spreading algorithm to
complete, i.e., for every node to receive every piece of information,
has been previously analyzed using the notion of graph conduc-
tance [28]:

Φ(G) = min
S⊆V,|S|≤n/2

ϕ(S, V ),

where

ϕ(S, V ) =

P

i∈S,j∈V \S Pi,j

|S|
(1)

andP is the stochastic matrix associated with the communication
of the nodes. Notice that the conductance satisfies0 ≤ Φ(G) ≤ 1,
since for everyi ∈ S we have

P

j∈V \S Pi,j ≤
P

j∈V Pi,j = 1.
As mentioned in [28], this definition differs from the traditional

definition of conductance [32]:

Φ(G) = min
S⊆V,π(S)≤1/2

Q(S, V \ S)

π(S)
,

whereπ(S) =
P

i∈S π(i), π is the stationary probability vector of
the matrixP , and

Q(S, V \ S) =
X

i∈S,j∈V \S

Q(i, j) =
X

i∈S,j∈V \S

π(i)Pi,j .

However, for a symmetric stochastic matrixP the definitions are
equivalent.1 We can obtain a symmetric matrix for any graph, by
taking

Pi,j =

8

>

<

>

:

1
dmax

if (i, j) ∈ E

1 − di

dmax
if i = j

0 otherwise

wheredi is the degree of nodei, anddmax = maxi∈V di is the
maximum degree in the graph. This matrix is slightly different than
our model of communication, in which a nodei chooses a neighbor
j with probability1/di. Furthermore, we avoid the assumption that
the nodes have knowledge of the value ofdmax. Nevertheless, for
every nodei we have 1

di
≥ 1

dmax
, which implies that the spreading

of information in our model can only be faster than by using the
above matrixP . Indeed, let̃Φ(G) be the conductance as calculated
for the transition matrix̃P , where

P̃i,j =

(

1
di

if (i, j) ∈ E

0 otherwise

then the conductancẽΦ(G) using the matrixP̃ is at least the con-
ductanceΦ(G) usingP , as stated in the next lemma, whose proof
appears in Appendix A.
1Recall that ifP is symmetric then the stationary distribution is
uniform.

LEMMA 1. For every graphG = (V, E), Φ̃(G) ≥ Φ(G).

The conductance of a graph measures how well it is connected.
Consider a clique on alln nodes, which is a well-connected graph.
We associate with the graph a stochastic symmetric matrixP where
Pi,j = 1/(n − 1) for every 1 ≤ i 6= j ≤ n, andPi,i = 0
for every 1 ≤ i ≤ n. This implies that the conductance is
“

(n
2
)(n − n

2
) 1

n−1

”

/n
2

= n
2(n−1)

which is Θ(1). On the other

hand, a path ofn nodes is associated with a matrixP in which
Pi,j = 1/2 for every two neighborsi andj, Pi,i = 1/2 for the
two nodes at the ends of the path, andPi,j = 0 otherwise. A path
has conductance

`

1
2

´

/n
2

= 1
n

and indeed, a path contains many
communication bottlenecks. Graphs with small conductance may
require more rounds of communication for full information spread-
ing.

Since we only require a relaxed spreading guarantee, we intro-
duce the concept ofweak conductancein order to analyze par-
tial information spreading. While conductance provides a mea-
sure for the connectivity of the whole graph, weak conductance
measures thebest connectivity among subsets that include each
node. Formally, for an integerc, the weak conductance of a graph
G = (V, E) is defined as:

Φc(G) = min
i∈V

(

max
Vi⊆V,i∈Vi,|Vi|≥

n
c

(

min
S⊆Vi,|S|≤

|Vi|
2

ϕ(S, Vi)

))

,

whereϕ(S, V ) is defined in (1). Indeed, in the special case where
c = 1, the weak conductance ofG is equal to its conductance,
namely,Φ1(G) = Φ(G).

As stated in the following lemma, this definition implies that the
weak conductance of a graph is a monotonically increasing func-
tion of c, and specifically implies that the weak conductance is at
least as large as the conductance.

LEMMA 2. For every graphG = (V, E) and everyc1 ≥ c2 ≥
1, Φc1(G) ≥ Φc2(G).

PROOF. Sincec1 ≥ c2, we have thatn/c1 ≤ n/c2, implying
that for every nodei, the maximum in the definition ofΦc1(G)
taken over all setsVi of size at leastn/c1, cannot be smaller than
the maximum in the definition ofΦc2(G) taken over all setsVi of
size at leastn/c2. Hence,Φc1(G) ≥ Φc2(G).

Before we proceed to use weak conductance to analyze partial
information spreading, we show how it can serve as a refined mea-
sure of connectivity, by examining several graph classes. First, con-
sider a clique on alln nodes. The weak conductance of a clique is
“

(n
2
)(n − n

2
) 1

n−1

”

/n
2

= n
2(n−1)

, which is equal to its conduc-

tance, since for every nodei the best subsetVi is V itself. The
weak conductance of a path is

`

1
2

´

/ n
2c

= c
n

, since for every node
i the bestVi is the smallest possible, i.e., of sizen/c. This, as the
conductance, is alsoΘ(1/n) if c is a constant. For the two ex-
amples above, the weak conductance is in the same order as the
conductance for some constantc ≥ 1.

We now give an example of a graph with very small conductance
(which may be bad for fast information spreading) but a large weak
conductance. Since a clique has a large conductance, and a path has
a small conductance, we introduce thec-barbell graph, which is a
generalization of thebarbellgraph, consisting of a path ofc cliques,
where each containsn/c nodes (see Figure 1). Thec-barbell graph
is associated with the transition matrixP for whichPi,j = 1/

`

n
c

´

for every two neighbors,Pi,i = 1/
`

n
c

´

for every nodei that does
not connect two cliques, andPi,i = 0 for every nodei connecting
two cliques. While the conductance of this graph is

`

1/(n
c
)
´

/n
2

=



Figure 1: The c-barbell graph is a path of c equal-sized cliques.
It is an example of a graph with small conductance and large
weak conductance.

2c
n2 , the weak conductance is

“

( n
2c

)(n
c
− n

2c
) 1

n/c

”

/ n
2c

= 1
2
. For

any constantc ≥ 1, this implies a conductance ofΘ(1/n2) while
the weak conductance is toΘ(1).

Indeed, the barbell graph has been studied before [1, 7] as a
graph for which information spreading requires a large number of
rounds (in [1] the context is random walks, which is closely re-
lated, since the path of a message can be viewed as a random walk
on the graph). Our definition of weak conductance and the relaxed
requirement of partial information spreading greatly improve the
guarantees that can be obtained for this graph. There are additional
families of graphs that have a similar property of small conductance
and large weak conductance. Examples include rings of cliques and
other structures withc equal-sized well-connected components that
are connected by only a few edges. Notice that for a graph to have a
large weak conductance, it need not even be connected. For exam-
ple, a graph consisting ofc disconnected cliques has a large weak
conductance, but its conductance is equal to zero.

Next, we proceed to the analysis of the partial information
spreading algorithm. Recall that in every round, each nodei ran-
domly chooses a neighborj with probability1/di and exchanges
information with it. LetG = (V, E) be the underlying communi-
cation graph, and for every nodei let Vi be the subset that realizes
the weak conductance ofG.

Consider a nodei and letSi(τ) ⊆ Vi denote the set of nodes of
Vi that received the messagem(i) of nodei by roundτ ; also, let
Xj be an indicator random variable for the receipt of the message
m(i) from a node inSi(τ) at a nodej ∈ Vi, in roundτ + 1. Then,
for |Si(τ)| ≤ |Vi|/2 we have:

E [|Si(τ + 1)| | Si(τ)] =

= |Si(τ)| +
X

j∈Vi\Si(τ)

E[Xj | Si(τ)]

= |Si(τ)| +
X

k∈Si(τ),j∈Vi\Si(τ)

Pk,j

= |Si(τ)|

 

1 +

P

k∈Si(τ),j∈Vi\Si(τ) Pk,j

|Si(τ)|

!

≥ |Si(τ)|(1 + Φc(G)). (2)

From here, the analysis proceeds exactly as the proof of Lemma
4 in [28]. The proof considers two phases of the algorithm, the
first is while less than|Vi|/2 of the nodes inVi receivedm(i), and
the second is until all|Vi| nodes receive the message. The evolv-
ing of Si(τ) in each phase is examined using sub-martingales, for
which inequality (2) suffices to carry out the rest of the analysis.
Although the analysis is for the number of nodes that receive a
messagem(i), a similar argument addresses the number of mes-
sages that nodei receives. This is because we are using a push/pull
model of communication, along with a symmetric transition matrix
P , which implies that the probability of a nodei receiving a mes-

sagem(j) equals the probability of nodej receiving the message
m(i). This gives our main result:

THEOREM 3. For any δ ∈ (0, 1), the number of rounds re-

quired for (δ, c)-spreading isO
“

log n+log δ−1

Φc(G)

”

.

Notice that the result of Theorem 3 matches the result of [28] for
c = 1.

For a graph with a constant weak conductance, by takingδ =
O(1/n) we obtain (1/n, c)-spreading inO(log n) rounds.

We emphasize that a graph with a large weak conductance may
be very different from thec-barbell graph, and hence the sets ofn/c
messages that are received by the different nodes may be “far” from
constituting a partition intoc disjoint subsets of sizen/c. For our
application of the maximum coverage problem, this allows to ob-
tain an approximation algorithm that exceeds the budget by factor
at mostc, by considering the network as partitioned and solving the
problem separately within each set. An example for such a graph
with large weak conductance is a clique on alln nodes. Indeed,
if each node in the clique receivesn/c messages, with only small
probability the received messages induce a partition of the nodes
to c disjoint subsets. Thus, in general, for graphs with large weak
conductance we can only aim for each message to be received by
n/c nodes (and for each node to receiven/c messages), but not
necessarily as a well-structured partition.

3. DISTRIBUTED MAXIMUM
COVERAGE

In this section we present a distributed algorithm which uses par-
tial information spreading for approximating maximum coverage.
The problem that we consider is defined as follows.

DEFINITION 1. In the distributed maximum coverage problem,
each node is given the number of nodesn and the budgetK and
should return a value in{true, false}, such that the number of
nodes that returntrue is K and the number of edges that are cov-
ered by the nodes that returntrue is maximized.

We are interested in bi-criteria(α, β)-approximation algorithms,
which exceed the given budget by a factor of at mostα, while guar-
anteeing a cover that is at least a factorβ of an optimal cover with
the given budget.

We show a randomized algorithm for maximum coverage, which
in expectation obtains an(α, β)-approximation with constantα and
β. Later, we show that for values ofK that are not too small, e.g.,
K = Ω(log n), these approximation factors are obtained with high
probability, and not only in expectation.

We first give some intuition to the difficulty in obtaining an ef-
ficient distributed algorithm for maximum coverage. As discussed
above, using an information spreading algorithm allows approx-
imating maximum coverage within a constant factor. However,
as shown in Section 2, some networks require a large number of
rounds to achieve full information spreading, and therefore we wish
to avoid it. By allowing only partial information spreading, we can
no longer guarantee that a node knows the degrees in the graph,
and certainly not the structure of the graph. Knowing only half of
the degrees is insufficient, since the unknown degrees may be very
large, in which case the node should not choose itself for the cover,
or very small, in which case perhaps it should. Even knowledge of
the maximal and/or average degrees does not seem to be sufficient.

Nevertheless, we present a constant-approximation algorithm for
maximum coverage that uses only partial information spreading.



Let Spr2 be a(δ, 2)-spreading algorithm with a round complex-
ity of RSpr2

(e.g., the partial information spreading algorithm in
Section 2). The idea is that the nodes use the algorithmSpr2 to
construct a distributed algorithm for solving the maximum cover-
age problem with a given budgetK, by partially spreading their
degrees, and at the same time estimating the number of nodes in
certain predetermined ranges of degrees. The latter information is
then also spread using the algorithmSpr2.

For simplicity, we assume thatn = 2t for some integert ≥ 1,
although our results hold for any value ofn. We denote bym(v)
the message that nodev spreads in algorithmSpr2. We assume
that every nodev always receives its own messagem(v). First, we
define below the local variables maintained by each node.

We definet + 1 setsD1, D2, . . . , Dlog n+1, that partition the set
of nodes according to their degree:

Di =
n

v ∈ V | d(v) ∈ (n/2i, n/2i−1]
o

, i = 1, . . . , log n + 1.

For everyi, 1 ≤ i ≤ t + 1, we denote byni the number of nodes
in the setDi, i.e.,ni = |Di|. The goal of each nodev is to obtain
good estimatesni(v) of these sizes, while the initial information
a node has is only the number of nodesn, and the budgetK al-
lowed for covering. Therefore, initially,ni(v) = 1 if v ∈ Di, and
ni(v) = 0 otherwise.

For our analysis to go through, the actual information that the
nodes spread is about the valuesñi(v) =

Pi
j=1 nj(v), which are

the estimates of̃ni =
Pi

j=1 nj , rather than the valuesni(v) them-
selves. To this end, each nodev also maintainst + 1 static boolean
variablesbi(v), for everyi, 1 ≤ i ≤ t + 1, such thatbi(v) = 1 if
and only ifv ∈

Si
j=1 Dj .

The estimate of a node is updated according to two types of in-
formation it gathers. First, the node receives messages from a set
of nodesU with the informationñi(u), for u ∈ U . In addition,
the node estimates the sum

P

u∈U bi(u). The estimatẽni(v) will
then be updated to the maximum of these values. The pseudocode
appears in Algorithm 1.

Algorithm 1 Maximum coverage algorithm, code for nodev

1: repeat 3 times:
2: runSpr2 with messagem(v) containing the sequence

(< b1(v), ñ1(v) >, . . . , < bt+1(v), ñt+1(v) >)
3: for i = 1 to t + 1:
4: estimatêni(v) =

P

u∈U bi(u) according to
the set of received messagesU

5: updatẽni(v) = maxu∈U ñi(u) according to
the set of received messagesU

6: updatẽni(v) = max {ñi(v), n̂i(v)}
7: letm = i such thatv ∈ Di

8: if ñm(v) ≤ K then returntrue
// returntrue with probabilityp(v) = 1

9: else ifñm−1(v) ≤ K then returntrue
with probabilityp(v) = K

ñm(v)

10: else returnfalse
// returntrue with probabilityp(v) = 0

The algorithm consists of three iterations, in each of which a
nodev invokes the information spreading algorithmSpr2 and up-
dates the estimates of the valuesñi(v). As our proof will show,
since the spreading algorithm promises only that half of the mes-
sages are received by each node, we need three iterations of it in
order for our guarantees of the maximum coverage algorithm to

Ai
1

ñi(v) ≥ ñi/2

Ai
2

ñi(v) ≥ |{u ∈ V | u ∈ Ai
2 ∩
Si

j=1 Dj}|

Figure 2: The partition of nodes into the sets Ai
1 and Ai

2 in
Lemma 5.

hold. We also note that more iterations cannot improve these guar-
antees, since it may be the case that the(δ, 2)-spreading algorithm
induces two disjoint subsets ofn/2 nodes and each node receives
all the messages within its subset.

It is easy to see that the number of rounds of Algorithm 1 is in
the same order as the number of rounds of the spreading algorithm
Spr2, since we have three iterations of it. In addition, each message
containsO(log n) variables, each of sizeO(log n) bits. Therefore,
we get the following round and bit complexity:

LEMMA 4. The round complexity of Algorithm 1 isO(RSpr2
).

The bit complexity per messagem(v) of a nodev is O(log2 n).

We now prove the approximation factors of the algorithm.
Throughout the rest of the analysis, we assume thatSpr2 obtained
the required spreading in all three iterations. This event happens
with probability at least1 − 3δ, sinceSpr2 is a (δ, 2)-spreading
algorithm.

We first bound the expected number of nodes that returntrue.
First, the next lemma bounds the expected number of nodes that
returntrue in a given setDi. This bound itself is not enough for
guaranteeing a constant deviation from the budget, since the num-
ber of sets ist + 1 = log n + 1. However, we will use it later for
some of the sets, while the others will be bounded more carefully.

We use the following notation, which considers the algorithm
after thethird iteration. For everyi, 1 ≤ i ≤ t + 1, we partition
the set of all nodesV into two setsAi

1 andAi
2, such that nodes in

Ai
1 received a message from some nodeu with ñi(u) ≥ ñi/2, and

nodes inAi
2 did not.

LEMMA 5. For everyi, 1 ≤ i ≤ t + 1, the expected number of
nodes inDi that returntrue is at most3K.

PROOF. SinceSpr2 is (δ, 2)-spreading, the first iteration con-
tains at least̃ni ·

n
2

messages by nodes withbi(u) = 1. A simple
pigeon-hole argument implies that there is a nodev∗ that receives
at least̃ni/2 out of these messages.

The nodev∗ estimateŝni(v
∗) =

P

u∈U bi(u) according to the
setU of received messages. Sincev∗ receives at least̃ni/2 mes-
sages withbi(u) = 1, we have that̃ni(v

∗) ≥ ñi/2 after line 6.
In the second iteration, at leastn/2 nodes receive the message

m(v∗), and therefore at leastn/2 nodes havẽni(u) ≥ ñi/2 after
line 6.

Now, consider the partition of all nodes after the third iteration
into Ai

1 andAi
2. If v ∈ Di is in Ai

1 thenñi(v) ≥ ñi/2. Otherwise,
let x be the number of nodes inDi that are inAi

2. These nodes do
not receive in the third iteration any of the messages withñi(u) ≥
ñi/2, but each of them still receives at leastn/2 messages, since
our spreading algorithm is(δ, 2)-spreading. This implies that each
nodev of Di which is inAi

2 receives all messages from nodes in
Ai

2, and hence has̃ni(v) ≥ x (see Figure 2).
A nodev ∈ Di in Ai

1 returnstrue with probability at most K
ñi/2

,
unless̃ni(v) < K, in which casev returnstrue with probability 1.



Either all nodes inv ∈ Di ∩Ai
1 haveñi(v) ≥ K and the expected

number of nodes inDi ∩ Ai
1 that returntrue is at most

ñi ·
K

ñi/2
≤ 2K,

or there is a nodev ∈ Di ∩ Ai
1 for which ñi(v) < K, but then

ni ≤ 2K and again the expected number of nodes inDi ∩ Ai
1 that

returntrue is at most2K.
A nodev ∈ Di in Ai

2 returnstrue with probability at mostK
x

,
unlessx < K, in which casev returnstrue with probability 1. In
the latter case we have at mostK nodes inDi ∩ Ai

2, and therefore
the expected number of nodes inDi ∩ Ai

2 that returntrue is at
mostK. Otherwise, ifx ≥ K then the expected number of nodes
in Di ∩ Ai

2 that returntrue is at mostx · K
x

= K.
Therefore, the expected number of nodes inDi that returntrue

is at most2K + K = 3K, which completes the proof.

We are now ready to prove the upper bound on the expected num-
ber of nodes that returntrue. We denote byℓ the minimal index
such that̃nℓ > 2K. Ideally, we would like to choose the nodes in
Di for i < ℓ and perhaps some of the nodes inDℓ such that their
total number isK, in order to exceed the budget by no more than a
constant fraction of it. We define

Badi = {v ∈ Di | ñi−1(v) ≤ 2K andñi−1 > 2K},

which is the set of nodes inDi that estimate that they are in
Sℓ−1

j=1 Dj , but are actually not there. These are nodes that may
be chosen by the algorithm and exceed the budgetK. We wish to
bound the number of such nodes to derive a bound on the deviation
from the budgetK.

THEOREM 6. The expected number of nodes that returntrue
in Algorithm 1 is at most9K.

PROOF. From the definition ofℓ, it is clear that the number of
nodes that returntrue in

Sℓ−1
j=1 Dj is at most2K (because2K is a

bound on the total number of nodes in these sets).
Applying Lemma 5 fori = ℓ implies that inDℓ there are at most

3K nodes that returntrue.
We now define h to be the minimal index such that

|
Sh

j=ℓ+1 Badj | > K. These are nodes that returntrue from the
setsDℓ+1, . . . , Dh. By the definition ofh, there are at mostK
nodes in

Sh−1
j=ℓ+1 Dj that returntrue.

Again, applying Lemma 5 fori = h implies that inDh there are
at most3K nodes that returntrue.

Finally, we claim that inDi, for i > h, no node returnstrue.
This is because either a nodev ∈ Di is in Aℓ

1, in which case the
node has̃ni−1(v) ≥ ñℓ(v) ≥ ñℓ/2 > 2K/2 = K and it re-
turnsfalse, or the nodev ∈ Di is in Aℓ

2. In the latter case, node
v receives a message from every nodeu ∈ Aℓ

2. Every nodeu in
Sh

j=ℓ+1 Badj is in Aℓ
2, otherwise, by the proof of Lemma 5,u has

ñℓ(u) > 2K/2 = K and henceu returnsfalse, which contra-
dicts the assumption thatu is in

Sh
j=ℓ+1 Badj . Sincev receives a

message from every nodeu in
Sh

j=ℓ+1 Badj , we have that

ñi(v) ≥ ñh(v) ≥ |

h
[

j=ℓ+1

Badj | > K,

where the last inequality follows from the definition ofh. Hence,
in this casev also returnsfalse.

Therefore, in total we have at most2K + 3K + K + 3K = 9K
nodes that returntrue (see Figure 3).

We now bound the number of edges covered by Algorithm 1. Let
s be the minimal index such that|

Ss
j=1 Dj | ≥ K.

D1 . . . Dℓ . . . Dh . . . Dt+1

ñℓ−1 ≤ 2K At most3K
returntrue
by Lemma 5

At mostK
returntrue
by definition
of h

At most3K
returntrue
by Lemma 5

No node
returns
true

Figure 3: The bounds on the number of nodes that return true
in the sets Di, as proved in Theorem 6.

LEMMA 7. The expected number of nodes in
Ss

j=1 Dj that re-

turn true is at leastK and every node in
Ss−1

j=1 Dj returnstrue.

PROOF. There are less thanK nodes in
Ss−1

j=1 Dj , and therefore
less thanK nodesu with bs−1(u) = 1. This implies that every
nodev has ñs−1(v) ≤ ñs−1 < K. Therefore, every node in
Ss−1

j=1 Dj returnstrue. The total number of these nodes isñs−1.
Now consider nodes inDs. A nodev in Ds returnstrue with

probability at least K
ñs(v)

(if ñs(v) ≤ K thenv returnstrue with
probability 1). Similar to the previous argument, every nodev has
ñs(v) ≤ ñs.

The expected number of nodes inDs that returntrue is therefore
X

v∈Ds

K

ñs(v)
≥ (ñs − ñs−1)

K

ñs
= K −

Kñs−1

ñs
,

which implies that the expected number of nodes that returntrue
in
Ss

j=1 Dj is at least
X

v∈
S

s
j=1

Dj

p(v) =
X

v∈
Ss−1

j=1
Dj

p(v) +
X

v∈Ds

p(v)

≥ ñs−1 + (K −
Kñs−1

ñs
) ≥ K,

where the last inequality follows from the fact thatñs ≥ K, by the
definition ofs.

The following theorem gives the expected number of edges cov-
ered by our solution.

THEOREM 8. Let ALG be the expected value of the cover ob-
tained by Algorithm 1. Then,ALG ≥ OPT/4, whereOPT is the
value of an optimal solution.

PROOF. We denote byv1, . . . , vK the nodes of an optimal solu-
tion ordered according to decreasing degrees, and byu1, . . . , uK′

the nodes of the solution of Algorithm 1 ordered according to de-
creasing degrees. Recall that by Lemma 7 we have thatK′ ≥ K.
We use the simple observation that the number of edges covered by
a set of nodes is at least half of the sum of their degrees (because
we count each edge twice in the worst case). We therefore have:

ALG ≥
1

2

K′
X

i=1

d(ui) ≥
1

2

K
X

i=1

d(ui)

≥
1

2

0

@

ñs−1
X

i=1

d(ui) +
K
X

i=ñs−1+1

d(ui)

1

A

≥
1

2

0

@

ñs−1
X

i=1

d(vi) +
1

2

K
X

i=ñs−1+1

d(vi)

1

A

≥
1

4

 

K
X

i=1

d(vi)

!

=
1

4
OPT ,



where the inequality on the third line is because all the nodes from
the firsts − 1 sets are selected by our algorithm and these are the
ñs−1 nodes with the largest degrees, and the other nodes are all
from the setDs, and therefore have degree at leastn/2s while the
largest degree in the set can be at most twice this value.

This gives the desired approximation ratio.

By choosingδ = O(1/n) the expected approximation factors re-
main the same, and the above analysis gives the following main
theorem that summarizes the properties of Algorithm 1.

THEOREM 9. Algorithm 1 yields in expectation a(9, 4)-
approximation to the maximum coverage problem, with a round
complexity ofO(RSpr2

), andO(log2 n) bits per messagem(v) of
every nodev.

Improvements to the Analysis:.The expected approxima-
tion factors are proved by analyzing and summing the probabilities
p(v) of every nodev to returntrue. Since we consider the sum
of n independent Bernoulli random variables, we can use a stan-
dard Chernoff bound to obtain constant approximation factors for
the number of covered edges, as well as for the relative deviation
from the budget,K, with a probability of at least1 − ρ, whereρ
is exponentially small in the expectation,O(K). Indeed, for val-
ues ofK that are not too small, such asK = Ω(log n) (which
is still scalable), this implies constant approximation factorswith
high probabilityrather than in expectation, where high probability
refers to probabilities that areO(1 − 1

poly(n)
).

In addition, we remark that better approximation factors can be
obtained by modifying the partition ofV to the setsDi, as follows.
For anyγ ∈ (0, 1), and every1 ≤ i ≤ log1+γ n + 1,

Di =
n

v ∈ V | d(v) ∈ (n/(1 + γ)i, n/(1 + γ)i−1]
o

.

A respective modification of Theorem 8 now gives an approxima-
tion factor ofβ = 2(1+γ) = 2+2γ for maximum coverage. This
implies that our algorithm exhibits a tradeoff between the approxi-
mation factor and the size of the messagesm(v), as summarized in
the next result.

THEOREM 10. For everyγ > 0, there is an algorithm that
obtains in expectation a(9, 2 + 2γ)-approximation to the maxi-
mum coverage problem, with a round complexity ofO(RSpr2

) and
O(log n · log1+γ n) bits per messagem(v) of every nodev.

When using the partial information spreading algorithm from
Section 2 and plugging the round complexity of Theorem 3 along
with δ = O(1/n) into Theorem 10 we obtain:

COROLLARY 11. For everyγ > 0, there is an algorithm that
obtains in expectation a(9, 2 + 2γ)-approximation to the maxi-

mum coverage problem, with a round complexity ofO
“

log n
Φ2(G)

”

andO(log n · log1+γ n) bits per messagem(v) of every nodev.

For graphs with a constant weak conductance, such as the barbell
graph, this implies a scalable number of rounds.

Extensions:.If each edgee ∈ E has a weightw(e), we modify
our algorithm to usewi =

P

∃j:e=(i,j) w(e) instead of the degree
di (which corresponds to the case of unit weights).

Moreover, for the budgeted maximum coverage problem, where
each nodev is associated with some non-negative costc(v), we can
obtain similar approximation factors by modifying the algorithm to
scale the probabilitiesp(v) according to the costsc(v).

For more general instances of maximum coverage, where each
element may belong to at mostf sets, instead of just two (e.g., an
f -hypergraph, in our setting), Algorithm 1 yields an approximation
factor ofβ = 2f instead ofβ = 4, and the analysis remains the
same.

4. NETWORKS WITHOUT NODE
IDENTITIES

In some distributed systems, nodes do not posses unique iden-
tities. In this section we consider such a model, where each node
has some local numbering of its neighbors, but the nodes are not
equipped with global identities, and therefore are limited in gain-
ing knowledge about the structure of the network. Thus, even with
a full information spreading algorithm it is not clear how to solve
the maximum coverage problem.

The main issue that arises in this setting is that nodes cannot
distinguish between a duplicated message and more than one dif-
ferent message with the same content. For our maximum cover-
age algorithm to go through, this requires the nodes to use a dif-
ferent method for counting the number of nodes in each category
Di. While updating an estimatẽni(v) to the maximal estimate that
nodev receives is not affected by the lack of identities, summing
the values

P

u∈U bi(u), whereU is the set of nodes from whichv
receives a message, highly depends on having no duplicates.

We use the framework of Mosk-Aoyama and Shah [28] for com-
puting separable functions, and modify it to fit our partial informa-
tion spreading rather than the full information spreading assumed
there. Instead of sending the valuesbi(v), each nodev generates
exponential random variablesWi(v) with rate bi(v) (and hence
mean1/bi(v)). However, such a value may be equal to 0. To
overcome this, ifbi(v) = 0 we replace it by a small but posi-
tive valuebi(v) = 1/2n. The idea is that the minimum of expo-
nential random variables is also an exponential random variable,
whose rate is the sum of their rates. Each node now takes the min-
imal valueW = minu∈UWi(u) and takes1/W as its estimate of
P

u∈U bi(u). With some probability, this estimate is close to the
correct sum.

To obtain a close estimate withhigh probability, each node gen-
erates and sendsr variablesW j

i (v), where1 ≤ j ≤ r, with rate
bi(v). A nodev then calculates for everyj, 1 ≤ j ≤ r, the mini-
mumW j = minu∈UW j

i (u) according to the set of received mes-
sagesU , and takesest(v) = r/(

P

1≤j≤r W j) as its estimate of
sumU (v) =

P

u∈U bi(u). The motivation for generating more
random variables is to guarantee better bounds on the probability
of an estimate that is close to the correct sum; the chosen value of
r is determined below.

Formally, we say that an estimateest(v) is closeto the correct
sumsumU (v) if

est(v) ∈ [(1 − ǫ)sumU (v), (1 + ǫ)sumU (v)],

for some parameter0 < ǫ < 1/2. Provided that the algorithm
Spr2 achieves the required spreading, we have that for a given node
v the probability that the estimate ofv is far from the correct sum
is:

Pr(est(v) 6∈ [(1 − ǫ)sumU (v), (1 + ǫ)sumU (v)])

≤ O(e−O(ǫ2r)), (3)

which forr = Θ(ǫ−2 log δ−1) is at mostδ (see [28, Lemma 2]).
In the analysis of [28], this also implies that the estimates of

all nodes are within this range, since it assumes a full informa-
tion spreading algorithm and therefore all the nodes have the same



minimumminu∈V W j
i (u). We cannot use the same observation in

our case, since different nodes calculate their estimate according to
different setsU of received messages. Using the union bound to
simply sum these probabilities over all nodes results in a very weak
bound on the total probability of good estimates. However, care-
ful inspection of our analysis of Algorithm 1 shows that we need
the estimate ofsumU (v) =

P

u∈U bi(u) to be close to the correct
value only in a few cases, as described next, since other nodes up-
date their estimate according to the maximal estimate they receive.
We modify Lemma 5 as follows:

LEMMA 12. For everyi, 1 ≤ i ≤ t + 1, with probability at
least1 − 2δ, the expected number of nodes inDi that returntrue
is at most(3 + 6ǫ)K.

PROOF. We only state the differences from the proof of
Lemma 5. With probability at least1 − δ, the nodev∗, which
obtains at least̃ni/2 messages from nodes withbi(u) = 1, satis-
fies inequality (3) and therefore may now have an estimate as small
as(1 − ǫ)ñi/2.

In addition, all the nodes inAi
2 receive each other’s messages,

and therefore we apply the bound in inequality (3) only once to get
that with probability1 − δ everyv ∈ Ai

2 hasñi(v) ≥ (1 − ǫ)x.
This implies that the expected number of nodes that returntrue

in a setDi is at most(2/(1 − ǫ) + 1/(1 − ǫ))K ≤ (3 + 6ǫ)K,
since1/(1 − ǫ) ≤ 1 + 2ǫ for 0 < ǫ ≤ 1/2.

Notice that applying Lemma 12 fori = ℓ andi = h implies that
this adds a term of at most4δ to our probability of failing to achieve
the desired approximation, in addition to the3δ by the guarantees
of Spr2.

We adjust the definition ofℓ to be the minimal index such that
ñℓ > 2K/(1 − ǫ), and the definition ofh to be the minimal index
such that|

Sh
j=ℓ+1 Badj | > K/(1 − ǫ). This induces a bound of

(2(3+6ǫ)+2(1+2ǫ)+(1+2ǫ))K = (9+18ǫ)K in Theorem 6.
For the lower bound on the number of covered edges, we adjust

the definition ofs to be the minimal value for which|
Ss

j=1 Dj | ≥

K/(1 + ǫ) (instead ofK). Now, in the proof of Lemma 7 we use
the setsAi

1 andAi
2 for both i = s − 1 andi = s. For i = s − 1

this implies that every nodev in
Ss−1

j=1 Dj hasñs−1(v) ≤ (1 +

ǫ) · ñs−1 < K, and therefore returnstrue. There arẽns−1 such
nodes. Fori = s this implies that every nodev in Ds hasñs(v) ≤
(1+ǫ) · ñs. Plugging this into the calculation gives that the number
of nodes that returntrue in

Ss
j=1 Dj is at leastK/(1 + ǫ). This

implies another factor of(1+ǫ) in the approximation of Theorem 8.
Notice that this adds another term of4δ to the probability of

failing to achieve the desired approximation, hence we have a
probability of at least1 − 11δ for our algorithm to obtain a
(9+18ǫ, 2(1+ γ)(1+ ǫ))-approximation for maximum coverage.
As before, we chooseδ = O(1/n), which gives:

THEOREM 13. If the nodes in the network do not have iden-
tities, there is an algorithm that yields in expectation a(9 +
18ǫ, 2(1 + γ)(1 + ǫ))-approximation for the maximum coverage
problem, with a round complexity ofO(RSpr2

), andO(ǫ−2·log2 n·
log1+γ n) bits per messagem(v) of every nodev.

The smaller we takeǫ, the better the approximation guarantee.
However, the cost is in having a larger, which blows up the size of
messages sent. If we take a small constantǫ we get that the approx-
imation factorsα, β are still constants, and the size of a message
m(v) remains polylogarithmic inn.

We remark that for simplicity of presentation the above analysis
only aims to show a constant approximation factor, and that the
approximation factors may be improved.

5. DISCUSSION
This paper studies partial information spreading and its useful-

ness in solving optimization problems in distributed manner. The
new concept of weak conductance of a graph is used as a tool for
measuring the time needed for partial information spreading. We
believe that weak conductance will turn out to be useful in analyz-
ing other properties of graphs as well. An interesting avenue for
future research is to relate the weak conductance of a graph to its
algebraic properties, as an analogue to the bounds on the conduc-

tance,1 − 2Φ(G) ≤ λ1 ≤ 1 − Φ(G)2

2
, whereλ1 is the second

eigenvalue of the transition matrix [32].
We showed how partial information spreading can be embedded

in an approximation algorithm for solving the problem of maxi-
mum coverage. It is an open question whether better algorithms
exist for this problem.

In addition, as a further research direction we propose the ques-
tion of achieving other types of partial information spreading,
which can be useful in designing distributed algorithms for solv-
ing other problems.
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APPENDIX

A. PROOF OF LEMMA 1
Recall that for every graphG, Φ(G) is the conductance accord-

ing to the symmetric transition matrixP where

Pi,j =

8

>

<

>

:

1
dmax

if (i, j) ∈ E

1 − di

dmax
if i = j

0 otherwise

andΦ̃(G) is the conductance according to the transition matrixP̃ ,
where

P̃i,j =

(

1
di

if (i, j) ∈ E

0 otherwise



Lemma 1 [restated] For every graphG = (V, E), Φ̃(G) ≥
Φ(G).

PROOF. Recall that the stationary distributionπP is uniform,
henceπP (i) = 1/n for every nodei. This implies that

Φ(G) = min
S⊆V,π(S)≤1/2

P

i∈S,j∈V \S π(i)Pi,j

π(S)

= min
S⊆V,|S|≤n/2

P

i∈S,j∈V \S ( 1
n
· 1

dmax
)

|S| 1
n

= min
S⊆V,|S|≤n/2

|E(S, V \ S)|

|S|dmax

whereE(S, V \ S) = {e ∈ E | e = (i, j), i ∈ S, j ∈ V \ S} is
the set of edges of the cut(S, V \ S).

On the other hand, the stationary distributionπP̃ satisfies
πP̃ (i) = di/2m for every nodei, wherem = |E|. This implies
that

Φ̃(G) = min
S⊆V,π(S)≤1/2

P

i∈S,j∈V \S π(i)Pi,j

π(S)

= min
S⊆V,

P

i∈S di≤m

P

i∈S,j∈V \S ( di

2m
· 1

di
)

P

i∈S
di

2m

= min
S⊆V,

P

i∈S di≤m

|E(S, V \ S)|
P

i∈S di

Therefore, to prove that̃Φ(G) ≥ Φ(G), we need to prove

min
S⊆V,

P

i∈S di≤m

|E(S, V \ S)|
P

i∈S di

≥ min
S⊆V,|S|≤n/2

|E(S, V \ S)|

|S|dmax
(4)

It is easy to see that for any given setS ⊆ V we have

|E(S, V \ S)|
P

i∈S di
≥

|E(S, V \ S)|

|S|dmax

but it is not necessarily the case that the minimum in both expres-
sions in inequality (4) is taken over the same setsS ⊆ V . However,
if there is a setS ⊆ V for which

P

i∈S di ≤ m but |S| > n/2,
then forS̄ = V \ S we have|S̄| ≤ n/2, and in addition:

|E(S, V \ S)|
P

i∈S di
≥

|E(S, V \ S)|

m

≥
|E(S, V \ S)|
P

i∈S̄ di
≥

|E(S, V \ S)|

|S̄|dmax

where the first two inequalities follow from the fact that
P

i∈S di ≤
m. This completes our proof since for every setS ⊆ V taken in the
left-hand side of inequality (4) there is a set taken in the right-hand
side whose value is at least as small.


